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Abstract
We present two computationally inexpensive
techniques for estimating the numerical rank of
a matrix, combining powerful tools from compu-
tational linear algebra. These techniques exploit
three key ingredients. The first is to approximate
the projector on the non-null invariant subspace
of the matrix by using a polynomial filter. Two
types of filters are discussed, one based on Her-
mite interpolation and the other based on Cheby-
shev expansions. The second ingredient employs
stochastic trace estimators to compute the rank of
this wanted eigen-projector, which yields the de-
sired rank of the matrix. In order to obtain a good
filter, it is necessary to detect a gap between the
eigenvalues that correspond to noise and the rel-
evant eigenvalues that correspond to the non-null
invariant subspace. The third ingredient of the
proposed approaches exploits the idea of spec-
tral density, popular in physics, and the Lanczos
spectroscopic method to locate this gap.

1. Introduction
In many machine learning, data analysis, scientific compu-
tations and signal processing applications, the high dimen-
sional data encountered generally have intrinsically low
dimensional representations. A widespread tool used in
these applications to exploit this low dimensional nature
of data is the Principal Component Analysis (PCA) (Jol-
liffe, 2002). PCA essentially takes the initial data matrix
X ∈ Rd×n and replaces it by a rank-k version (a lower
dimensional matrix), which has the effect of capturing the
intrinsic information of X . Other well known techniques
such as randomized low rank approximations (Halko et al.,
2011; Ubaru et al., 2015) and low rank subspace esti-
mations (Comon & Golub, 1990; Doukopoulos & Mous-
takides, 2008) also exploit the ubiquitous low rank charac-
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ter of data. However, a difficulty with these approaches that
is well-recognized in the literature is that, it is not known
in advance how to select the reduced rank k. This prob-
lem is aggravated in the applications of algorithms such as
online PCA (Crammer et al., 2006), stochastic approxima-
tion algorithms for PCA (Arora et al., 2012) and subspace
tracking (Doukopoulos & Moustakides, 2008), where the
dimension of the subspace of interest changes frequently.

The rank estimation problem also arises in many useful
methods employed in fields such as machine learning for
example, where the data matrix X ∈ Rd×n is replaced
with a factorization of the form UV >, where U ∈ Rd×k
and V ∈ Rn×k. In these methods, the original problem
is solved by fixing the rank of the unknown matrix to a
preselected value k (Haldar & Hernando, 2009). Similar
rank estimation problems are encountered in reduced rank
regression (Reinsel & Velu, 1998), when solving numer-
ically rank deficient linear systems of equations (Hansen,
1998), and in numerical methods for eigenvalue problems
that are used to compute the dominant subspace of a matrix,
for e.g., subspace iteration (Saad, 2016).

In the most common situation, the rank k required as input
in the above applications is typically selected in an ad-hoc
way. This is because standard rank estimation methods in
the existing literature rely on expensive matrix factoriza-
tions such as the QR (Chan, 1987), LDLT or SVD (Golub
& Van Loan, 2012). Other methods also assume certain
asymptotic behavior such as normal responses, for the in-
put matrices (Camba-Méndez & Kapetanios, 2008; Perry
& Wolfe, 2010). Many of the rank estimation methods pro-
posed in the literature focus on specific applications, e.g., in
econometrics and statistics (Camba-Méndez & Kapetanios,
2008), statistical signal processing (Kritchman & Nadler,
2009; Perry & Wolfe, 2010), reduced-rank regression (Bura
& Cook, 2003), estimating the dimension of linear systems
(Hannan, 1981) and others.

Powerful and inexpensive tools from computational linear
algebra can be developed to estimate the approximate ranks
of large matrices. The goal of this paper is to present exam-
ples of such methods. These methods require only matrix-
vector products (‘matvecs’) and are inexpensive compared
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to traditional methods. In addition, they do not make any
particular statistical, or asymptotic behavior assumptions
on the input matrices. Since the data matrix can be approx-
imated in a low dimensional subspace, the only assumption
is that there is a set of relevant eigenvalues in the spectrum
that correspond to the eigenvectors that span this low di-
mensional subspace, and that these are well separated from
the smaller, noise-related eigenvalues.

