
Texture Networks: Feed-forward Synthesis of Textures and Stylized Images

Dmitry Ulyanov DMITRY.ULYANOV@SKOLTECH.RU

Computer Vision Group, Skoltech & Yandex, Russia

Vadim Lebedev VADIM.LEBEDEV@SKOLTECH.RU

Computer Vision Group, Skoltech & Yandex, Russia

Andrea Vedaldi VEDALDI@ROBOTS.OX.AC.UK

Visual Geometry Group, University of Oxford, United Kingdom

Victor Lempitsky LEMPITSKY@SKOLTECH.RU

Computer Vision Group, Skoltech, Russia

Abstract
Gatys et al. recently demonstrated that deep net-
works can generate beautiful textures and styl-
ized images from a single texture example. How-
ever, their methods require a slow and memory-
consuming optimization process. We propose
here an alternative approach that moves the com-
putational burden to a learning stage. Given a
single example of a texture, our approach trains
compact feed-forward convolutional networks to
generate multiple samples of the same texture of
arbitrary size and to transfer artistic style from
a given image to any other image. The result-
ing networks are remarkably light-weight and
can generate textures of quality comparable to
Gatys et al., but hundreds of times faster. More
generally, our approach highlights the power
and flexibility of generative feed-forward models
trained with complex and expressive loss func-
tions.

1. Introduction
Several recent works demonstrated the power of deep neu-
ral networks in the challenging problem of generating im-
ages. Most of these proposed generative networks that
produce images as output, using feed-forward calculations
from a random seed; however, very impressive results were
obtained by (Gatys et al., 2015a;b) by using networks de-
scriptively, as image statistics. Their idea is to reduce im-
age generation to the problem of sampling at random from
the set of images that match a certain statistics. In texture

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

synthesis (Gatys et al., 2015a), the reference statistics is
extracted from a single example of a visual texture, and the
goal is to generate further examples of that texture. In style
transfer (Gatys et al., 2015b), the goal is to match simul-
taneously the visual style of a first image, captured using
some low-level statistics, and the visual content of a sec-
ond image, captured using higher-level statistics. In this
manner, the style of an image can be replaced with the one
of another without altering the overall semantic content of
the image.
Matching statistics works well in practice, is conceptually
simple, and demonstrates that off-the-shelf neural networks
trained for generic tasks such as image classification can
be re-used for image generation. However, the approach
of (Gatys et al., 2015a;b) has certain shortcomings too. Be-
ing based on an iterative optimization procedure, it requires
backpropagation to gradually change the values of the pix-
els until the desired statistics is matched. This iterative pro-
cedure requires several seconds in order to generate a rel-
atively small image using a high-end GPU, while scaling
to large images is problematic because of high memory re-
quirements. By contrast, feed-forward generation networks
can be expected to be much more efficient because they re-
quire a single evaluation of the network and do not incur in
the cost of backpropagation.
In this paper we look at the problem of achieving the syn-
thesis and stylization capability of descriptive networks us-
ing feed-forward generation networks. Our contribution is
threefold. First, we show for the first time that a generative
approach can produce textures of the quality and diversity
comparable to the descriptive method. Second, we propose
a generative method that is two orders of magnitude faster
and one order of magnitude more memory efficient than the
descriptive one. Using a single forward pass in networks
that are remarkably compact make our approach suitable
for video-related and possibly mobile applications. Third,

Texture Networks

Input Gatys et al. Texture nets (ours) Input Gatys et al. Texture nets (ours)

Figure 1. Texture networks proposed in this work are feed-forward architectures capable of learning to synthesize complex textures
based on a single training example. The perceptual quality of the feed-forwardly generated textures is similar to the results of the closely
related method suggested in (Gatys et al., 2015a), which use slow optimization process.

we devise a new type of multi-scale generative architecture
that is particularly suitable for the tasks we consider.
The resulting fully-convolutional networks (that we call
texture networks) can generate textures and process im-
ages of arbitrary size. Our approach also represents an
interesting showcase of training conceptually-simple feed-
forward architectures while using complex and expressive
loss functions. We believe that other interesting results can
be obtained using this principle.
The rest of the paper provides the overview of the most re-
lated approaches to image and texture generation (Sect. 2),
describes our approach (Sect. 3), and provides extensive
extensive qualitative comparisons on challenging textures
and images (Sect. 4).

