
Interactive Bayesian Hierarchical Clustering

Sharad Vikram SVIKRAM@CS.UCSD.EDU
Sanjoy Dasgupta DASGUPTA@CS.UCSD.EDU

Computer Science and Engineering, UCSD, 9500 Gilman Drive, La Jolla, CA 92093

Abstract
Clustering is a powerful tool in data analysis,
but it is often difficult to find a grouping that
aligns with a user’s needs. To address this,
several methods incorporate constraints obtained
from users into clustering algorithms, but un-
fortunately do not apply to hierarchical cluster-
ing. We design an interactive Bayesian algorithm
that incorporates user interaction into hierarchi-
cal clustering while still utilizing the geometry of
the data by sampling a constrained posterior dis-
tribution over hierarchies. We also suggest sev-
eral ways to intelligently query a user. The algo-
rithm, along with the querying schemes, shows
promising results on real data.

1. Introduction
Clustering is a basic tool of exploratory data analysis.
There are a variety of efficient algorithms—including k-
means, EM for Gaussian mixtures, and hierarchical ag-
glomerative schemes—that are widely used for discovering
“natural” groups in data. Unfortunately, they don’t always
find a grouping that suits the user’s needs.

This is inevitable. In any moderately complex data set,
there are many different plausible grouping criteria. Should
a collection of rocks be grouped according to value, or
shininess, or geological properties? Should animal pictures
be grouped according to the Linnaean taxonomy, or cute-
ness? Different users have different priorities, and an unsu-
pervised algorithm has no way to magically guess these.

As a result, a rich body of work on constrained cluster-
ing has emerged. In this setting, a user supplies guid-
ance, typically in the form of “must-link” or “cannot-link”
constraints, pairs of points that must be placed together
or apart. Introduced by Wagstaff & Cardie (2000), these
constraints have since been incorporated into many differ-

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

ent flat clustering procedures (Wagstaff et al., 2001; Bansal
et al., 2004; Basu et al., 2004; Kulis et al., 2005; Biswas &
Jacobs, 2014).

In this paper, we introduce constraints to hierarchical clus-
tering, the recursive partitioning of a data set into succes-
sively smaller clusters to form a tree. A hierarchy has sev-
eral advantages over a flat clustering. First, there is no need
to specify the number of clusters in advance. Second, the
tree captures cluster structure at multiple levels of granu-
larity, simultaneously. As such, trees are particularly well-
suited for exploratory data analysis and the discovery of
natural groups.

There are several well-established methods for hierarchi-
cal clustering, the most prominent among which are the
bottom-up agglomerative methods such as average linkage
(see, for instance, Chapter 14 of Hastie et al. (2009)). But
they suffer from the same problem of under-specification
that is the scourge of unsupervised learning in general.
And, despite the rich literature on incorporating additional
guidance into flat clustering, there has been relatively little
work on the hierarchical case.

What form might the user’s guidance take? The usual must-
link and cannot-link constraints make little sense when data
has hierarchical structure. Among living creatures, for in-
stance, should elephant and tiger be linked? At some
level, yes, but at a finer level, no. A more straightforward
assertion is that elephant and tiger should be linked
in a cluster that does not include snake. We can write this
as a triplet ({elephant,tiger},snake). We could
also assert ({tiger,leopard},elephant). Formally,
({a, b}, c) stipulates that the hierarchy contains a subtree
(that is, a cluster) containing a and b but not c.

A wealth of research addresses learning taxonomies from
triplets alone, mostly in the field of phylogenetics: see
Felsenstein (2004) for an overview, and Aho et al. (1981)
for a central algorithmic result. Let’s say there are n data
items to be clustered, and that the user seeks a particular
hierarchy T ∗ on these items. This T ∗ embodies at most(
n
3

)
triplet constraints, possibly less if it is not binary. It

was pointed out in Tamuz et al. (2011) that roughly n log n

Interactive Bayesian Hierarchical Clustering

carefully-chosen triplets are enough to fully specify T ∗ if it
is balanced. This is also a lower bound: there are nΩ(n) dif-
ferent labeled rooted trees, so each tree requires Ω(n log n)
bits, on average, to write down—and each triple provides
O(1) bits of information, since there are just three possible
outcomes for each set of points a, b, c. Although n log n is
a big improvement over n3, it is impractical for a user to
provide this much guidance when the number of points is
large. In such cases, a hierarchical clustering cannot be ob-
tained on the basis of constraints alone; the geometry of the
data must play a role. We consider an interactive process
during which a user incrementally adds constraints.

• Starting with a pool of data X ⊆ Rd, the machine
builds a candidate hierarchy T .

• The set of constraints C is initially empty.