The rank estimation techniques presented in this paper
combine three key ingredients. First, a polynomial filter is
used to approximate a spectral projector, the trace of which
is exactly the desired rank (see sec. 3). Second, stochastic
trace estimators (Hutchinson, 1990) are exploited to esti-
mate the rank of this projector. Finally, in order to deter-
mine a good filter to use, we need to locate a gap in the
spectrum and select a threshold that separates the smaller
eigenvalues from the relevant ones that contribute to the
rank. This paper discusses a simple method to estimate this
threshold based on the spectral density function (Lin et al.,
2016) of the matrix, see section 4 for details. Section 6 dis-
cusses the performance of the rank estimation techniques
on matrices from various applications. First, the key con-
cepts that are required to develop the rank estimators are
discussed in the following section.

2. Key concepts
This paper aims at estimating the ‘numerical’ rank of a
symmetric positive semi-definite (PSD) matrixA. This ma-
trix may be a covariance matrix associated with some data
X , or may just be of the form1 A = X>X orXX> for the
given data X , of which we seek the numerical rank.

2.1. Numerical rank

The numerical rank or approximate rank of a d× n matrix
X , with respect to a positive tolerance ε is defined as

rε = min{rank(Y ) : Y ∈ Rd×n, ‖X − Y ‖2 ≤ ε}, (1)

where ‖.‖2 refers to the 2-norm or spectral norm. This is
a standard definition that can be found, for example, in
(Golub & Van Loan, 2012; Golub et al., 1976; Hansen,
1998). Here, the matrix X is assumed to be a perturbed
version of some original matrix of rank rε < {d, n}. Al-
though the perturbed matrix is likely to have full rank, it
can usually be well approximated by a rank-rε matrix. The
singular values of a matrix X with approximate rank rε
satisfy

σrε > ε ≥ σrε+1. (2)

It is important to note that the notion of numerical rank
rε is useful only when there is a well-defined gap between

1We will see that this matrix-matrix product need not be
formed explicitly.

σrε and σrε+1 (Hansen, 1998). The issue of determining
this gap, i.e., selecting the parameter ε in the definition of
ε-rank, is one of the key tasks for estimating the approxi-
mate rank. A few methods have been proposed in the sig-
nal processing literature to address this issue (Kritchman &
Nadler, 2009; Perry & Wolfe, 2010). In section 4, we de-
scribe a different approach to locate the gap and choose a
value for the tolerance or threshold ε based on the Lanczos
spectroscopic approach.

Once the gap is identified and the threshold ε is set, the
simplest idea for estimating the rank is to count the num-
ber of eigenvalues of A that are larger than ε. For this
task, eigenvalue count methods can be invoked, see for e.g.,
(Di Napoli et al., 2013). Recently, article (Zhang et al.,
2015) discussed the communication complexities for such
numerical rank estimations (assuming ε is given) in the
distributed settings using deterministic and randomized al-
gorithms. The randomized algorithm discussed in (Zhang
et al., 2015) is based on the same idea of counting the
eigenvalues above the given threshold ε ≥ 0, using a simi-
lar algorithm to the one in (Di Napoli et al., 2013). In this
paper, we address both the issues of determining a proper
threshold ε to use, and that of estimating the rank once ε is
determined.

2.2. The dominant spectral projector

Let A ∈ Rn×n be a symmetric semi-positive definite ma-
trix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and associ-
ated orthonormal eigenvectors u1, u2, . . . , un, respectively.
One of the main ideas explored in this paper is to compute
the rank by estimating the trace of the eigen-projector:

P =
∑

λi ∈ [a, b]

uiu
>
i , (3)

where the interval [a, b] is (implicitly or explicitly) se-
lected so that it includes the relevant dominant eigenvalues
that determine the rank. This idea of eigen-projectors is
also used in the ‘eigenvalue count’ algorithm discussed in
(Di Napoli et al., 2013). The eigenvalues of a projector are
either zero or one and so the trace of P equals the num-
ber of terms in the sum (3), i.e., the number of eigenvalues
η[a, b] in [a, b],

η[a,b] = Trace(P ) .

Although P is typically not available, it can be inexpen-
sively approximated in practice by a polynomial of A.
First, we can interpret P as a step function of A given by

P = h(A), where h(t) =

{
1 if t ∈ [a, b]
0 otherwise . (4)

Next, this step function h(t) can be approximated by a
polynomial of degree m, say ψm(t) and the projector P
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is expressed as P ≈ ψm(A). In this form, it becomes
possible to estimate the trace of P by a stochastic estima-
tor (Hutchinson, 1990). The issue of selecting a, b will be
addressed in sections 3 and 4.