2. Background and related work
Image generation using neural networks. In general, one
may look at the process of generating an image x as the
problem of drawing a sample from a certain distribution
p(x). In texture synthesis, the distribution is induced by
an example texture instance x0 (e.g. a polka dots image),
such that we can write x ∼ p(x|x0). In style transfer, the
distribution is induced by an image x0 representative of the
visual style (e.g. an impressionist painting) and a second
image x1 representative of the visual content (e.g. a boat),
such that x ∼ p(x|x0,x1).
(Mahendran & Vedaldi, 2015; Gatys et al., 2015a;b) reduce
this problem to the one of finding a pre-image of a certain

image statistics Φ(x) ∈ Rd and pose the latter as an op-
timization problem. In particular, in order to synthesize a
texture from an example image x0, the pre-image problem
is:

argmin
x∈X

‖Φ(x)− Φ(x0)‖22. (1)

Importantly, the pre-image x : Φ(x) ≈ Φ(x0) is usually
not unique, and sampling pre-images achieves diversity. In
practice, samples are extracted using a local optimization
algorithmA starting from a random initialization z. There-
fore, the generated image is the output of the function

localopt
x∈X

(‖Φ(x)− Φ(x0)‖22;A, z), z ∼ N (0,Σ). (2)

This results in a distribution p(x|x0) which is difficult to
characterise, but is easy to sample and, for good statistics
Φ, produces visually pleasing and diverse images. Both
(Mahendran & Vedaldi, 2015) and (Gatys et al., 2015a;b)
base their statistics on the response that x induces in deep
neural network layers. Our approach reuses in particular
the statistics based on correlations of convolutional maps
proposed by (Gatys et al., 2015a;b).
Descriptive texture modelling. The approach described
above has strong links to many well-known models of vi-
sual textures. For texture, it is common to assume that p(x)
is a stationary Markov random field (MRF). In this case, the
texture is ergodic and one may considers local spatially-
invariant statistics ψ ◦ F (x; i), i ∈ Ω, where i denotes a
spatial coordinate. Often F is the output of a bank of linear

Texture Networks

filters and ψ an histogramming operator. Then the spatial
average of this local statistics on the prototype texture x0

approximates its sample average

φ(x0) =
1

|Ω|

|Ω|∑
i=1

ψ◦F (x0; i) ≈ E
x∼p(x)

[ψ◦Fl(x; 0)]. (3)

The FRAME model of (Zhu et al., 1998) uses this fact
to induce the maximum-entropy distribution over textures
p(x) ∝ exp(−〈λ, φ(x)〉), where λ is a parameter chosen
so that the marginals match their empirical estimate, i.e.
Ex∼p(x)[φ(x)] = φ(x0).

A shortcoming of FRAME is the difficulty of sampling
from the maxent distribution. (Portilla & Simoncelli, 2000)
addresses this limitation by proposing to directly find im-
ages x that match the desired statistics Φ(x) ≈ Φ(x0),
pioneering the pre-image method of (1).

Where (Zhu et al., 1998; Portilla & Simoncelli, 2000) use
linear filters, wavelets, and histograms to build their tex-
ture statistics, (Mahendran & Vedaldi, 2015; Gatys et al.,
2015a;a) extract statistics from pre-trained deep neural net-
works. (Gatys et al., 2015b) differs also in that it considers
the style transfer problem instead of the texture synthesis
one.

Generator deep networks. An alternative to using a neu-
ral networks as descriptors is to construct generator net-
works x = g(z) that produce directly an image x starting
from a vector of random or deterministic parameters z.

Approaches such as (Dosovitskiy et al., 2015) learn a map-
ping from deterministic parameters z (e.g. the type of ob-
ject imaged and the viewpoint) to an image x. This is done
by fitting a neural network to minimize the discrepancy
‖xi − g(zi)‖ for known image-parameter pairs (xi, zi).
While this may produce visually appealing results, it re-
quires to know the relation (x, z) beforehand and cannot
express any diversity beyond the one captured by the pa-
rameters.

An alternative is to consider a function g(z) where the pa-
rameters z are unknown and are sampled from a (simple)
random distribution. The goal of the network is to map
these random values to plausible images x = g(z). This
requires measuring the quality of the sample, which is usu-
ally expressed as a distance between x and a set of example
images x1, . . . ,xn. The key challenge is that the distance
must be able to generalize significantly from the available
examples in order to avoid penalizing sample diversity.

