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Abstract

In this supplementary material we prove the propositions from the main paper (Vladymyrov and
Carreira-Perpiñán, 2016) regarding the choice of normalization for the graph Laplacian kernel. We also
show the relation between Variational Nyström and modified Nyström (Wang and Zhang, 2013) as well
as between LLL (Vladymyrov and Carreira-Perpiñán, 2013) and Randomized Projections (Halko et al.,
2011).

1 Normalization for out-of-sample kernel for graph Laplacians

First we prove the normalization properties of the out-of-sample kernel for the Nyström and Column Sampling
methods.

Proposition (3.1 from the main paper). Given a subsample L
Nys
A

= D
−1/2
A

AD
−1/2
A

for the Nyström method,
or LCS

A
= (D1CD2)

T (D1CD2) for the Column Sampling, and Z = D1CD2 as an out-of-sample kernel, the
exact eigenvectors of graph Laplacian LW for L = N are recovered when D1 = D2 = D

−1/2
W

.

Proof. First, let us start with the Nyström method. The Nyström approximation to the eigenvectors of LW

is Ũ = ZUAΛ−1

A
, where UA and ΛA are given by the eigendecomposition D
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−1/2
A

UA = UAΛA (see
table 1 from the main paper). If A is positive definite, we have

Ũ = ZUAΛ−1

A
= Z(D

−1/2
A

AD
−1/2
A

)−1(D
−1/2
A

AD
−1/2
A

)UAΛ−1

A

= ZD
1/2
A

A−1D
1/2
A

UAΛAΛ−1

A
= ZD

1/2
A

A−1D
1/2
A

UA.

In the case N = L we have C = A = W = WT , UA = U, DA = DW and so the approximation becomes

U = D1WD2D
1/2
W

W−1D
1/2
W

U. Thus, for the approximation to be exact, we need to have D1WD2 =

D
−1/2
W

WD
−1/2
W

. One way to achieve this is to take D1 = D2 = D
−1/2
W

.
Now for the column sampling method. The eigenvectors of the subproblem are given by

(D1CD2)
T (D1CD2)Û = ÛΛ̂.

From there the eigendecomposition of D1CD2 is given by (D1CD2)Ũ = ŨΛ̃
1/2

. The approximation of the

eigenvectors of LW is Ũ = ZUCΛ
−1/2
C

. When L = N we get:

Ũ = D1WD2(D1WD2)
−1(D1WD2)ŨΛ̃

−1/2
= D1WD2D

−1
2 W−1D−1

1 ŨΛ̃
1/2

Λ̃
−1/2

= Ũ.

Thus, the solution is exact when D1WD2 = D−1/2WD−1/2. One way to satisfy this is to take D1 = D2 =

D
−1/2
W

.

∗Part of this work was performed while the author was a PhD student at UC Merced.
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Now for the properties of the Variational Nyström method.

Proposition (3.2 from the main paper). Given a subsample LVN
A

= D
−1/2
A

AD
−1/2
A

and Z = D1CD2 as an
out-of-sample kernel, the exact eigenvectors of graph Laplacian LW are recovered for any L ≤ N using any
arbitrary symmetrical matrix D1. When L = N the eigenvectors are recovered using any symmetrical D2.

Proof. Let us prove first that premultiplying Z by any symmetrical matrixD1 does not change the approxima-
tion if L ≤ N . Using the out-of-sample kernel D1Z, the generalized eigenproblem becomes D1ZAZTD1Ũ =
D1ZZ

TD1ŨΛ̃, which is identical to ZAZT Û = ZZT ÛΛ̂ if we take Û = D1Ũ and Λ̂ = Λ̃. For the
out-of-sample extension we use ZŨ = ZTD1Ũ, which is equal to ZT Û.

Now, let us show that for L = N post-multiplying Z by any symmetrical D2 does not change the results.
Let WU = DWUΛ be the solution of the exact problem. For L = N we have Z = W and the approximation
to the eigenproblem becomes WD2WD2WŨ = WD2DWD2WŨΛ̃ with the final approximation U =
D2WŨ. Plugging this approximation in the exact solution gives WD2WŨ = DWD2WŨΛ, which is
identical to the approximate solution when WD2 is invertible.

2 Relation between the variational and modified Nyström methods

Here we show the connection between the variational Nyström (Vladymyrov and Carreira-Perpiñán, 2016)
and modified Nyström (Wang and Zhang, 2013) methods. Let M be an N × N symmetric matrix and
Z = C a subset of its L columns. Then, the modified Nyström method approximates M with a low-rank

approximation M̃mod = ZZ+M(Z+)TZT . Variational Nyström, on the contrary, starts with the optimization
problem (P) from the main paper and results in the approximation of the eigenvectors of M.

Proposition 2.1. If Z has full rank and the eigenvalues of M are approximated as ΛVN = ΛZ, where
ΛZ are the eigenvectors of the generalized eigenproblem ZTMZUZ = ZTZUZΛZ, then the spectral ap-

proximation M̃VN = UVNΛVN(UVN)T becomes identical to the modified Nyström approximation M̃mod =
ZZ+M(Z+)TZT .

Proof. Variational Nyström approximates the eigenvectors of M as UVN = ZUZ, where UZ are eigenvectors

of the generalized eigenproblem ZTMZUZ = ZTZUZΛZ. Therefore, M̃VN = ZUZΛZU
T
Z
ZT . We can

alternatively prove the proposition by showing that if ΛVN = ΛZ the intersection matrices of M̃VN and

M̃mod are equal, i.e. UZΛZU
T
Z
= Z+M(Z+)T .

Converting the generalized eigenvalue into a standard one using a substitution UR = (ZTZ)1/2UZ

(assuming Z is full-rank) we get:

(ZTZ)−1/2ZTMZ(ZTZ)−1/2 = URΛZU
T
R. (1)

Now the intersection matrix of M̃VN becomes

UZΛZU
T
Z

= (ZTZ)−1/2URΛZU
T
R
(ZTZ)−1/2

= (ZTZ)−1/2(ZTZ)−1/2ZTMZ(ZTZ)−1/2(ZTZ)−1/2

= (ZTZ)−1ZTMZ(ZTZ)−1 = Z+M(Z+)T .

3 Relation between the LLL and randomized projection methods

Here we show the relation between the LLL (Vladymyrov and Carreira-Perpiñán, 2013) and random pro-
jection (RP) (Halko et al., 2011) methods. Given the input matrix M, the RP method first computes the
sample matrix MS = MS, where S is an N × L uniformly distributed random matrix. It then finds an
orthonormal basis Q of the column space of MS (e.g. using a QR decomposition); projects the data matrix
M onto this basis, MS = QTM; and then computes a reduced SVD of the projection, MS = USΣSVS.
The approximate eigenvectors of A are then reconstructed using a re-projection of the left singular vectors
as QUS.
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The RP method can be viewed as an instance of LLL when the orthonormal basis Q of RP is used as
projection matrix Z of LLL. The left singular vectors of QTM are equal to the eigenvectors of QTMQ

(left-multiplying by the orthonormal matrix just changes the right singular vectors). Since QTQ = I, the

eigenproblem becomes identical to ZTMZŨ = ZTZŨΛ̃, which is the solution to the LLL optimization
problem.
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