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Abstract
Labeled training data is an essential part of any
supervised machine learning framework. In prac-
tice, there is a trade-off between the quality of
a label and its cost. In this paper, we consider
a problem of learning to rank on a large-scale
dataset with low-quality relevance labels aim-
ing at maximizing the quality of a trained ranker
on a small validation dataset with high-quality
ground truth relevance labels. Motivated by
the classical Gauss-Markov theorem for the lin-
ear regression problem, we formulate the prob-
lems of (1) reweighting training instances and (2)
remapping learning targets. We propose meta–
gradient decision tree learning framework for op-
timizing weight and target functions by apply-
ing gradient-based hyperparameter optimization.
Experiments on a large-scale real-world dataset
demonstrate that we can significantly improve
state-of-the-art machine-learning algorithms by
incorporating our framework.

1. Introduction
The fundamental issue faced by many of supervised ma-
chine learning algorithms is the presence of noise in labels
and features. Clearly, label noise is likely to have a nega-
tive impact on both the quality of the trained models and
the evaluation accuracy. In this paper, we address the prob-
lem of label noise from the perspective of the quality of the
trained model.

Traditionally, this problem is dealt with by various noise
reduction techniques (Frénay & Verleysen, 2014; Strutz,
2010). For example, common approaches to noise
reduction include cleansing (Brodley & Friedl, 1999)
and weighting techniques. Noise cleansing techniques are
similar to outlier detection and amount to filtering out sam-
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ples which ‘look like’ mislabeled for some reason. With
the weighting approach none of the samples are completely
discarded, while their impact on a machine learning algo-
rithm is controlled by weights, representing our confidence
in a particular label. In both approaches, one has to use cer-
tain heuristics (Verbaeten & Van Assche, 2003) or assume
some underlying model for the noise generation (Li et al.,
2007).

With this paper we study a general problem of super-
vised learning in the presence of noise in labels (noisy
supervised learning, or NSL for short). Unlike the clas-
sical approaches (Hastie et al., 2009, §3.2.2, Lawrence &
Schölkopf, 2001), we do not assume any prior knowledge
on the noise nature and its distribution. Moreover, we let
the labels in the training dataset (1) to be biased relative to
the implicit ground-truth labels; (2) to have different noise
variance.

Let us discuss several important examples of such training
tasks. Click prediction problem is an important task in
online advertising and Web search personalization (Grae-
pel et al., 2010; Shen et al., 2005). Typically, samples in
the training datasets for these tasks are labeled using im-
plicit feedback, i.e., labels are inferred from user behavior,
such as clicks on documents/advertisements, time spent on
a document, fact of transaction after an advertisement click,
etc. It is well-known that such labels are liable to posi-
tional and presentational bias (Ciaramita et al., 2008). A
possible common solution to this problem is to reduce the
noise by samples relabeling technique. For example, one
might assign positive value only to satisfied clicks, assign
different values to clicks with long/short dwell-time or dis-
count the click value by snippet/advertisement attractive-
ness. Another problem is learning with crowdsourced la-
bels. Recent rapid take-up of crowdsourcing marketplaces,
e.g., Amazon MTurk1, provides a cheap way of collect-
ing large supervised datasets (Muhammadi et al., 2013).
However, due to a lack of expertise and presence of spam-
mer workers, such labels often hugely vary in quality. To
overcome this issue, employers assign each item to multi-

1http://www.mturk.com/

http://www.mturk.com/
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ple workers. Afterwards, item’s multiple labels are aggre-
gated into a consensus label with the use of a certain con-
sensus algorithm, e.g., majority voting, label averaging, etc
(see, e.g. Zhou et al., 2014). Various consensus models are
known to significantly improve the precision of raw crowd
labels.

The examples above share one common property, which is
crucial for the algorithm we propose in this paper. Namely,
for each item in the training dataset, besides a noisy label
itself, we observe several additional variables, which alto-
gether are further referred to as label features. Examples
of label features are: fact of a click, click position, and
dwell time in the click prediction problem; worker’s expe-
rience, outputs of various consensus models in the problem
of learning with crowdsourced labels.