• Repeat:

– The machine presents the user with a small por-
tion of T : specifically, its restriction to O(1)
leaves S ⊂ X . We denote this T |S .

– The user either accepts T |S , or provides a triplet
constraint ({a, b}, c) that is violated by it.

– If a triplet is provided, the machine adds it to C
and modifies the tree T accordingly.

In realizing this scheme, a suitable clustering algorithm
and querying strategy must be designed. Similar issues
have been confronted in flat clustering—with must-link and
cannot-link constraints—but the solutions are unsuitable
for hierarchies, and thus a fresh treatment is warranted.

THE CLUSTERING ALGORITHM

What is a method of hierarchical clustering that takes into
account the geometry of the data points as well as user-
imposed constraints?

We adopt an interactive Bayesian approach. The learning
procedure is uncertain about the intended tree and this un-
certainty is captured in the form of a distribution over all
possible trees. Initially, this distribution is informed solely
by the geometry of the data but once interaction begins, it
is also shaped by the growing set of constraints.

The nonparametric Bayes literature contains a variety of
different distributional models for hierarchical clustering.
We describe a general methodology for extending these
to incorporate user-specified constraints. For concrete-
ness, we focus on the Dirichlet diffusion tree (Neal, 2003),
which has enjoyed empirical success. We show that triplet
constraints are quite easily accommodated: when using a
Metropolis-Hastings sampler, they can efficiently be en-
forced, and the state space remains strongly connected, as-
suring convergence to the unique stationary distribution.

THE QUERYING STRATEGY

What is a good way to select the subsets S? A simple op-
tion is to pick them at random from X . We show that this
strategy leads to convergence to the target tree T ∗. Along
the way, we define a suitable distance function for measur-
ing how close T is to T ∗.

We might hope, however, that a more careful choice of S
would lead to faster convergence, in much the same way
that intelligent querying is often superior to random query-
ing in active learning. In order to do this, we show how the
Bayesian framework allows us to quantify which portions
of the tree are the most uncertain, and thereby to pick S
that focuses on these regions.

Querying based on uncertainty sounds promising, but is
dangerous because it is heavily influenced by the choice of
prior, which is ultimately quite arbitrary. Indeed, if only
such queries were used, the interactive learning process
could easily converge to the wrong tree. We show how to
avoid this situation by interleaving the two types of queries.

Finally, we present a series of experiments that illustrate
how a little interaction leads to significantly better hierar-
chical clusterings.

1.1. Other related work

A related problem that has been studied in more de-
tail (Zoller & Buhmann, 2000; Eriksson et al., 2011; Kr-
ishnamurthy et al., 2012) is that of building a hierarchical
clustering where the only information available is pairwise
similarities between points, but these are initially hidden
and must be individually queried.

In another variant of interactive flat clustering (Balcan &
Blum, 2008; Awasthi & Zadeh, 2010; Awasthi et al., 2014),
the user is allowed to specify that individual clusters be
merged or split. A succession of such operations can al-
ways lead to a target clustering, and a question of interest
is how quickly this convergence can be achieved.

Finally, it is worth mentioning the use of triplet constraints
in learning other structures, such as Euclidean embed-
dings (Borg & Groenen, 2005).

2. Bayesian hierarchical clustering
The most basic form of hierarchical clustering is a rooted
binary tree with the data points at its leaves. This is some-
times called a cladogram. Very often, however, the tree is
adorned with additional information, for instance:

1. An ordering of the internal nodes, where the root is as-
signed the lowest number and each node has a higher
number than its parent.

Interactive Bayesian Hierarchical Clustering

This ordering uniquely specifies the induced k-
clustering (for any k): just remove the k − 1 lowest-
numbered nodes and take the clusters to be the leaf-
sets of the k resulting subtrees.

2. Lengths on the edges.

Intuitively, these lengths correspond to the amount of
change (for instance, time elapsed) along the corre-
sponding edges. They induce a tree metric on the
nodes, and often, the leaves are required to be at the
same distance from the root.

3. Parameters at internal nodes.

These parameters are sometimes from the same space
as the data, representing intermediate values on the
way from the root to the leaves.

Many generative processes for trees end up producing these
more sophisticated structures, with the understanding that
undesired additional information can simply be discarded
at the very end. We now review some well-known distribu-
tions over trees and over hierarchical clusterings.