2.3. The trace estimator

Hutchinson’s unbiased estimator (Hutchinson, 1990) uses
only matrix-vector products to approximate the trace of a
generic matrixD. The method estimates the trace tr(D) by
first generating random vectors vl, l = 1, ..,nv with equally
probable entries ±1, and then computing the average over
the samples of v>l Dvl,

Trace(D) ≈ 1

nv

nv∑
l=1

v>l Dvl. (5)

It is known that any random vectors vl with mean of entries
equal to zero and unit 2-norm can be used (Avron & Toledo,
2011). Thus, substituting D with ψm(A) in (5), will yield
the following estimate of the trace of P :

Trace(P ) ≈ n

nv

nv∑
l=1

v>l ψm(A)vl. (6)

Before we describe the types of polynomials ψm(t) that
we propose to use, it is important to note that the above
expression does not require to form the matrix ψm(A). All
that is needed is to efficiently compute the vectorsψm(A)vl
for any vl, and this can be accomplished by a sequence of
matrix-by-vector products with the matrix A (see supple-
mentary material for additional details).

3. Polynomial filters
In our approach, the projector P = h(A) in (4) is approxi-
mated by ψm(A), where ψm(t) is a ‘filter’ polynomial. In
practice, we only need ψm(t) to transform the larger rele-
vant eigenvalues into a value close to one and the smaller
eigenvalues to a value close to zero. We first consider a sim-
ple filter based on Hermite interpolation (sec. 3.1), which
has a number of advantages relative to the more common
Chebyshev filter, which is described in section. 3.2.

3.1. The McWeeny filter

The McWeeny transform (McWeeny, 1960) has been used
in solid-state physics to develop ‘linear-scaling’ meth-
ods (Li et al., 1993). It starts by scaling and shifting the
matrix so that its eigenvalues are in the interval [0, 1]. This
can be achieved by simply defining B = A/λ1, where the
largest eigenvalue λ1 can be inexpensively computed with
a few steps of the Lanczos algorithm (Golub & Van Loan,
2012).

The McWeeny filter is a polynomial of cubic order whose

goal is to push larger eigenvalues of B closer to one and
smaller eigenvalues closer to zero. In fact it is simply a
Hermite interpolation of a function that has the values y0 =
0, y1 = 1 at x0 = 0, x1 = 1 and derivatives equal to zero
at both points. This leads to

ψ(t) = 3t2 − 2t3. (7)

So a basic method for estimating the rank without using
any parameter is to first calculate λ1 and defineB = A/λ1,
then estimate the trace of ψ(B) using Hutchinson’s estima-
tor. Here, the projector is approximated by

P ≈ 3B2 − 2B3.

Clearly, a degree 3 filter of this type is likely to give only
a very rough estimate of the rank. We can extend the
McWeeny filter to any degree by using Hermite interpola-
tion at the points 0 and 1. In fact it is important to vary the
degree of smoothness at zero and at one. It may be more
important to have a higher degree of matching at point one
since we wish the values of the filter to be very close to one
for the larger singular values.

Figure 1 shows four different filters using various degrees
of matching at zero and one. These extended McWeeny fil-
ters have been studied in a different context (Saad, 2006).
A systematic way of generating them is through interpo-
lation in the Hermite sense, using two integer parameters
m0,m1 that define the degree of matching or smoothness
at two points τ0 and τ1 respectively. In the following, we
denote by Θ[m0,m1] the interpolating (Hermite) polynomial
that satisfies the following conditions:

Θ[m0,m1](τ0) = 0; Θ′[m0,m1]
(τ0) = · · · = Θ

(m0−1)

[m0,m1]
(τ0) = 0

Θ[m0,m1](τ1) = 1; Θ′[m0,m1]
(τ1) = · · · = Θ

(m1−1)

[m0,m1]
(τ1) = 0.

Thus, Θ[m0,m1] has degree m0 + m1 − 1 and the two pa-
rametersm0 andm1 define the degree of smoothness at the
points τ0 and τ1 respectively. The polynomials Θ[m0,m1]

can be easily determined by standard finite difference ta-
bles. The paper (Saad, 2006) also gives a closed form ex-
pression for Θ[m0,m1] when τ0 = −1 and τ1 = 1:

Θ[m0,m1] =

∫ t
−1 (1− s)m1−1(1 + s)m0−1 ds∫ 1

−1 (1− s)m1−1(1 + s)m0−1 ds
. (8)

Furthermore, when m0 + m1 > 2 (at least 3 conditions
imposed), the function has an inflexion point at :

t =
m0 −m1

m0 +m1 − 2
.

When translated back to the interval [0, 1] this point be-
comes (t+ 1)/2 = (m0 − 1)/(m0 +m1 − 2).