In this paper, we propose a method which addresses NSL
problem by utilizing label features directly within a ma-
chine learning framework. Our method assigns to each
learning sample (1) learning target and (2) its weight,
which captures the confidence in the value of the learning
target. This approach is motivated by the classical Gauss-
Markov theorem and its generalizations to the cases of cor-
related heteroscedastic errors (Section 2). We model tar-
get t and weight w as functions of label features. Training
dataset equipped with learning targets and weights is fed to
the Generalized Least Squares (GLS) algorithm. Our goal
is to tune weights and labels in such a way that the out-
put of GLS algorithm has the maximum quality on a held-
out validation dataset. We treat this maximization problem
as a separate supervised machine learning problem, which
learns target and weight functions t and w on the validation
dataset (Section 3). This interpretation resembles gradient-
based hyperparameter optimization in (Maclaurin et al.,
2015). In the case of a smooth loss function L, we pro-
pose an efficient gradient descent algorithm, which learns
t and w as ensembles of decision trees (Section 4). In the
context of click prediction problem, a weight optimization
framework was proposed in (Ustinovskiy et al., 2015). Un-
like this paper we (1) are optimizing both target and weight
functions; (2) what is more important train these functions
as ensembles of decision trees, significantly advancing the
effectiveness of our framework.

In the experimental part of the paper (Section 7) we eval-
uate our framework within learning with crowdsourced la-
bels task. We conduct experiments on a large-scale dataset
shared with us by a commercial search engine (Section 6).

2. Motivation
In this section we recall one classical learning task in the
presence of noise, that is linear regression model with
unbiased errors. Under this model we observe a vector

z = Xb + ε, where z ∈ RS is a vector of observables,
X is non-random known design matrix, b ∈ RN is unob-
servable vector of parameters and ε ∈ RS is a vector of
noise components. Assume that (1) vector z is unbiased,
i.e., expectation of ε is zero; (2) components of ε have fi-
nite variance; (3) cov(εi, εj) = 0, i.e., the error terms are
uncorrelated.

Then the best linear unbiased estimator (BLUE) of the vec-
tor b, i.e., estimator with the minimal component-wise vari-
ance, is given by Generalized Least Squares estimator:

b̂ := argmin
β∈RN

S∑
i=1

1

σ2
i

(zi − xi ·β)2, (1)

where σ2
i is the variance of i-th component of ε and xi is

the i-th row of matrix X . Solution of this minimization
problem is known as Aitken estimator in the generalized
version of Gauss-Markov Theorem (Aitken, 1935, §2). In-
tuitively, the noisier the i-th observation, the less impact it
should have on the loss function. This impact is controled
by a weight wi = 1/σ2

i .

Condition (3) above could be relaxed, i.e., Aitken estimator
has a generalization to the case of correlated errors. Then
in minimization problem (1) one has to substitute compo-
nents zi with certain linear combinations z′i =

∑S
j=1 cijzj

and change matrix X and error vector ε accordingly, (see
Aitken, 1935, §5). That is instead of predicting observables
themselves, we predict linear combinations of observables.
Throughout this paper we refer to the quantities estimated
within machine learning algorithm (zi or z′i in the example
above) as targets.

Unfortunately, it is hard to apply the above methods
in practice, since (1) the correlations cov(εi, εj) are not
known; (2) we are not interested in minimization of the
variance of estimator b (equivalently weighted sum of
squared residuals), but would like to optimize some other
quantities, e.g., minimize variances of log bi, or predict cor-
rectly the mutual order of components of b. Motivated by
the initial theoretical result and taking in account these is-
sues, we suggest tuning weights and targets in Equation (1)
in order to optimize some arbitrary loss function.

3. Problem formulation
In this section we give a general description of the problem
we are solving. In the subsequent sections we restrict the
scope to a certain class of machine learning algorithms and
provide a rigorous formulation within this specific.

Let X be a training dataset with the corresponding S ×N
design matrix X , where S is the number of items in X
and N is the number of features. That is the i-th training
sample is represented by a row feature vector xi ∈ RN .
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Figure 1. General framework for noisy supervised learning.

Let A be some fixed machine learning algorithm. Further
this algorithm is sometimes referred to as background al-
gorithm, since our framework is an additional supervised
machine learning algorithm on the top of A. Assume that
A utilizes both learning targets and weights of training
samples in a known way. That is, given a column-vector
of targets t = (t1, . . . , tS), a column-vector of weights
w = (w1, . . . , wS) and a design matrix X , algorithm A
yields a function (slightly abusing notation we use the same
symbol for it):

A(t,w; ·) : x 7→ A(t,w;x) ∈ R,

assigning to a sample with a feature vector x the output of
the trained function.