Let’s start with cladograms on n leaves. The simplest dis-
tribution over these is the uniform. Another well-studied
option is the Yule model, which can be described using
either a top-down or bottom-up generative process. The
top-down view corresponds to a continuous-time pure birth
process: start with one lineage; each lineage persists for a
random exponential(1) amount of time and then splits into
two lineages; this goes on until there are n lineages. The
bottom-up view is a coalescing process: start with n points;
pick a random pair of them to merge; then repeat. Aldous
(1995) has defined a one-parameter family of distributions
over cladograms, called the beta-splitting model, that in-
cludes the uniform and the Yule model as special cases.
It is a top-down generative process in which, roughly, each
split is made by sampling from a Beta distribution to decide
how many points go on each side. To move to arbitrary
(not necessarily binary) splits, a suitable generalization is
the Gibbs fragmentation tree (McCullagh et al., 2008).

In this paper, we will work with joint distributions over
both tree structure and data. These are typically inspired by,
or based directly upon, the simpler tree-only distributions
described above. Our primary focus is the Dirichlet diffu-
sion tree (Neal, 2003), which is specified by a birth process
that we will shortly describe. However, our methodology
applies quite generally. Other notable Bayesian approaches
to hierarchical clustering include: Williams (2000), in
which each node of the tree is annotated with a vector that
is sampled from a Gaussian centered at its parent’s vec-
tor; Heller & Ghahramani (2005), that defines a distribu-
tion over flat clusterings and then specifies an agglomera-
tive scheme for finding a good partition with respect to this

distribution; Adams et al. (2008), in which data points are
allowed to reside at internal nodes of the tree; Teh et al.
(2008); Boyles & Welling (2012), in which the distribution
over trees is specified by a bottom-up coalescing process;
and Knowles & Ghahramani (2015), which generalizes the
Dirichlet diffusion trees to allow non-binary splits.

2.1. The Dirichlet diffusion tree

The Dirichlet diffusion tree (DDT) is a generative model
for d-dimensional vectors x1, x2, . . . , xN . Data are gen-
erated sequentially via a continuous-time process, lasting
from time t = 0 to t = 1, when they reach their final value.

The first point, x1, is generated via a Brownian motion,
beginning at the origin, i.e. X1(t + dt) = X1(t) +
N (0, σ2Iddt) where X1(t) represents the value of x1 at
time t. The next point, x2, follows the path created by x1

until it eventually diverges at a random time, according to
a specified acquisition function a(t). When x2 diverges,
it creates an internal node in the tree structure which con-
tains both the time and value of x2 when it diverged. After
divergence, it continues until t = 1 with an independent
Brownian motion. In general, the i-th point follows the
path created by the previous i−1 points. When it reaches a
node, it will first sample one of two branches to enter, then
either 1) diverge on the branch, whereupon a divergence
time is sampled according to the acquisition function a(t),
or 2) recursively continue to the next node. Each of these
choices has a probability associated with it, according to
various properties of the tree structure and choice of acqui-
sition function (details can be found in Neal (2003)). Even-
tually, all points will diverge and continue independently,
creating an internal node storing the time and intermediate
value for each point at divergence. The DDT thus defines
a binary tree over the data (see Figure 1 for an example).
Furthermore, given a DDT with N points, it is possible to
sample the possible divergence locations of a (N + 1)-th
point, using the generative process.

Sampling the posterior DDT given data can be done
with the Metropolis-Hastings (MH) algorithm, an MCMC
method. The MH algorithm obtains samples from target
distribution p(x) indirectly by instead sampling from a con-
ditional “proposal” distribution q(x|x′), creating a Markov
chain whose stationary distribution is p(x), assuming q sat-
isfies some conditions. Our choice of proposal distribution
modifies the DDT’s tree structure via a subtree-prune and
regraft (SPR) move, which has the added benefit of extend-
ing to other distributions over hierarchies.

An SPR move consists of first a prune then a regraft. Sup-
pose T is a binary tree with n leaves. Let s be a non-root
node in T selected uniformly at random and S be its cor-
responding subtree. To prune S from T , we remove s’s
parent p from T , and replace p with s’s sibling.

Interactive Bayesian Hierarchical Clustering

Figure 1. An example DDT with 1-dimensional data. Blue lines
represent paths taken by each data point, and black dots represent
nodes of the tree. The rightmost dots are leaves and the others are
nodes created when points diverged. When drawing the hierarchy,
typically the top stem is omitted.

Regrafting selects a branch at random and attaches S to it
as follows. Let (u, v) be the chosen branch (u is the parent
of v). S is attached to the branch by creating a node p with
children s and v and parent u (see Figure 2 for an example).

The MH proposal distribution for the DDT is an augmented
SPR move, where the time and intermediate value at each
node are sampled in addition to tree structure. The ex-
changeability of the DDT enables efficient sampling of re-
graft branches by simulating the generation process for a
new point and returning the branch and time where it di-
verges. The intermediate values for the entire tree are sam-
pled via an interleaved Gibbs sampling move, as all condi-
tional distributions are Gaussian.