Generative Adversarial Networks (GAN; (Goodfellow
et al., 2014)) address this problem by training, together
with the generator network g(z), a second adversarial net-
work f(x) that attempts to distinguish between samples
g(z) and natural image samples. Then f can be used as
a measure of quality of the samples and g can be trained to
optimize it. LAPGAN (Denton et al., 2015) applies GAN

to a Laplacian pyramid of convolutional networks and DC-
GAN (Radford et al., 2015) further optimizes GAN and
learn is from very large datasets.

Moment matching networks. The maximum entropy
model of (Zhu et al., 1998) is closely related to the idea of
Maximum Mean Discrepancy (MMD) introduced in (Gret-
ton et al., 2006). Their key observation the expected value
µp = Ex∼p(x)[φ(x)] of certain statistics φ(x) uniquely
identifies the distribution p. (Li et al., 2015; Dziugaite
et al., 2015) derive from it a loss function alternative to
GAN by comparing the statistics averaged over network
samples 1

m

∑m
i=1 φ ◦ g(zi) to the statistics averaged over

empirical samples 1
m

∑m
i=1 φ(xi). They use it to train a

Moment Matching Network (MMN) and apply it to gener-
ate small images such as MNIST digits. Our networks are
similar to moment matching networks, but use very specific
statistics and applications quite different from the consid-
ered in (Li et al., 2015; Dziugaite et al., 2015).

3. Texture networks
We now describe the proposed method in detail. At a high-
level (see Figure 2), our approach is to train a feed-forward
generator network g which takes a noise sample z as in-
put and produces a texture sample g(z) as output. For style
transfer, we extend this texture network to take both a noise
sample z and a content image y and then output a new im-
age g(y, z) where the texture has been applied to y as a
visual style. A separate generator network is trained for
each texture or style and, once trained, it can synthesize an
arbitrary number of images of arbitrary size in an efficient,
feed-forward manner.

A key challenge in training the generator network g is to
construct a loss function that can assess automatically the
quality of the generated images. For example, the key idea
of GAN is to learn such a loss along with the generator net-
work. We show in Sect. 3.1 that a very powerful loss can
be derived from pre-trained and fixed descriptor networks
using the statistics introduced in (Gatys et al., 2015a;b).
Given the loss, we then discuss the architecture of the gen-
erator network for texture synthesis (Sect. 3.2) and then
generalize it to style transfer (Sect 3.3).

3.1. Texture and content loss functions

Our loss function is derived from (Gatys et al., 2015a;b)
and compares image statistics extracted from a fixed pre-
trained descriptor CNN (usually one of the VGG CNN (Si-
monyan & Zisserman, 2014; Chatfield et al., 2014) which
are pre-trained for image classification on the ImageNet
ILSVRC 2012 data). The descriptor CNN is used to mea-
sure the mismatch between the prototype texture x0 and
the generated image x. Denote by F li (x) the i-th map (fea-
ture channel) computed by the l-th convolutional layer by
the descriptor CNN applied to image x. The Gram matrix

Texture Networks

Figure 2. Overview of the proposed architecture (texture networks). We train a generator network (left) using a powerful loss based on
the correlation statistics inside a fixed pre-trained descriptor network (right). Of the two networks, only the generator is updated and
later used for texture or image synthesis. The conv block contains multiple convolutional layers and non-linear activations and the
join block upsampling and channel-wise concatenation. Different branches of the generator network operate at different resolutions
and are excited by noise tensors zi of different sizes.

Gl(x) is defined as the matrix of scalar (inner) products
between such feature maps:

Glij(x) = 〈F li (x), F lj(x)〉 . (4)

Given that the network is convolutional, each inner product
implicitly sums the products of the activations of feature i
and j at all spatial locations, computing their (unnormal-
ized) empirical correlation. Hence Glij(x) has the same
general form as (3) and, being an orderless statistics of lo-
cal stationary features, can be used as a texture descriptor.
In practice, (Gatys et al., 2015a;b) use as texture descrip-
tor the combination of several Gram matrices Gl, l ∈ LT ,
where LT contains selected indices of convolutional layer
in the descriptor CNN. This induces the following texture
loss between images x and x0:

LT (x;x0) =
∑
l∈LT

‖Gl(x)−Gl(x0)‖22 . (5)

In addition to the texture loss (5), (Gatys et al., 2015b) pro-
pose to use as content loss the one introduced by (Mahen-
dran & Vedaldi, 2015), which compares images based on
the output F li (x) of certain convolutional layers l ∈ LC
(without computing further statistics such as the Gram ma-
trices). In formulas

LC(x;y) =
∑
l∈LC

Nl∑
i=1

‖F li (x)− F li (y)‖22 , (6)

where Nl is the number of maps (feature channels) in layer
l of the descriptor CNN. The key difference with the texture
loss (5) is that the content loss compares feature activations
at corresponding spatial locations, and therefore preserves
spatial information. Thus this loss is suitable for content
information, but not for texture information.
Analogously to (Gatys et al., 2015a), we use the texture
loss (5) alone when training a generator network for tex-
ture synthesis, and we use a weighted combination of the

texture loss (5) and the content loss (6) when training a gen-
erator network for stylization. In the latter case, the set LC
does not includes layers as shallow as the set LT as only
the high-level content should be preserved.

3.2. Generator network for texture synthesis

We now discuss the architecture and the training procedure
for the generator network g for the task of texture synthe-
sis. We denote the parameters of the generator network as
θ. The network is trained to transform a noise vector z
sampled from a certain distribution Z (which we set to be
uniform i.i.d.) into texture samples that match, according
to the texture loss (5), a certain prototype texture x0:

θx0 = argmin
θ

Ez∼Z [LT (g(z; θ), x0)] . (7)

Network architecture. We experimented with several ar-
chitectures for the generator network g. The simplest are
chains of convolutional, non-linear activation, and upsam-
pling layers that start from a noise sample z in the form of
a small feature map and terminate by producing an image.
While models of this type produce reasonable results, we
found that multi-scale architectures result in images with
smaller texture loss and better perceptual quality while us-
ing fewer parameters and training faster. Figure 2 contains
a high-level representation of our reference multi-scale ar-
chitecture, which we describe next.

The reference texture x0 is a tensor RM×M×3 containing
three color channels. For simplicity, assume that the spatial
resolution M is a power of two. The input noise z com-
prises K random tensors zi ∈ R

M

2i
×M

2i , i = 1, 2, . . . ,K
(we use M = 256 and K = 5) whose entries are i.i.d.
sampled from a uniform distribution. Each random noise
tensor is first processed by a sequence of convolutional and
non-linear activation layers, then upsampled by a factor of
two, and finally concatenated as additional feature channels
to the partially processed tensor from the scale below. The

Texture Networks

Content Texture nets (ours) Gatys et al. Style

Figure 3. Our approach can also train feed-forward networks to transfer style from artistic images (left). After training, a network can
transfer the style to any new image (e.g. right) while preserving semantic content. For some styles (bottom row), the perceptual quality
of the result of our feed-forward transfer is comparable with the optimization-based method (Gatys et al., 2015b). ore examples can be
found at (Supp.Material) or (Extended version).

last full-resolution tensor is ultimately mapped to an RGB
image x by a bank of 1× 1 filters.

Each convolution block in Figure 2 contains three convo-
lutional layers, each of which is followed by a ReLU acti-
vation layer. The convolutional layers contain respectively
3× 3, 3× 3 and 1× 1 filters. Filers are computed densely
(stride one) and applied using circular convolution to re-
move boundary effects, which is appropriate for textures.
The number of feature channels, which equals the number
of filters in the preceding bank, grows from a minimum of 8
to a maximum of 40. The supplementary material specifies
in detail the network configuration which has only ∼65K
parameters, and can be compressed to ∼200 Kb of mem-
ory.

Upsampling layers use simple nearest-neighbour interpola-
tion (we also experimented strided full-convolution (Long
et al., 2015; Radford et al., 2015), but the results were
not satisfying). We found that training benefited signif-
icantly from inserting batch normalization layers (Ioffe
& Szegedy, 2015) right after each convolutional layer
and, most importantly, right before the concatenation lay-
ers, since this balances gradients travelling along different
branches of the network.