Let V be a validation dataset consisting of Sv samples with
i-th sample represented by a row feature vector vi. Finally,
assume we are given a loss function L : RSv → R, which
assigns to the vector of outputs of a function A(t,w), ap-
plied to V , the following loss:

E(t,w) := L(A(t,w;v1), . . . ,A(t,w;vSv )) ∈ R. (2)

Our goal is to minimize the loss on the validation dataset:

t̂, ŵ = argmint,wE(t,w). (3)

We assume that each item i ∈ X is equipped with an
M -dimensional label feature vector yi ∈ RM . We con-
sider only target and weight vectors t and w of the form
(t(y1), . . . , t(yS)), (w(y1), . . . , w(yS)), where t(·) and
w(·) are some functions of label features.

The outline of the global learning scheme is depicted in
Figure 1. We focus on step (1), namely, given a fixed learn-
ing to rank algorithm at step (2) and a fixed evaluation met-
ric at step (3) we aim at direct minimization of the loss by
tuning target and weight functions.

To solve minimization problem (3) among the functions of
label features, we develop a meta–gradient boosted deci-
sion tree model (MGBDT). The term meta comes from the
fact that vectors t andw can be treated as hyperparameters

of algorithm A and we are optimizing these hyperparam-
eters. To perform meta–gradient descent we will need the
gradients

∂E(t,w)

∂t
:=

{
∂E(t,w)

∂ti

}S
i=1

,

∂E(t,w)

∂w
:=

{
∂E(t,w)

∂wi

}S
i=1

.

(4)

In the next section, we derive the explicit formulas for these
gradients under additional assumption on the background
algorithm A, provided the loss function L is smooth. Also
we give some upper bounds on the computational complex-
ity of our framework.

4. Meta–gradient boosted decision tree model
4.1. Meta–gradient descent

In this subsection, we compute gradients (4). For a func-
tion f(z) with multivariate inputs and outputs, the gradi-
ents ∂f/∂z are Jacobian matrices. We summarize nota-
tions in Table 1. Since it will be important to distinguish
column and row vectors, we also report this information.
Using the chain rule we rewrite (4) as:

Table 1. List of notations.

X training dataset
V validation dataset
N number of ordinary features for samples in X

and V
M number of label features for samples in X
S number of samples in X
Sv number of samples in V
xi row vector of features of a sample i ∈ X
vi row vector of features of a sample i ∈ V
yi row vector of label features of a sample i ∈ X
A background learning to rank algorithm, used at

step (2) in Figure 1
A(t,w; ·) function trained via A

w S-dimensional column vector of training sam-
ples’ weights

t S-dimensional column vector of training sam-
ples’ targets

X S ×N design matrix for X
Y S ×M matrix of label features
W S × S diagonal matrix with weights wi
V Sv ×N design matrix for V
b̂ N -dimensional column vector of optimal pa-

rameters of a GLS model
s Sv-dimensional column vector of validation

samples’ scores
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∂E(t,w)

∂t
=
∑
j∈V

∂A(t,w;vj)

∂t

∂L
∂sj

;

∂E(t,w)

∂w
=
∑
j∈V

∂A(t,w;vj)

∂w

∂L
∂sj

,

(5)

where sj = A(t,w;vj) is the score assigned by a model
A to the j-th sample in V . To compute these gradients we
will need to assume that the following two conditions are
satisfied:

C1: Loss function L : RSv → R is differentiable with re-
spect to the scores assigned to the individual samples
in V;

C2: The outputs of the function A(t,w; ·) trained via
background algorithm A are differentiable with re-
spect to the targets and weights ti and wi of the in-
dividual samples of X .

Derivatives in C2 do not necessarily exist and even their
finite-difference approximation might be computationally
expensive, since it requires additional trainings of the algo-
rithm A. Since the computational complexity turns out to
be an important concern, we require both sets of deriva-
tives to be efficiently computable. Property C1 is satis-
fied, whenever the loss functions has a gradient. This
is the case for the residual sum of squares, logistic loss,
cross entropy loss, etc. We are not aware of property
C2 for a general background machine learning algorithm
A. However, we are able to explicitly compute deriva-
tives ∂A(t,w;vj)/∂wi and ∂A(t,w;vj)/∂ti in a special
case of the Generalized Least Squares (GLS) model, see
Proposition 2 below.