3. Adding interaction
Impressive as the Dirichlet diffusion tree is, there is no rea-
son to suppose that it will magically find a tree that suits
the user’s needs. But a little interaction can be helpful in
improving the outcome.

Let T ∗ denote the target hierarchical clustering. It is not
necessarily the case that the user would be able to write
this down explicitly, but this is the tree that captures the dis-
tinctions he/she is able to make, or wants to make. Figure 3
(left) shows an example, for a small data set of 5 points.
In this case, the user does not wish to distinguish between
points 1, 2, 3, but does wish to place them in a cluster that
excludes point 4.

We could posit our goal as exactly recovering T ∗. But in
many cases, it is good enough to find a tree that captures all
the distinctions within T ∗ but also possibly has some extra-
neous distinctions, as in the right-hand side of Figure 3.

Formally, given data set X , we say S ⊆ X is a cluster of
tree T if there is some node of T whose descendant leaves
are exactly S. We say T is a refinement of T ∗ if they have
the same set of leaves, and moreover every cluster of T ∗

is also a cluster of T . This, then, is our goal: to find a
refinement of the target clustering T ∗.

3.1. Triplets

The user provides feedback in the form of triplets. The con-
straint ({a, b}, c) means that the tree should have a cluster
containing a and b but not c. Put differently, the lowest
common ancestor of a, b should be a strict descendant of
the lowest common ancestor of a, b, c.

Let ∆(T) denote the set of all proper triplet constraints em-
bodied in tree T . If T has n nodes, then |∆(T)| ≤

(
n
3

)
. For

non-binary trees, it will be smaller than this number. Fig-
ure 3 (left), for instance, has no triplet involving 1, 2, 3.

Refinement can be characterized in terms of triplets.

Lemma 3.1. Tree T is a refinement of tree T ′ if and only if
∆(T ′) ⊆ ∆(T).

Proof. See supplement.

In particular, any triplet-querying scheme that converges to
the full set of triplets of the target tree T ∗ is also guaranteed
to produce trees that converge to a refinement of T ∗.

With this lemma in mind, it is natural to measure how close
a tree T is to the target T ∗ with the following (asymmetric)
distance function, which we call triplet distance (TD):

TD(T ∗, T) =

∑
c∈∆(T∗) I(c /∈ ∆(T))

|∆(T ∗)|
(1)

where I is the indicator function. This distance is zero ex-
actly when T is a refinement of T ∗, in which case we have
reached our goal.

A simple strategy for obtaining triplets would be to present
the user with three randomly chosen data points and have
the user pick the odd one out. This strategy has sev-
eral drawbacks. First, some sets of three points have no
triplet constraint (for instance, points 1, 2, 3 in Figure 3).
Second, the chosen set of points might correspond to a
triplet that has already been specified, or is implied by
specified triplets. For example, knowledge of ({a, b}, c)
and ({b, c}, d) implies ({a, c}, d). Enumerating the set of
implied triplets is non-trivial for n > 3 triplets (Bryant
& Steel, 1995), making it difficult to avoid these implied
triplets in the first place.

We thus consider another strategy—rather than the user ar-
ranging three data points into a triplet, the user observes

Interactive Bayesian Hierarchical Clustering

Figure 2. In the subtree-prune and regraft (SPR) move, a subtree S is selected uniformly at random and is then pruned from the tree.
Next, a regraft location is selected from the valid regraft locations, and S is re-attached at that location.

1 2 3 4 5

1

2 3

5 4

Figure 3. Target tree T ∗ (left) and a refinement of it.

the hierarchy induced over some O(1)-sized subset S of
the data and corrects an error in the tree by supplying a
triplet. We call this is a subtree query. Finally, we note that
in this work we only consider the realizable case where the
triplets obtained from a user do not contain contradictory
information and that there is a tree that satisfies all of them.

3.2. Finding a tree consistent with constraints

We start with a randomly initialized hierarchy T over our
data and show an induced subtree T |S to the user, obtaining
the first triplet. The next step is constructing a new tree
that satisfies the triplet. This begins the feedback cycle;
a user provides a triplet given a subtree and the triplet is
incorporated into a clustering algorithm, producing a new
candidate tree. A starting point is an algorithm that returns
a tree consistent with a set of triplets.

The simplest algorithm to solve this problem is the BUILD
algorithm, introduced in Aho et al. (1981). Given a set of
triplets C, BUILD will either return a tree that satisfies C,
or error if no such tree exists. In BUILD, we first con-
struct the Aho graph GC , which has a vertex for each data
point and an undirected edge {a, b} for each triplet con-
straint ({a, b}, c). If GC is connected, there is no tree that
satisfies all triplets. Otherwise, the top split of the tree is a
partition of the connected components of GC : any split is

fine as long as points in the same component stay together.
Satisfied triplets are discarded, and BUILD then continues
recursively on the left and right subtrees.