Let us consider for example the choice: m0 = 2,m1 = 14.
The inflexion point is at 1/14 and this can be viewed as a
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Figure 1. Four different polynomial filters based on the McWeeny idea (first curve corresponds to McWeeny filter).

cut-off value. Recall that all singular values are scaled by
σ1 so they are all ≤ 1. The filter will take all eigenvalues
λi = (σi/σ1)2 that are larger than 1/14, and move them
close to one. All other eigenvalues will be moved close
to zero. In this case, the eigenvalues larger than 1/14 are
deemed to contribute to the rank – and these are termed
‘relevant’ in the sequel. Looking at the plot indicates that
when the relevant eigenvalues are in the interval [0.35, 1],
we will get an accurate approximation of the rank by us-
ing this simple polynomial of degree 15. A good accuracy
will be also obtained if all relevant eigenvalues are in the
interval [0.25, 1]. The approximation will become poorer
if there are eigenvalues below 0.2 and closer to the inflec-
tion point. These cases can be handled by a higher degree
polynomial. Thus, once the threshold ε is computed, say
by the method in section 4, an appropriate degree for the
polynomial can be easily selected. However, this may lead
to a very large degree for smaller ε value.

So far we have looked at polynomials Θ[m0,m1] based on
the interpolation knots: τ0 = 0, τ1 = 1. A look at the
curves reveals that to the right of t = 1 the polynomial
stays close to one in an interval that extends well beyond
the value t = 1. Therefore, we can take τ0 = 0, and τ1 < 1
to reduce the degree m1. In fact we can move τ1 back to-
ward 0.5 as far as possible before p(1) departs from 1 by
a certain threshold. A little analysis shows that τ1 must be
larger than 0.5. Thus, we can use dichotomy to find the best
value of τ1 and the degree m1 based on the ε value com-
puted (details in sec. 4 and the supplementary material).

3.2. Chebyshev filters

Chebyshev polynomials are commonly used to expand the
step function h, i.e., h(t) is approximately expanded as :

h(t) ≈
m∑
k=0

γkTk(t), (9)

where each Tk is the k-degree Chebyshev polynomial of
the first kind, formally defined as Tk(t) = cos(k cos−1(t)).
Since Chebyshev polynomials are based on the interval
[−1, 1] we will assume first that A has eigenvalues be-
tween −1 and 1. Let a, b such that −1 ≤ a < b ≤ 1. The
expansion coefficients γk for the polynomial to approxi-
mate a step function h(t), which takes value 1 in [a, b] and

0 elsewhere, are known:

γk =

{
1
π (cos−1(a)− cos−1(b)) : k = 0,
2
π

(
sin(k cos−1(a))−sin(k cos−1(b))

k

)
: k > 0

.

Once the γk’s are known, the desired Chebyshev expan-
sion of the projector P will be given by: P ≈ ψm(A) =∑m
k=0 γkTk(A).

The approximate matrix rank rε can be determined by set-
ting the interval [a, b] = [ε, λ1]. As a result, the approxi-
mate rank of a matrix A using the Chebyshev polynomial
filtering method is estimated by:

rε = η[ε,λ1] ≈
n

nv

nv∑
l=1

[
m∑
k=0

γk(vl)
>Tk(A)vl

]
. (10)

It remains to determine the threshold ε and a method for
this purpose will be be described in the next section. De-
tails on the practicalities of Chebyshev polynomial approx-
imation can be found in the supplementary material.

4. Threshold selection
The method we described so far requires a threshold param-
eter ε that separates the small eigenvalues, those assumed
to be perturbations of the zero eigenvalue, from the rele-
vant larger eigenvalues that contribute to the rank. We now
describe a method to select ε based on the Lanczos spec-
troscopic method (LSM) and the spectral density. Related
to this is the need to select appropriate polynomial degrees
for the extended McWeeny and Chebyshev filters. This is
discussed at the end of the section.

4.1. LSM and spectral density

The Lanczos spectroscopic approach (Lanczos, 1956) con-
sists of representing the matrix spectrum as a collection of
frequencies and computes these frequencies using Fourier
analysis. Suppose the eigenvalues of A are in the interval
[−1, 1], then LSM considers samples of the following con-
tinuous function:

f(t) =

n∑
j=1

β2
j cos(θjt), (11)

where θj’s are related to the eigenvalue of A by θj =
cos−1 λj , and βj’s are scalars whose values depend on the
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Figure 2. Typical spectral density plots by LSM for a low rank (left) and a numerically low rank (right) matrices.

function f(t) considered. The above function is sampled at
t = 0, 1, . . . ,m. Then, taking the Fourier transform of f(t)
reveals the spectral information of A, i.e., with sufficient
number of samples, the Fourier transform of the sampled
function will have peaks near cos−1 λj , j = 1, . . . , n. Re-
cently, Lin et. al (Lin et al., 2016) showed that an approxi-
mate spectral density can be obtained from this method.