Definition 1. GLS model is a linear model, which mini-
mizes weighted residual sum of squares:

GLS(t,w;x) = x · b̂, where

b̂ = argminb

S∑
i=1

wi(xi · b− ti)2.
(6)

Inputs of GLS model are design matrixX , vector of targets
t and vector of weights w. The output of GLS model is a
function GLS(t,w; ·).

Remark. It is well-known that simple linear models often
underperform in real-life applications. Note, however, that
this shortcoming could be treated by Generalized Additive
Models (Hastie et al., 2009, §9). In the experimental part
we use this idea and expand feature space by adding the
outputs of pre-learned decision trees as additional features.

Proposition 2. Let A = GLS be a Generalized Least
Squares model (6) trained on the dataset X with target
and weight vectors t and w respectively. Then condi-
tion C2 is satisfied, i.e., derivatives ∂GLS(t,w;x)/∂t and

∂GLS(t,w;x)/∂w, where x ∈ RN is a row feature vec-
tor, exist. Specifically:

∂GLS(t,w;x)

∂t
= xZ−1XTW ,

∂GLS(t,w;x)

∂w
= xZ−1XTT ,

(7)

where W = diag(w) is the diagonal S × S matrix, Z =

XTWX , and T = diag(t−X b̂).

Proof. The core property of GLS model is that the mini-
mizer (6) admits a closed-form presentation:

b̂ = (XTWX)−1XTWt. (8)

Let t̂ := X · b̂ be the column vector of values of the GLS
model on X . Differentiating the equality XTWt = Zb̂
with respect to wj one gets:

XT ∂W

∂wj
t =

∂Zb̂

∂wj
=

∂Z

∂wj
b̂+Z

∂b̂

∂wj
=

= XT ∂W

∂wj
Xb̂+Z

∂b̂

∂wj
= XT ∂W

∂wj
t̂+Z

∂b

∂wj
. (9)

Finally, a little manipulation with Equation (9) yields:

∂b̂

∂wj
= Z−1XT ∂W

∂wj
(t− t̂). (10)

Collecting these expressions over all components ofw into
one vector and recalling that ∂W /∂wj = Ejj is an ele-
mentary matrix with one nonzero entry, one gets:

∂b̂

∂w
= Z−1XTdiag(t− t̂) = Z−1XTT .

Computation of derivatives of b̂ with respect to t is a bit
simpler, since only factor t depends on t:

∂b̂

∂t
= Z−1XTW

∂t

∂t
= Z−1XTW . (11)

Combining equations (10) and (11) with the definition of
GLS (6) we obtain required formulas (7).

Remark. Matrix Z is not necessarily invertible. Partly
for this reason, we follow a standard trick and
use L2-regularized version of GLS model: b̂ =
argminb

∑S
i=1 wi(xi · b − ti)

2 + µ||b||2, where µ > 0
is a constant. It is straightforward to check that in this case
matrix Z = XTWX is just substituted with Z + µIN .
For a generic choice of µ this matrix is invertible.

With the same notation as in Proposition 2 we have the fol-
lowing immediate corollary.
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Corollary 3. Assume that the loss function L(s) satis-
fies C1, i.e, it is differentiable with respect to the vector
s (scores of samples in V). Let A = GLS be the back-
ground machine learning algorithm. Then the gradients
∂E(t,w)/∂t and ∂E(t,w)/∂w exist and are given by the
formulas:

∂E(t,w)

∂t
=
∂L
∂s
V Z−1XTW ,

∂E(t,w)

∂w
=
∂L
∂s
V Z−1XTT .

(12)

Theorem 4. Under the assumptions of Corollary 3, given
the derivative ∂L/∂s, the computational complexity of the
gradients (12) is bounded above by O(NSv) + O(N2S)
arithmetic operations.

Proof. Let us bound computational complexity for the gra-
dient ∂E(t,w)/∂w. Matrices ∂L/∂s, V , Z−1, XT have
sizes 1 × Sv , Sv ×N , N ×N , N × S respectively. First,
let us recall that given two matrices of sizes p × q and
q × r computation of their product requires O(pqr) arith-
metic operations. Hence, computation of matrices T and
Z (see Proposition 2) requires O(NS) and O(N2S) oper-
ations respectively.