BUILD satisfies triplet constraints but ignores the geometry
of the data, whereas we wish to take both into account. By
incorporating triplets into the posterior DDT sampler, we
obtain high likelihood trees that still satisfy C.

3.3. Incorporating triplets into the sampler

In this section, we present an algorithm to sample candidate
trees from the posterior DDT, constrained by a triplet setC.
It is based on the subtree prune and regraft move.

The SPR move is of particular interest because we can ef-
ficiently enforce triplets to form a constrained-SPR move,
resulting in a sampler that only produces trees that satisfy a
set of triplets. A constrained-SPR move is defined as an
SPR move that assigns zero probability to any resulting
trees that would violate a set of triplets. Restricting the
neighborhood of an SPR move runs the risk of partitioning
the state space, losing the convergence guarantees of the
Metropolis-Hastings algorithm. Fortunately, a constrained-
SPR move does not compromise strong connectivity. For
any realizable triplet set C, we prove the constrained-SPR
move Markov chain’s aperiodicity and irreducibility.

Consider the Markov chain on the state space of rooted bi-
nary trees that is induced by the constrained sampler.

Lemma 3.2. The constrained-SPR Markov chain is aperi-
odic.

Proof. A sufficient condition for aperiodicity is the exis-
tent of a “self-loop” in the transition matrix: a non-zero
probability of a state transitioning to itself. Supposed we
have pruned a subtree already. When regrafting, the or-
dinary SPR move has a non-zero probability of choosing
any branch, and a constrained-SPR move cannot regraft to
branches that would violate triplets. Since the current tree

Interactive Bayesian Hierarchical Clustering

Figure 4. Visualized is a constrained-SPR move. Pruning is identical but a regraft location is selected from the valid regraft locations
limited by triplets. In this image, we are constrained by the sole triplet ({2, 3}, 4).

in the Markov chain satisfies triplet set C, there is a non-
zero probability of regrafting to the same location. We thus
have an aperiodic Markov chain.

Lemma 3.3. A constrained-SPR Markov chain is irre-
ducible.

Proof. (sketch) To show irreducibility, we show that a tree
T has an non-zero probability of reaching an arbitrary tree
T ′ via constrained-SPR moves where both T and T ′ sat-
isfy a set of triplets C. Our proof strategy is to construct
a canonical tree TC , and show that there exists a non-zero
probability path from T to TC , and therefore from T ′ to
TC . We then show that for a given constrained-SPR move,
the reverse move has a non-zero probability. Thus, there
exists a path from T to TC to T ′, satisfying irreducibility.

Recall that the split at a node in a binary tree that satisfies
triplet set C corresponds to a binary partition of the Aho
graph at the node (see Section 3.2). TC is a tree such that
every node in TC is in canonical form. A node is in canon-
ical form if it is a leaf node, or, the partition of the Aho
graph at that node can be written as (l, r). l is the single
connected component containing the point with the mini-
mum data index, and r is the rest of the components.

To convert a particular node s into canonical form, we
first perform “grouping”, which puts l into a single descen-
dant of s via constrained-SPR moves. We then make two
constrained-SPR moves to convert the partition at s into the
form (l, r) (see Figure 5). We convert all nodes into canon-
ical form recursively, turning an arbitrary tree T into TC .

Finally, the reverse constrained-SPR move has a non-zero
probability. Suppose we perform a constrained-SPR move
on tree T1, converting it into T2 by detaching subtree s and
attaching it to branch (u, v). A constrained-SPR move on
T2 can select s for pruning and can regraft it to form T1 with
a non-zero probability since T1 satisfies the same constraint
set as C. For a full proof, please refer to the supplement.

The simplest possible scheme for a constrained-SPR move
would be rejection sampling. The Metropolis-Hastings al-
gorithm for the DDT would be the same as in the uncon-
strained case, but any trees violating C would have accept
probability 0. Although this procedure is correct, it is im-
practical. As the number of triplets grows larger, more trees
will be rejected and the sampler will slow down over time.

To efficiently sample a tree that satisfies a set of triplets
C, we modify the regraft in the ordinary SPR move. The
constrained-SPR move must assign zero probability to any
regraft branches that would result in a tree that violates
C. This is accomplished by generating the path from the
root in the same manner as sampling a branch, but avoid-
ing paths that would resulted in violated triplets.