The spectral density or the Density of States (DOS) of a real
symmetric matrix (popular in solid-state physics) is a prob-
ability density distribution that measures the likelihood of
finding eigenvalues of the matrix near a point on a real line.
Given an n× n symmetric matrix A, the Density of States
(DOS) is defined as

φ(t) =
1

n

n∑
j=1

δ(t− λj), (12)

where δ is the Dirac δ-function or Dirac distribution, and
the λj’s are the eigenvalues of A. Efficient algorithms for
computing the DOS without computing all the eigenvalues
of the matrix have been developed in the literature (Wang,
1994; Lin et al., 2016).

Back to the spectroscopic method, since the λj’s are not
available, f(t) in (11) cannot be computed directly. How-
ever, we observe that f(t) is closely related to the Cheby-
shev polynomials. In particular, m + 1 uniform samples
of f(t), say f(0), f(1), . . . , f(m) can be computed as the
average of

v>l vl, v
>
l T1(A)vl, . . . , v

>
l Tm(A)vl,

where vl, l = 1, . . . ,nv are random starting vectors. For
the DOS, we just need the mean of βj’s to be one. This
fact helps us compute f(t) as the average of v>l Tk(A)vl,
see Theorem 3.1 in (Lin et al., 2016). The discrete cosine
transform of f(t) is given by

F (p) =
1

2
(f(0) + (−1)pf(m)) +

m−1∑
k=1

f(k) cos(
kpπ

m
),

for p = 0, . . . ,m. An approximate spectral density φ(t)
can be obtained from F (p) using an interpolation proce-
dure (Lin et al., 2016). Next, we describe a method to es-
timate the threshold ε based on the plot of spectral density
φ(t) obtained by the LSM.

4.2. Analyzing the spectral density plots

In order to describe the threshold selection method, we will
consider two matrices with the following spectral distribu-
tions. The first matrix has an exact low rank, and its DOS
plot will serve as a motivation for the proposed technique
for selecting the threshold. As an example we consider an
n × n PSD matrix with rank k < n, that has k eigenval-
ues uniformly distributed between 0.2 and 2.5, and whose
remaining n − k eigenvalues are equal to zero. The sec-
ond matrix is a typical numerically rank deficient matrix
(the kind of matrices observed in the applications) which
has a large number of eigenvalues related to noise that are
close to zero and a number of larger relevant eigenvalues
(forming few clusters), that contribute to the approximate
rank. The approximate spectral density plots of these two
matrices obtained by LSM using Chebyshev polynomials
of degree m = 40 are plotted in figure 2.

In the left plot, since the matrix has a large number of
eigenvalues equal to zero, the plot has a high value at zero,
and then drops quickly to almost a zero value, representing
the region where there are no eigenvalues. At 0.2, the plot
increases again due to the presence of new eigenvalues. So,
a gap in the matrix spectrum will correspond to a sharp drop
to zero or a valley in the spectral density plot of the matrix.
We observe a similar behavior in the numerically low rank
matrix case (right plot of fig. 2) as well. The spectral den-
sity has a high value near zero and displays a fast decrease
due to the gap between the noise related eigenvalues and
the relevant eigenvalues. The curve increases again due the
presence of larger relevant eigenvalue clusters.

The rank k of the first matrix can be estimated by count-
ing the eigenvalues in the interval [ε, λ1] = [0.2, 2.5].
The value λ1 = 2.5 is estimated as discussed earlier. The
threshold value ε = 0.2, which is a cutoff point between
zero eigenvalues and relevant ones is located at the point
where the spectral density curve ceases to decrease, in the
valley corresponding to the gap. That is, the point is a lo-
cal minimum of the function φ(t). Thus, it can selected
as the left most value of t for which the derivative of φ(t)
becomes zero, i.e., ε can be defined as:

ε = min{t : φ′(t) = 0, λn ≤ t ≤ λ1}. (13)
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Since a numerically rank deficient matrix is a perturbed
version of some low rank matrix, the same idea based on
the spectral density plot can be employed to determine its
numerical rank. The threshold is now a cutoff point be-
tween noise related eigenvalues and relevant ones, and this
point must be in the valley corresponding to the first lo-
cal minimum in the DOS plot. Thus, equation (13) can be
used to estimate the threshold ε as well. In our experiments,
we observe that the spectral density plots obtained by LSM
capture the local minima (the gaps) of DOS quite well. A
more practical version of formula (13) is the following :

ε = min{t : φ′(t) ≥ tol, λn ≤ t ≤ λ1}. (14)

We found that tol = −0.01 works well in practice.