Learning. Learning optimizes the objective (7) using
stochastic gradient descent (SGD). At each iteration, SGD
draws a mini-batch of noise vectors zk, k = 1, . . . , B,
performs forward evaluation of the generator network to
obtained the corresponding images xk = g(zk, θ), per-
forms forward evaluation of the descriptor network to ob-
tain Gram matrices Gl(xk), l ∈ LT , and finally computes
the loss (5) (note that the corresponding terms Gl(x0) for
the reference texture are constant). After that, the gradi-
ent of the texture loss with respect to the generator network

parameters θ is computed using backpropagation, and the
gradient is used to update the parameters. Note that LAP-
GAN (Denton et al., 2015) also performs multi-scale pro-
cessing, but uses layer-wise training, whereas our generator
is trained end-to-end.

3.3. Style transfer
In order to extend the method to the task of image styliza-
tion, we make several changes. Firstly, the generator net-
work x = g(y, z; θ) is modified to take as input, in addi-
tion to the noise variable z, the image y to which the noise
should be applied. The generator network is then trained to
output an image x that is close in content to y and in tex-
ture/style to a reference texture x0. For example, y could
be a photo of a person, and x0 an impressionist painting.

Network architecture. The architecture is the same as
the one used for texture synthesis with the important dif-
ference that now the noise tensors zi, i = 1, . . . ,K at the
K scales are concatenated (as additional feature channels)
with downsampled versions of the input image y. For this
application, we found beneficial to increased the number of
scales from K = 5 to K = 6.

Learning. Learning proceeds by sampling noise vectors
zi ∼ Z and natural images yi ∼ Y and then adjusting
the parameters θ of the generator g(yi, zi; θ) in order to
minimize the combination of content and texture loss:

θx0 = argmin
θ

Ez∼Z; y∼Y [(8)

LT (g(y, z; θ), x0) +αLC (g(y, z; θ), y)] .

Here Z is the same noise distribution as for texture synthe-
sis, Y empirical distribution on naturals image (obtained
from any image collection), and α a parameter that trades

Texture Networks

Input Gatys et al. Texture nets (ours) Portilla, Simoncelli DCGAN

Figure 4. Further comparison of textures generated with several methods including the original statistics matching method (Portilla &
Simoncelli, 2000) and the DCGAN (Radford et al., 2015) approach. Overall, our method and (Gatys et al., 2015a) provide better results,
our method being hundreds times faster.

off preserving texture/style and content. In practice, we
found that learning is surprisingly resilient to overfitting
and that it suffices to approximate the distribution on nat-
ural images Y with a very small pool of images (e.g. 16).
In fact, training on more images does reduce the loss on
hold-out images (as expected), but was found to degrade
the visual quality uniformly across train and hold-out im-
ages. We conjecture that this mismatch between loss re-
duction and visual degradation quality arises because the
loss tries to maintain the proportions of different texture
structures in the reference texture image, while at the same
time associating such structures with others in the content
images, which may exist in very different proportions in
different examples. Learning such a map may either ex-
ceed the capacity of the model or may not be attainable in
general from a local analysis of the content image. Despite
this limitation, the perceptual quality of the generated styl-
ized images is usually very good, although for some styles
we could not match the quality of the original stylization
by optimization of (Gatys et al., 2015b).

4. Experiments
Further technical details. The generator network
weights were initialized using Xavier’s method. Train-
ing used Torch7’s implementation of Adam (Kingma
& Ba, 2014), running it for 2000 iteration. The ini-
tial learning rate of 0.1 was reduced by a factor 0.7
at iteration 1000 and then again every 200 iterations.
The batch size was set to 16. Similar to (Gatys
et al., 2015a), the texture loss uses the layers LT =
{relu1 1,relu2 1,relu3 1,relu4 1,relu5 1}
of VGG-19 and the content loss the layer LC =