DESCRIPTION OF CONSTRAINED-SPR SAMPLER

Recall that in the DDT’s sampling procedure for regraft
branches, a particle at a node picks a branch, and either di-
verges from that branch or recursively samples the node’s
child. Let s be the root of the subtree we are currently
grafting back onto tree T , let C be the triplet set, and let
leaves(u) denote the descendant-leaves of node u. Sup-
pose we are currently at node u, deciding whether to di-
verge at the branch (u, v) or to recursively sample v. Con-
sider any triplet ({a, b}, c) ∈ C. If all—or none—of a, b, c
are in leaves(s), then the triplet is unaffected by the
graft, and can be ignored. Otherwise, checks are needed:

1. c ∈ leaves(s)

Then we know a, b 6∈ leaves(s). If a and b are split
across v’s children, we are banned from sampling v.

2. a ∈ leaves(s) but b, c 6∈ leaves(s)

If both b and c are in leaves(v), we are required to
sample v. If just c is in leaves(v), we are banned
from both diverging at (u, v) and sampling v. Other-
wise we can either diverge at (u, v) or sample v.

Interactive Bayesian Hierarchical Clustering

Figure 5. The process of converting s into canonical form. We first group nodes from l into their own isolated subtree, then perform two
constrained-SPR moves to put s into canonical form.

(The case where b ∈ leaves(s) is symmetric to case 2.)
If we choose to sample v, we remove constraints from our
current set C that are now satisfied, and continue recur-
sively. This defines a procedure by which we can sample a
divergence branch that does not violate constraints.

While the constrained-SPR sampler can produce a set of
trees given a set of static constraints, the BUILD algorithm
is useful in adding new triplets into the sampler. Sup-
pose we have been sampling trees with constrained-SPR
moves satisfying triplet set C and we obtain a new triplet
u = ({a, b}, c) from a user query. We take the current
tree T and find the least common ancestor (call it z) of a
and b. We then call BUILD(C + {u}) on just the nodes
in leaves(z), and we substitute the resulting subtree at
position z in tree T .

3.4. Intelligent subset queries

We now have a method to sample a constrained distribu-
tion over candidate trees. Given a particular candidate tree
T , our first strategy for subtree querying is to pick a ran-
dom subset S of the leaves of constant size, and show the
user the induced subtree over the subset, T |S . We call this
random subtree querying. But can we use a set of trees
produced by the sampler to make better subtree queries? If
tree structure is ambiguous in a particular region of data,
i.e. there are several hierarchies that could explain a partic-
ular configuration of data, the MH algorithm will sample
over these different configurations. A query over points
in these ambiguous regions may help our algorithm con-
verge to a better tree faster. By looking for these regions in
our samples, we can choose query subsets S for which the
tree structure is highly variable, and hopefully the resulting
triplet from the user will reduce the ambiguity.

More precisely, we desire a notion of tree variance. Given
a set of trees T , what is the variance over a given subset of
the data S? We propose using the notion of tree distance

as a starting point. For a given tree T , the tree distance
between two nodes a and b, denoted treedistT (a, b), is
the number of edges of T needed to get from a to b. Con-
sider two leaves u and v. If the tree structure around them
is static, we expect the tree distance between u and v to
change very little, as the surrounding tree will not change.
However, if there is ambiguity in the surrounding structure,
the tree distance will be more variable. Given a subset of
data S and a set of trees T , the tree distance variance (TDV)
of the trees over the subset is defined as:

TDV(T , S) = max
u,v∈S

VarT∈T [treedistT |S (u, v)] (2)

This measure of variance is the max of the variance of tree
distance between any two points in the subset. Computing
this requires O(|T ||S|2 log |S|) time, and since since |S| is
constant, it is not prohibitively expensive.

Given a set of trees from the sampler T , we now
select a high-variance subtree by instantiating L ran-
dom subsets of constant size, S1, . . . , SL and picking
argmaxlTDV(T , Sl). We call this active subtree querying.
Although using tree variance will help reconcile ambigu-
ity in the tree structure, if a set of samples from a tree all
violate the same triplet, it is unlikely that active querying
will recover that triplet. Thus, interleaving random query-
ing and active querying will hopefully help the algorithm
converge quickly, while avoiding local optima.