4.3. Choosing appropriate polynomial degrees

Once the separation point ε is found, we can select appro-
priate degrees and type of Θ, i.e., m0, and m1 in the case
of extended McWeeny filters. For the Hermite filters, we
always select m0 = 2 for a number of reasons. We found
that adding in smoothness at τ0 does not help. Then in or-
der for the inflexion point to be just around the gap center ε,
we start by taking τ1 = 1 and m1 = d1/εe and then use di-
chotomy to choose an appropriate τ1 (between (0.5, 1]) and
m1 (as low as possible) such that the inflexion is around ε
and ψ(1) is close to 1.

For the Chebyshev filters, the cut-off value ε dictates the
choice of the interval [a, b] to use, but not the degree.
The degree should be selected to reflect the sharpness of
the filter. For example, if we have an interval [−1, ε0]
which should contain small eigenvalues and a second in-
terval [ε1, 1] which contains relevant eigenvalues, then we
will select the cut-off value ε = (ε0 + ε1)/2 and then the
degree m should be such that

max
t ∈ [−1, ε0]

|ψm(t)| ≤ δ; max
t ∈ [ε1, 1]

|1− ψm(t)| ≤ δ,

where δ ≥ 0 is a small number. When ε1 and ε0 are close,
this condition will require a high degree polynomial. We
choose ε0 = ε− δ and ε1 = ε+ δ in our experiments.

5. Algorithm and analysis
This section, describes the proposed algorithms and their
computational costs. Convergence analysis for the methods
is also briefly discussed at the end of the section.

Algorithm 1 describes our approach for estimating the ap-
proximate rank rε by the two polynomial filtering methods
discussed earlier.

Computational cost. The core of the computation in the
two rank estimation methods is the matrix vector product of

Algorithm 1 Numerical rank estimation by polynomial fil-
tering

Input: An n × n symmetric PSD matrix A, λ1 and λn
of A, and number nv of sample vectors to be used.
Output: The numerical rank rε of A.
1. Generate the random starting vectors vl : l =
1, . . .nv, such that ‖vl‖2 = 1.
2. Transform the matrix A to B = A/λ1, choose degree
m for DOS and form the matvecs

Bkvl : l = 1, . . . ,nv, k = 0, . . . ,m.

3. Form the scalars v>l Tk(B)vl using the above matvecs
and obtain the DOS φ̃(t) by LSM.
4. Estimate the threshold ε from φ̃(t) using eq. (14).
5. McWeeny filter: Estimate m1 and τ1 from ε. Com-
pute Θ[m0,m1]vl using the above matvecs (compute addi-
tional matvecs if required). Estimate the numerical rank
rε using eq. (6).
Chebyshev filter: Compute the degree m and estimate
the coefficients γk for the interval [ε, λ1]. Compute the
numerical rank rε using (10) and the above matvecs.

the form Tk(A)vl or in generalAkvl for l = 1, . . . ,nv, k =
0, . . . ,m (step 3). Note that no matrix-matrix products or
factorizations are required. In addition, the matrix vec-
tor products Akvl computed during the estimation of the
threshold, for the spectral density, can be saved and reused
for the rank estimation, and so the related matrix-by-vector
products are computed only once. All remaining steps of
the algorithm are essentially based on these ‘matvec’ oper-
ations.

For an n × n dense symmetric PSD matrix, the computa-
tional cost of Algorithm 1 is O(n2mnv). For a sparse ma-
trix, the computation cost will be O(nnz(A)mnv), where
nnz(A) is the number of nonzero entries of A. This cost
is linear in the number of nonzero entries of A for large
matrices and it will be generally quite low when A is very
sparse, e.g., when nnz(A) = O(n). These methods are
very inexpensive compared to methods that require matrix
factorizations such as QR or SVD.

Remark 1 In some of the rank estimation applications, it
is perhaps required to estimate the corresponding eigen-
pairs or the singular triplets of the matrix, after the ap-
proximate rank estimation. These can be easily computed
using a Rayleigh-Ritz projection type methods, exploiting
again the vectors Akvl generated for estimating the rank.