{relu4 2}.
Texture synthesis. We compare our method to (Gatys
et al., 2015a;b) using the popular implementation of (John-
son, 2015), which produces comparable if not better results
than the implementation eventually released by the authors.
We also compare to the DCGAN (Radford et al., 2015)
version of adversarial networks (Goodfellow et al., 2014).
Since DCGAN training requires multiple example images
for training, we extract those as sliding 64 × 64 patches
from the 256 × 256 reference texture x0; then, since DC-
GAN is fully convolutional, we use it to generate larger
256×256 images simply by inputting a larger noise tensor.
Finally, we compare to (Portilla & Simoncelli, 2000).
Figure 4 shows the results obtained by the four meth-
ods on two challenging textures of (Portilla & Simoncelli,
2000). Qualitatively, our generator CNN and (Gatys et al.,
2015a)’s results are comparable and superior to the other
methods; however, the generator CNN is much more effi-
cient (see Sect. 4.2). Figure 1 includes further comparisons
between the generator network and (Gatys et al., 2015a)
and many others are included in the supplementary mate-
rial.
Style transfer. For training, example natural images were
extracted at random from the ImageNet ILSVRC 2012
data. As for the original method of (Gatys et al., 2015b),
we found that style transfer is sensitive to the trade-off pa-
rameter α between texture and content loss in (6). At test
time this parameter is not available in our method, but we
found that the trade-off can still be adjusted by changing
the magnitude of the input noise z (see Figure 5).
We compared our method to the one of (Gatys et al., 2015b;
Johnson, 2015) using numerous style and content images,

Texture Networks

k = 0.01 k = 0.1 k = 1 k = 10

Figure 5. Our architecture for image stylization takes the content image and the noise vector as inputs. By scaling the input noise by
different factors k we can affect the balance of style and content in the output image without retraining the network.

0 10 20 30
102

103

104

105

106

time, [s]

lo
ss

Figure 6. The objective values (log-scale) within the
optimization-based method (Gatys et al., 2015a) for three
randomly chosen textures are plotted as functions of time.
Horizontal lines show the style loss achieved by our feedforward
algorithm (mean over several samples) for the same textures. It
takes the optimization within (Gatys et al., 2015a) around 10
seconds (500x slower than feedforward generation) to produce
samples with comparable loss/objective.

including the ones in (Gatys et al., 2015b), and found that
results are qualitatively comparable. Representative com-
parisons (using a fixed parameter α) are included in Fig-
ure 3 and many more in the supplementary material. Other
qualitative results are reported in Figure 7.

4.1. Diversity

Just like the methods of (Portilla & Simoncelli, 2000) and
(Gatys et al., 2015a), based on optimization, our method,
based on a generator network, does not have a formal
guarantee that the samples generated by the network g(ω)
would approximate a specific empirical distribution on im-
ages, nor that the resulting samples would be diverse. Em-
pirically, we found that the entropy of simple statistics such
as colour and gradient histograms for the samples gener-
ated by all such methods are comparable, suggesting that
all of them are comparable in terms of sample diversity.

4.2. Speed and memory

We compare quantitatively the speed of our method and of
the iterative optimization of (Gatys et al., 2015a) by mea-
suring how much time it takes for the latter and for our gen-
erator network to reach a given value of the lossLT (x,x0).
Figure 6 shows that iterative optimization requires about 10
seconds to generate a sample x that has a loss comparable
to the output x = g(z) of our generator network. Since
an evaluation of the latter requires ∼20ms, we achieve a
500× speed-up, which is sufficient for real-time applica-
tions such as video processing. There are two reasons for
this significant difference: the generator network is much
smaller than the VGG-19 model evaluated at each itera-
tion of (Gatys et al., 2015a), and our method requires a
single network evaluation. By avoiding backpropagation,
our method also uses significantly less memory (170 MB
to generate a 256 × 256 sample, vs 1100 MB of (Gatys
et al., 2015a)).

5. Discussion
We have presented a new deep learning approach for tex-
ture synthesis and image stylization. Remarkably, the ap-
proach is able to generate complex textures and images in
a purely feed-forward way, while matching the texture syn-
thesis capability of (Gatys et al., 2015a), which is based on
multiple forward-backward iterations. In the same vein as
(Goodfellow et al., 2014; Dziugaite et al., 2015; Li et al.,
2015), the success of this approach highlights the suitabil-
ity of feed-forward networks for complex data generation
and for solving complex tasks in general. The key to this
success is the use of complex loss functions that involve
different feed-forward architectures serving as “experts”
assessing the performance of the feed-forward generator.

While our method generally obtains very good result for
texture synthesis, going forward we plan to investigate bet-
ter stylization losses to achieve a stylization quality compa-
rable to (Gatys et al., 2015b) even for those cases (e.g. Fig-
ure 3.top) where our current method achieves less impres-
sive results.