Multiplication in the order (((∂L/∂sV )Z−1)XT )T re-
quires O(NSv) operation for the first operation, O(N2)
operations for the second multiplication with Z−1 (which
is equivalent to solving the system of linear equations,
so matrix Z−1 does not need to be computed explicitly),
O(NS) and O(S) for the last two multiplications (the last
O(S) comes from the fact that T is a diagonal matrix). All
in all this gives a bound O(NSv) +O(N2S).

Analogously, one bounds the computational complexity of
∂E(t,w)/∂t.

Remark. The most resource-intensive computation is the
calculation of matrix Z = XTWX (or Z = XTWX +
µIN in the L2-regularized case).

4.2. Decision tree fitting

The gradients ∂E(t,w)/∂t and ∂E(t,w)/∂w computed
in the previous section allow to directly minimize the loss
on the validation dataset V by learning target and weight
functions of label features t(·) and w(·). For the major-
ity of machine learning algorithm it suffice to have these
gradients to perform gradient descent. Ensembles of deci-
sion tress are known to generate quite general and effec-
tive models (Friedman, 2001), so in this paper we focus on
boosted decision trees models. Specifically, we learn the
target function in the form:

t(y) =

J∑
j=1

htj(y),

Algorithm 1 Meta–gradient steepest descend optimization
of weight and target functions.

1: Input training dataset X and validation dataset V
2: Parameters number of iterations J , step size regular-

ization ε, parameter of L2 regularization µ for GLS,
maximum depth of a decision tree d

3: Initialization t(·) = wraw(·) = 0,
w(·) = σ(wraw(·)) = 1/2

4: for j = 0 to J do
5: htj = argmin

h(·)

∑
j∈V

(h(yj)− ∂E(t,w)/∂tj)
2

6: hwj = argmin
h(·)

∑
j∈V

(σ′(wj)h(yj)−∂E(t,w)/∂wj)
2

7: update functions t, wraw, w:
t(·) := t(·) + εhtj(·)
wraw(·) := wraw(·) + εhwj (·)
w(·) := σ(wraw(·))

8: update t, w, T ,W , Z accordingly
9: end for

10: return functions t(·), w(·)

where y ∈ RM is a vector of label features and htj(y) are
weak learners — decision trees, (cf. Breiman et al., 1984).

For the weight function we additionally pass an ensemble
of decision trees through the sigmoid transform σ(λ) =
1/(1 + e−λ) to ensure that all weights are nonegative
(one might use different transforms as well): w(y) =

σ(wraw(y)), where wraw(y) =
∑J
j=1 h

w
j (y).

Functions t(·) and w(·) are iteratively constructed by fit-
ting new weak learners htj(·) and hwj (·) to the gradients
∂E(t,w)/∂t and ∂E(t,w)/∂w at each step of gradient
descent. The algorithm for training target and weight func-
tions is summarized in pseudocode in Algorithm 1. As
usual with gradient boosted decision trees, minimization
problem in lines 5 and 6 is solved within decision trees
of fixed depth d. Note that there is an additional factor
σ′(wj) in line 6, since we are fitting not ensemble of de-
cision trees itself, but its sigmoid transform. In the experi-
mental part we use DecisionTreeRegressor implementation
from scikit-learn package (Pedregosa et al., 2011) to solve
regression problems at lines 5 and 6 of Algorithm 1. Fit-
ting a single tree with this implementation has complexity
O(NS logS)2.

5. Learning to rank task with crowdsourced
labels

In this section we explain how our framework is adopted to
the problem of learning to rank with crowdsourced labels.
This is the focus of the experimental part of the paper.

2http://scikit-learn.org/stable/modules/
tree.html#complexity

http://scikit-learn.org/stable/modules/tree.html#complexity
http://scikit-learn.org/stable/modules/tree.html#complexity
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5.1. Learning to rank

In the classical learning to rank task training and valida-
tion datasets consist of query-document pairs with each
label reflecting the relevance of a document to a query.
The goal is to train a ranking function, which sorts all
documents within each query according to the outputs
of the ranking function. The common ranking evalua-
tion measures include Mean Average Precision (MAP),
Discounted Cumulative Gain (DCG), Expected Reciprocal
Rank (ERR) (Sakai, 2014).