4. Experiments
We evaluated the convergence properties of five different
querying schemes. In a “simple query”, a user is presented
with three random data and picks an odd one out. In a
“smart query”, a user is unrealistically shown the entire
candidate tree and reports a violated triplet. In a “random
query”, the user is shown the induced candidate tree over
a random subset of the data. In an “active query”, the user

Interactive Bayesian Hierarchical Clustering

(a) Fisher Iris (b) MNIST

Figure 6. The average of four runs of constrained-SPR samplers for the Fisher Iris dataset and the MNIST dataset, using 5 different
querying schemes. A query was made every 100 iterations.

is shown a high variance subtree using tree-distance vari-
ance. Finally, in an “interleaved query”, the user is alterna-
tively shown a random subtree and a high variance subtree.
In each experiment, T ∗ was known, so user queries were
simulated by picking a triplet violated by the root split of
the queried tree, and if no such triplet existed, recursing
on a child. Each scheme was evaluated on four different
datasets. The first dataset, MNIST (Lecun et al., 1998),
is an 10-way image classification dataset where the data
are 28 x 28 images of digits. The target tree T ∗ is sim-
ply the K-way classification tree over the data. The second
dataset is Fisher Iris, a 3-way flower classification prob-
lem, where each of 150 flowers has five features. The third
dataset, Zoo (Lichman, 2013), is a set of 93 animals and
15 binary morphological features for each of animals, the
target tree being the induced binary tree from the Open
Tree of Life (Hinchliff et al., 2015). The fourth dataset
is 20 Newsgroups (Joachims, 1997), a corpus of text arti-
cles on 20 different subjects. We use the first 10 principal
components as features in this classification problem. All
datasets were modeled with DDT’s with acquisition func-
tion a(t) = 1/(1 − t) and Brownian motion parameter σ2

estimated from data. To better visualize the different con-
vergence rates of the querying schemes, MNIST and 20
Newsgroups were subsampled to 150 random points.

For each dataset and querying scheme, we instantiated a
SPR sampler with no constraints. Every one hundred it-
erations of the sampler, we performed a query. In sub-
tree queries, we used subsets of size |S| = 10 and in ac-

tive querying, the highest-variance subset was chosen from
L = 20 different random subsets. As baselines, we mea-
sured the triplet distance of the vanilla DDT and the aver-
age linkage tree. Finally, results were averaged over four
runs of each sampler. The triplet distances for Fisher Iris
and MNIST can be seen in Figure 6. Results for the other
datasets can be found in the supplement. Although unreal-
istic due to the size of the tree shown to the user, the smart
query performed the best, achieving minimum error with
the least amount of queries. Interleaved followed next, fol-
lowed by active, random, and simple. In general, the vanilla
DDT performed the worst, and the average linkage score
varied on each dataset, but in all cases, the subtree query-
ing schemes performed better than both the vanilla DDT
and average linkage.

In three datasets (MNIST, Fisher Iris and Zoo), interac-
tive methods achieve higher data likelihood than the vanilla
DDT. Initially, the sampler is often restructuring the tree
with new triplets and data likelihood is unlikely to rise.
However, over time as less triplets are reported, the data
likelihood increases rapidly. We thus conjecture that triplet
constraints may help the MH algorithm find better optima.

5. Future Work
We are interested in studying the non-realizable case, i.e.
when there does not exist a tree that satisfies triplet set C.
We would also like to better understand the effect of con-
straints on searching for optima using MCMC methods.

Interactive Bayesian Hierarchical Clustering

Acknowledgements
Sharad Vikram and Sanjoy Dasgupta are supported by the
National Science Foundation under grant CNS-1446912.
The authors are grateful for feedback from the anonymous
reviewers and for help and advice from Suqi Liu, Stefanos
Poulis, and Christopher Tosh.

References
Adams, R.P., Ghahramani, Z., and Jordan, M.I. Tree-

structured stick breaking for hierarchical data. In Ad-
vances in Neural Information Processing Systems, 2008.

Aho, A.V., Sagiv, Y., Szymanski, T.G., and Ullman, J.D.
Inferring a tree from lowest common ancestors with an
application to the optimization of relational expressions.
SIAM Journal on Computing, 10:405–421, 1981.

Aldous, D. Probability distributions on cladograms. In
Aldous, D. and Pemantle, R. (eds.), Random Discrete
Structures (IMA Volumes in Mathematics and its Appli-
cations 76), pp. 1–18, 1995.

Awasthi, P. and Zadeh, R.B. Supervised clustering. In Ad-
vances in Neural Information Processing Systems, 2010.

Awasthi, P., Balcan, M.-F., and Voevodski, K. Local al-
gorithms for interactive clustering. In Proceedings of
the 31st International Conference on Machine Learning,
2014.

Balcan, M.-F. and Blum, A. Clustering with interactive
feedback. In Algorithmic Learning Theory (volume 5254
of the series Lecture Notes in Computer Science), pp.
316–328, 2008.

Bansal, N., Blum, A., and Chawla, S. Correlation cluster-
ing. Machine Learning, 56(1–3):89–113, 2004.

Basu, S., Banerjee, A., and Mooney, R. Active semi-
supervision for pairwise constrained clustering. In SIAM
International Conference on Data Mining, 2004.