On the convergence. The convergence analysis of the
trace estimator (5) is well documented in (Roosta-
Khorasani & Ascher, 2014) for starting vectors with
Rademacher (Hutchinson), Gaussian and uniform unit vec-
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Figure 3. Left: Spectral density plot by LSM. Middle: Numerical ranks estimated by McWeeny filter method for the example ukerbe1.
Right: Numerical ranks estimated by Chebyshev filter method.

tor probability distributions. The best known convergence
rate for (5) is O(1/

√
nv) for Hutchinson and Gaussian dis-

tributions (see Theorem 1 and 3 in (Roosta-Khorasani &
Ascher, 2014), respectively).

Theoretical analysis for approximating a step function as
in (4) is not straightforward since we are approximating a
discontinuous function. Convergence analysis on approxi-
mating a step function is documented in (Alyukov, 2011).
A convergence rate of O(1/m) can be achieved with any
polynomial approximation (Alyukov, 2011). However, this
rate is obtained for point by point analysis (at the vicinity
of discontinuity points), and uniform convergence cannot
be achieved due to the Gibbs phenomenon.

Improved theoretical results can be obtained if we first re-
place the step function by a piecewise linear approxima-
tion, and then employ polynomial approximation. Arti-
cle (Saad, 2006) shows that uniform convergence can be
achieved using Hermite polynomial approximation (as in
sec. 3.1) when the filter is constructed as a spline (piece-
wise linear) function. For example,

ψ(t) =


0 : for t ∈ [0, ε0)

Θ[m0.m1] : for t ∈ [ε0, ε1)

1 : for t ∈ [ε1, 1]

. (15)

It is well known that uniform convergence can be achieved
with Chebyshev polynomial approximation if the function
approximated is continuous and differentiable, see The-
orem 5.7 in (Mason & Handscomb, 2002). Further im-
provement in the convergence rate can be accomplished,
if the step function is replaced by a function whose p+ 1st
derivative exists, for example, ψ(t) can be a shifted ver-
sion of tanh(pt) function. In this case, a convergence rate
of O(1/mp) can be achieved with Chebyshev polynomial
approximation, see Theorem 5.14 (Mason & Handscomb,
2002). However, such complicated implementations are
unnecessary in practice. The bounds achieved for both the
trace estimator and the approximation of step functions dis-
cussed above are too pessimistic, since in practice we can
get accurate ranks for m ∼ 50 and nv ∼ 30.

6. Numerical experiments
In this section, we illustrate the performance of the rank
estimation techniques on matrices from various typical ap-
plications. In the first experiment, we use a 5, 981× 5, 981
matrix named ukerbe1 from the AG-Monien group (the
matrix is a Laplacian of an undirected graph), available in
the University of Florida Sparse Matrix Collection (Davis
& Hu, 2011) database. The performances of the Chebyshev
Polynomial filter method and the extended McWeeny filter
method for estimating the numerical rank of this matrix2

are shown in figure 3.

Figure 3 (Left) gives the spectral density plot obtained by
LSM using Chebyshev polynomials of degree m = 50 and
a number of samples nv = 30. Using this plot, the thresh-
old ε estimated by the method described in section 4 was
ε = 0.169. Figure 3 (Middle) plots the numerical ranks
estimated by the McWeeny filter method with 30 sample
vectors. The degrees [m0,m1] for the Hermite polyno-
mials estimated were [2, 54]. In the plot, the circles indi-
cate the approximate ranks estimated with the `th sample
vectors and the dark line is the cumulative (running) aver-
age of these estimated approximate rank values. The aver-
age numerical rank estimated over 30 sample vectors was
equal to 4030.47. The exact number of eigenvalues above
the threshold is 4030, indicated by the dotted line in the
plot. Similarly, figure 3 (Right) plots the numerical ranks
estimated by the Chebyshev filter method with nv = 30.
The degree for the Chebyshev polynomials selected by the
method in section 4.3 was m = 96. The average numerical
rank estimated over 30 sample vectors is 4030.57.