The method of Section 4 is not applicable directly to learn-
ing to rank task, since most of the ranking evaluation mea-
sures do not satisfy condition C1. Indeed, these measures
are discontinuous and locally constant (at a generic point)
functions of the outputs of the ranking function, so the
gradient ∂L/∂s is either zero, or not defined. There are
several approaches to handle this issue preforming smooth-
ing procedure (Taylor et al., 2008) or introducing pseudo-
gradient (Burges et al., 2007). In this case, even though
objective functions, e.g., MAP, DCG, ERR, do not satisfy
condition C1, we are able to apply Algorithm 1 by plugging
in smoothed or pseudo gradient .

In the experimental part we fix DCG evaluation measure
and use LambdaRank pseudo gradient (Burges, 2010) as a
substitute for the non-existing “genuine gradient” ∂L/∂s
in (12). Computational complexity of lambda gradient
per one query is O(k2), where k is the number of docu-
ments (cf. Burges, 2010, §3). Hence, assuming validation
dataset has k documents per each query, the computation of
the LambdaRank pseudo gradient requires Sv/k ·O(k2) =
O(kSv) operations. Hence, the computation of the gradi-
ents ∂E(t,w)/∂t and ∂E(t,w)/∂w (see Equations (12))
in the learning-to-rank task takes O(kSv) + O(NSv) +
O(N2S) operations. Adding the complexity of tree fitting,
we get an upper bound on the total computational complex-
ity of one iteration of Algorithm 1:

O(kSv) +O(NSv) +O(N2S) +O(NS logS)

arithmetic operations.

5.2. Crowdsourced relevance labels

The problem of learning to rank with crowdsourced labels
is not very different from a classical learning to rank task,
however, the origin of the relevance labels imply several
modifications of the training and validation processes.

Labels collected via crowdsourcing have a number of se-
rious shortcomings: (S1) crowd workers are usually not
provided with detailed instructions like those compiled for
professional assessors, since the majority of them would
either refuse or fail to follow complicated guidelines; (S2)
individual workers vary greatly in the quality of their as-

sessments. The first property forces to use coarse relevance
scale, e.g., binary, which is different from the common fine
graded scales, e.g., in DCG. Second property urges em-
ployers to modify the labeling process in order to gain some
evidence for each label being correct. Namely, the em-
ployers often: (P1) place ‘honeypot’ tasks, i.e., tasks with
a known true label, to filter out workers severely under-
performing on these tasks; (P2) assign each task to multiple
workers in order to evaluate and aggregate their answers.

Each query-document pair inX is labeled by several crowd
workers, so to learn a ranker we might either use all crowd
labels separately, or aggregate them into one consensus
label (see, e.g., Dawid & Skene, 1979, Lee et al., 2010,
Whitehill et al., 2009). Since crowd labels are noisy and
coarse, we assume that validation dataset V is, on con-
trary, labeled by professional assessors with the standard
5-graded relevance scheme making our evaluation method-
ology more precise and comprehensive.

6. Data
In this section we describe the datasets, provided by a com-
mercial search engine. The structure of these datasets and
its features reveal the motivation for the particular problem
we are solving and clarify the main ideas behind our ap-
proach.

The first dataset consists of 132K query-document pairs.
Each query-document pair is assigned three binary rele-
vance labels from three crowd workers at a crowdsourcing
platform. With these query-document pairs and crowd la-
bels a dataset X consisting of 132K × 3 = 396K sam-
ples is formed. One sample in X is a query-document
pair together with one label assigned by one crowd worker.
Besides these query-document pairs, there are 1900 hon-
eypot tasks completed by the same workers (each task is
completed by several workers). These are query-document
pairs labeled by professional assessors with the same in-
structions. Usually, honeypots are used to detect and penal-
ize spammer workers. Query-document pairs correspond-
ing to honeypots do not get into X .

The second dataset VL (large validation dataset) is col-
lected in a standard manner for a learning to rank task.
Namely, every query-document pair in VL is judged once
by one professional assessor and is endowed with a label,
corresponding to one of the relevance classes {Perfect, Ex-
cellent, Good, Fair, Bad}. Parts of this dataset are intended
for evaluation, supervised training and tuning of our frame-
work.