Biswas, A. and Jacobs, D. Active image clustering with
pairwise constraints from humans. International Journal
of Computer Vision, 108(1):133–147, 2014.

Borg, I. and Groenen, P.J.F. Modern Multidimensional
Scaling: Theory and Applications. Springer Verlag,
2005.

Boyles, L. and Welling, M. The time-marginalized coa-
lescent prior for hierarchical clustering. In Advances in
Neural Information Processing Systems, 2012.

Bryant, D and Steel, M. Extension operations on sets of
leaf-labeled trees. Advances in Applied Mathematics, 16
(4):425–453, 1995.

Eriksson, B., Dasarathy, G., Singh, A., and Nowak, R. Ac-
tive clustering: robust and efficient hierarchical cluster-
ing using adaptively selected similarities. In Proceedings
of the 14th International Conference on Artificial Intel-
ligence and Statistics, 2011.

Felsenstein, J. Inferring Phylogenies. Sinauer, 2004.

Hastie, T., Tibshirani, R., and Friedman, J. The Elements
of Statistical Learning. Springer, 2nd edition, 2009.

Heller, K. and Ghahramani, Z. Bayesian hierarchical clus-
tering. In Proceedings of the 22nd International Confer-
ence on Machine Learning, 2005.

Hinchliff, Cody E., Smith, Stephen A., Allman, James F.,
Burleigh, J. Gordon, Chaudhary, Ruchi, Coghill, Lyn-
don M., Crandall, Keith A., Deng, Jiabin, Drew,
Bryan T., Gazis, Romina, Gude, Karl, Hibbett, David S.,
Katz, Laura A., Laughinghouse, H. Dail, McTavish,
Emily Jane, Midford, Peter E., Owen, Christopher L.,
Ree, Richard H., Rees, Jonathan A., Soltis, Douglas E.,
Williams, Tiffani, and Cranston, Karen A. Synthesis of
phylogeny and taxonomy into a comprehensive tree of
life. In Proceedings of the National Academy of Sci-
ences, 2015.

Joachims, Thorsten. A probabilistic analysis of the rocchio
algorithm with tfidf for text categorization. In Proceed-
ings of the Fourteenth International Conference on Ma-
chine Learning, ICML ’97, pp. 143–151, 1997. ISBN
1-55860-486-3.

Knowles, D.A. and Ghahramani, Z. Pitman-Yor diffusion
trees for Bayesian hierarchical clustering. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
37(2):271–289, 2015.

Krishnamurthy, A., Balakrishnan, S., Xu, M., and Singh,
A. Efficient active algorithms for hierarchical clustering.
In Proceedings of the 29th International Conference on
Machine Learning, 2012.

Kulis, B., Basu, S., Dhillon, I., and Mooney, R. Semi-
supervised graph clustering: a kernel approach. In Pro-
ceedings of the 22nd International Conference on Ma-
chine Learning, 2005.

Lecun, Yann, Bottou, Lon, Bengio, Yoshua, and Haffner,
Patrick. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, pp. 2278–2324,
1998.

Lichman, M. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

McCullagh, P., Pitman, J., and Winkel, M. Gibbs fragmen-
tation trees. Bernoulli, 14(4):988–1002, 2008.

http://archive.ics.uci.edu/ml

Interactive Bayesian Hierarchical Clustering

Neal, R.M. Density modeling and clustering using Dirich-
let diffusion trees. In Bernardo, J.M. et al. (eds.),
Bayesian Statistics 7, pp. 619–629. Oxford University
Press, 2003.

Tamuz, O., Liu, C., Belongie, S., Shamir, O., and Kalai,
A.T. Adaptively learning the crowd kernel. In Proceed-
ings of the 28th International Conference on Machine
Learning, 2011.

Teh, Y.W., III, H. Daume, and Roy, D.M. Bayesian ag-
glomerative clustering with coalescents. In Advances in
Neural Information Processing Systems, 2008.

Wagstaff, K. and Cardie, C. Clustering with instance-level
constraints. In Proceedings of the 17th International
Conference on Machine Learning, 2000.

Wagstaff, K., Cardie, C., Rogers, S., and Schroedl, S.
Constrained k-means clustering with background knowl-
edge. In Proceedings of the 18th International Confer-
ence on Machine Learning, 2001.

Williams, C.K.I. A MCMC approach to hierarchical mix-
ture modeling. In Advances in Neural Information Pro-
cessing Systems, 2000.

Zoller, T. and Buhmann, J.M. Active learning for hierarchi-
cal pairwise data clustering. In Proceedings of the 15th
International Conference on Pattern Recognition, 2000.