Timing Experiment : Here, we provide an example to
illustrate how fast these methods can be. We consider a
sparse matrix of size 1.25 × 105 called Internet from
the UFL database, with nnz(A) = 1.5 × 106. The estima-
tion of its rank by the Chebyshev filter method took only
7.18 secs on average (over 10 trials) on a standard 3.3GHz
Intel-i5 machine. Computing the rank of this matrix by an
approximate SVD, for example using the svds/eigs func-
tion matlab which relies on ARPACK, will be exceedingly

2Matlab codes are available at http://www-users.cs.
umn.edu/˜ubaru/codes/rank_estimation.zip

http://www-users.cs.umn.edu/~ubaru/codes/rank_estimation.zip
http://www-users.cs.umn.edu/~ubaru/codes/rank_estimation.zip
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Table 1. Numerical rank estimation of various matrices
Matrices (Applications) Size Threshold Eigencount McWeeny Filter Chebyshev Filter SVD

ε above ε m1 rε time m rε time time
Erdos992 (undirected graph) 6100 3.39 748 64 747.52 1.82 106 747.68 2.45 876.2 secs
deter3 (linear programming) 7047 10.01 591 58 592.59 1.61 72 590.72 1.72 1.3 hrs
dw4096 (electromagnetics) 8192 79.13 512 62 512.42 1.81 68 512.21 1.83 1.2 hrs
California (web search) 9664 11.48 350 78 348.83 3.61 116 350.81 4.56 18.7 mins
FA (Pajek network graph) 10617 0.51 471 64 472.35 17.8 98 470.31 24.95 1.5 hrs
qpband (optimization) 20000 0.7 15000 42 15004.6 0.62 50 14997.1 0.91 2.9 hrs
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Figure 4. Left and middle: The spectroscopic plot by LSM and the numerical ranks estimated by Chebyshev filtering method for the
ORL dataset. Right: Eigenfaces recovered with rank k = 20 using randomized SVD.

expensive. It took around 2 hours to compute 4000 sin-
gular values of the matrix on the same machine. Methods
based on rank-revealing QR factorizations or the standard
SVD are not even possible for this problem on a standard
workstation such as the one we used.

Table 1 lists the threshold selected using spectroscopic plot,
the degree of the polynomial used and the ranks estimated
by the two filtering methods for a set of matrices from vari-
ous applications. All matrices were obtained from the UFL
database (Davis & Hu, 2011). The matrices, their applica-
tions and sizes are listed in the first two columns of the ta-
ble. The threshold ε, computed from the DOS plot by LSM
and the actual number of eigenvalues above the threshold
for each matrices are listed in the next two columns. The
degrees for the polynomials estimated, the corresponding
numerical ranks computed and the average time taken (in
seconds, using Matlab cputime function) over 10 trials,
by the extended McWeeny filter and the Chebyshev filter
methods using nv = 30 are listed in the last six columns.
We observe that the McWeeny filter requires lower de-
gree polynomials than the Chebyshev filter in all examples.
Moreover, all these methods accurately estimate the numer-
ical ranks, with fewer computations compared to traditional
methods requiring QR or SVD.

Eigenfaces. It is well known that face images lie in a
low-dimensional linear subspace and the low rank approx-
imation methods are widely used in applications such as
face recognition. Eigenfaces is a popular method used for
face recognition which is based on Principal Component
Analysis (PCA) (Turk & Pentland, 1991). Such PCA based
techniques require the knowledge of the dimension of the
smaller subspace. Here, we demonstrate how our rank es-

timation methods can be combined with the randomized-
SVD method (Halko et al., 2011) in the application of face
recognition. As an illustration, we consider the ORL face
dataset obtained from the AT&T Labs Cambridge database
of faces (Cambridge, 2002). There are ten different images
of each of 40 distinct subjects. The size of each image is
92×112 pixels, with 256 gray levels per pixel. So, the input
matrix is of size 400×10304, which is formed by vectoriz-
ing the images. The matrix is mean centered (required for
eigenfaces method) and scaled.

In figure 4 (left and middle plots) the DOS and the numer-
ical rank are plotted for the ORL image matrix, both es-
timated using Chebyshev polynomials of degree m = 50
and nv = 30. The numerical rank estimated over 30 sam-
ple vectors was found to be 18.90. There are 19 eigenval-
ues above the threshold, estimated using (14) with tol =
−0.01. The four images (on the right) in the figure are the
eigenfaces of 4 individuals recovered using rank k = 20
(top 20 singular vectors) computed using the randomized
SVD algorithm (Halko et al., 2011).

7. Conclusion
We discussed two fast practical methods based on polyno-
mial filtering to estimate the numerical rank of large ma-
trices. Numerical experiments with matrices from various
applications demonstrated that the ranks estimated by these
methods are fairly accurate. In addition, because they re-
quire a relatively small number of matvecs, the proposed
methods are quite inexpensive. As such, they can be easily
incorporated into standard dimension reduction techniques
such as PCA, online PCA, or the randomized SVD, that
require the numerical rank of a matrix as input.
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