Every query-document pair in both datasets VL and X is
represented by a feature vector x ∈ RN . These are stan-
dard ranking features, including text and link relevance,
query characteristics, document quality, user behavior fea-
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Table 2. List of label features
1 cl(w) the crowd label assigned by the

worker
2-5 π

(w)
ij confusion matrix of the worker in

DS model
6 a(w) worker’s parameter in GLAD

model
7-8 P(cl(w) = ti) probability the crowd label is cor-

rect under DS/GLAD model
9-10 P(cl(w) = 1) probability of positive label under

DS/GLAD model
11 log(n(w)) logarithm of the number of tasks,

completed by the worker
12 n

(w)
0 /n(w) fraction of negative labels, assigned

by the worker
13 f

(w)
hp fraction of correctly-labeled honey-

pots by a worker

tures, etc. The particular choice of ranking features is not
important for our framework and is out of the scope of the
paper. We do not disclose particular features due to the
proprietary nature of the dataset.

Besides ranking features, the samples in the crowdsourced
dataset X are endowed with a number of label features.
These features comprise numerical information about the
worker who assigned the label as well as about the task,
and the label itself. While a specific choice of label fea-
tures is also not important for our framework, we describe
them in details, since they reveal motivation behind learn-
ing new targets and weights. Intuitively, the purpose of la-
bel features is to provide evidence of the crowd label being
correct.

To generate features for labels we utilize two classical
consensus models: (DS) (Dawid & Skene, 1979) and
Generative model of Labels, Abilities, and Difficulties
(GLAD) (Whitehill et al., 2009). Both these models iter-
atively update intrinsic parameters via EM-algorithm. We
use outputs of these models as well as the intrinsic param-
eters as label features. Besides the outputs of these two
models we use several simple statistics on tasks and work-
ers. For a worker w, let n(w) be the number of completed
tasks, n(w)

0 the number of zero-labeled documents. The
complete set of label features is listed in Table 2. Some
important details on the dataset are provided in Table 3

7. Experiments
There are no large-scale publicly available crowdsourced
learning to rank datasets, so for the experiments we use the
proprietary dataset described in Section 6. It is used to eval-
uate various baselines and compare them with our process-

Table 3. Statistics on the commercial dataset.
X # of queries 7200

# of query-document pairs 132K
# of samples 396K
# of workers 1720
average # of tasks per worker 233
# of unique honeypot tasks 1900
# of completed honeypot tasks 43300

V # of queries 6600
# of query-document pairs (samples) 90K

ing framework. In all the experiments we use discounted
cumulative gain measure at positions k = 1, 5, 10, denoted
by DCG@k (Järvelin & Kekäläinen, 2002), as the ranking
quality metric. Graded relevance labels are mapped into
the standard numerical gains {15, 7, 3, 1, 0}.

Experiment design To evaluate our algorithm along with
a number of baselines we perform 5-fold cross validation.
Each time, the large validation set VL is randomly split into
3 parts V , Vvalidate and Vtest on the basis of the unique
query id. The part V is used to train Algorithm 1, specifi-
cally, to compute the LambdaRank pseudo gradients. The
part Vvalidate is used to tune various hyperparameters of
the background machine learning algorithm A and Algo-
rithm 1, i.e., L2-regularization parameter µ; J and ε in our
processing algorithm. The output of Algorithm 1 is a pair
of functions t(·) and w(·). We compute vectors t, w and
train GLS model on X , using these targets and weights.
Finally, the third part Vtest is used to evaluate this ranker
trained via GLS model (our approach) and the baseline
rankers.

Due to the proprietary nature of the data, we do not disclose
the actual values of DCG@k metrics on the test dataset
Vtest. Instead, we report the relative improvement over the
‘majority vote’ baseline, described further. We denote this
relative improvement by ∆DCG@k.

As we mention in the remark after Definition 1, we expand
the feature space to reinforce GLS model. To construct the
additional features, we train once an ensemble of the gra-
dient boosted decision trees on X in the regression regime.
Each individual tree in this ensemble (after standardization)
is treated as a single extended ranking feature. The optimal
number of extended features is estimated on Vvalidate and
equals T = 200.