Texture Networks

Figure 7. Stylization results for various styles and inputs (one network per row). Our approach can handle a variety of styles. The
generated images are of 256x256 resolution and are computed in about 20 milliseconds each.

Figure 8. Ablation example: here we generate examples from the pretrained networks after zeroing out all inputs to the multi-scale
architecture except for one scale. This let us analyze the processes inside the generator. For peppers image we observe that depth K = 4
is enough for generator to perform well. Texture elements in starry night are bigger therefore the deepest input blob is used. Note that
the generator is limited by the VGG network capacity and cannot capture larger texture elements than the receptive field of the last
convolution layer.

Texture Networks

References
Chatfield, Ken, Simonyan, Karen, Vedaldi, Andrea, and

Zisserman, Andrew. Return of the devil in the details:
Delving deep into convolutional nets. arXiv preprint
arXiv:1405.3531, 2014.

Denton, Emily L., Chintala, Soumith, Szlam, Arthur, and
Fergus, Robert. Deep generative image models using
a laplacian pyramid of adversarial networks. CoRR,
abs/1506.05751, 2015.

Dosovitskiy, Alexey, Springenberg, Jost Tobias, and Brox,
Thomas. Learning to generate chairs with convolutional
neural networks. In Proc. Conference on Computer Vi-
sion and Pattern Recognition, CVPR, pp. 1538–1546,
2015.

Dziugaite, Gintare Karolina, Roy, Daniel M., and Ghahra-
mani, Zoubin. Training generative neural networks
via maximum mean discrepancy optimization. CoRR,
abs/1505.03906, 2015.

Extended version. Texture networks: Feed-forward
synthesis of textures and stylized images. CoRR,
abs/1603.03417. URL http://arxiv.org/abs/
1603.03417.

Gatys, Leon, Ecker, Alexander S, and Bethge, Matthias.
Texture synthesis using convolutional neural networks.
In Advances in Neural Information Processing Systems,
NIPS, pp. 262–270, 2015a.

Gatys, Leon A., Ecker, Alexander S., and Bethge,
Matthias. A neural algorithm of artistic style. CoRR,
abs/1508.06576, 2015b.

Goodfellow, Ian J., Pouget-Abadie, Jean, Mirza, Mehdi,
Xu, Bing, Warde-Farley, David, Ozair, Sherjil,
Courville, Aaron C., and Bengio, Yoshua. Generative
adversarial nets. In Advances in Neural Information Pro-
cessing Systems,NIPS, pp. 2672–2680, 2014.

Gretton, Arthur, Borgwardt, Karsten M, Rasch, Malte,
Schölkopf, Bernhard, and Smola, Alex J. A kernel
method for the two-sample-problem. In Advances in
neural information processing systems,NIPS, pp. 513–
520, 2006.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing inter-
nal covariate shift. In Proc. International Conference
on Machine Learning, ICML, pp. 448–456, 2015.

Johnson, Justin. neural-style. https://github.com/
jcjohnson/neural-style, 2015.

Kingma, Diederik P. and Ba, Jimmy. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014.

Li, Yujia, Swersky, Kevin, and Zemel, Richard S. Gen-
erative moment matching networks. In Proc. Inter-
national Conference on Machine Learning, ICML, pp.
1718–1727, 2015.

Long, Jonathan, Shelhamer, Evan, and Darrell, Trevor.
Fully convolutional networks for semantic segmentation.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition,CVPR, pp. 3431–3440,
2015.

Mahendran, Aravindh and Vedaldi, Andrea. Understanding
deep image representations by inverting them. 2015.

Portilla, J. and Simoncelli, E. P. A parametric texture model
based on joint statistics of complex wavelet coefficients.
IJCV, 40(1):49–70, 2000.

Radford, Alec, Metz, Luke, and Chintala, Soumith. Unsu-
pervised representation learning with deep convolutional
generative adversarial networks. CoRR, abs/1511.06434,
2015.

Simonyan, Karen and Zisserman, Andrew. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Supp.Material.

Zhu, S. C., Wu, Y., and Mumford, D. Filters, random fields
and maximum entropy (FRAME): Towards a unified the-
ory for texture modeling. IJCV, 27(2), 1998.

http://arxiv.org/abs/1603.03417
http://arxiv.org/abs/1603.03417
https://github.com/jcjohnson/neural-style
https://github.com/jcjohnson/neural-style