Baselines Since the specific problem we formulate in this
paper is novel, there are no baselines intended specifically
for our setting. For this reason, we adopt various common
approaches to noise reduction and consensus modeling. As
the background algorithm for the baselines RD and Lamb-
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Table 4. Comparsion of various baselines with our framework. † denotes a significant improvement over the best baseline with p < 0.05.
Baselines Our approach

Metric Reg. LambdaMART Linear
RD MV Av DS GLAD W T W+T W T W+T

∆DCG@1 -14.69% 0.00% -0.79% 0.12% -1.19% -7.55% -5.99% -4.92% -1.31% †6.40% †6.98%
∆DCG@5 -6.92% 0.00% 0.01% 0.27% -0.55% -2.46% -1.44% -0.83% †1.36% †5.41% †5.10%
∆DCG@10 -5.39% 0.00% 0.21% 0.34% -0.34% -1.60% -0.41% -0.32% -0.09% †4.41% †4.56%

daMART baselines (see below), we use the xgboost3 im-
plementation of the gradient boosted ensemble of decision
trees. We implement the state-of-the-art listwise algorithm
LambdaMART (Burges et al., 2011) and train it on X .

We use the following methods to generate training targets
as baselines:

1. MV, assigning the majority vote to every query-
document pair;

2. Av, assigning the average of 3 crowd labels to every
query-document pair;

3-4. DS/GLAD, assigning the most likely label to each task
according to DS/GLAD model;

Besides these baselines, we experiment with the clas-
sical noise reduction technique, reweighting by devia-
tions (Frénay & Verleysen, 2014, §3.3.2), denoted by RD.
This reweighting method assigns to the i-th sample the
weight min(1/δ2, 1/∆2

i ), where ∆i = |li − l̂i| is the ab-
solute error of the background learning algorithm on the
initial dataset X and δ ≥ 0 is a parameter. The design of
LambdaMART method does not expect documents to have
weights, so instead we train xgboost with RD weights in
the standard regression regime.

Finally, we use the method for weight training proposed
in (Ustinovskiy et al., 2015) in the context of click pre-
diction problem. Following the scheme designed in the
present paper (Section 4), we also extended the method
from (Ustinovskiy et al., 2015) to the target training. The
core difference of this baseline from our approach is that
the weight and target functions are trained as (sigmoid
transforms of) linear combinations of label features, while
we train ensembles of decision trees. Below this baseline
is referred as Linear. The background algorithm for this
method is GLS.

Results We evaluate all the baselines together with our
approach on Vtest. We consider three versions of our
framework: (1) W which trains weight function w in Al-
gorithm 1; (2) T which trains only function t; (3) their
combination W+T which tunes both w and t. Similarly
we compute three versions of the Linear baseline.

3https://github.com/dmlc/xgboost

Table 5. Feature importances.
W T

PG(cl(w) = 1) 0.7343 PG(cl(w) = 1) 0.6557
PD(cl(w) = 1) 0.2474 PD(cl(w) = 1) 0.3327
log(n(w)) 0.0110 a(w) 0.0104
f
(w)
hp 0.0023 π

(w)
12 0.0006

π
(w)
22 0.0023 PG(cl(w) = ti) 0.0005

Relative improvements of our methods over the majority
vote baseline (MV) are shown in Table 4. Approach W is
significantly outperformed by T, and the latter is on par
with their combination W+T. Note that according to all
three evaluation measures, T and W+T statistically signif-
icantly (with p < 0.05) outperform the best performing
baseline, namely, LambdaMART trained on DS consensus
labels.

We also report the importance of the label features. To
compute it we sum Gini importances over all J trees in our
model for t(·) or w(·) (normalized to the unit sum for con-
venience). Top-5 performing label features together with
their importances for W and T methods are reported in
Table 5; superscripts D/G refer to DS/GLAG model.

8. Conclusion
In this paper we address the problem of supervised machine
learning in the presence of label noise. Unlike the existing
approaches, we explicitly utilize label features directly op-
timizing the quality of the trained model on a validation
dataset. Its success prompts one to collect as much infor-
mation about each sample in the training dataset as pos-
sible. By transforming this information into a large label
features vector y, we are able to learn more refined weights
and relevance labels. These, in turn, being fed to a back-
ground machine learning algorithm, will most likely lead
to a better model.

Our framework works for any smooth loss function, so in
the future we intend to apply our methodology to other
machine learning problems, e.g., regression and classifica-
tion problems. Also it is interesting to extend our frame-
work to more complicated background algorithms, than
GLS model, e.g., to neural networks.

https://github.com/dmlc/xgboost
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