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A. Some Basic Facts
A.1. Cramér-Rao Inequality

Let cov[Y ] denote the covariance matrix of a multivariate
random variable Y , i.e., cov[Y ] = E[(Y − E[Y ])(Y −
E[Y ])>].
Proposition 7 (Cramér-Rao inequality). Suppose that
X is a multivariate random variable with distribution
p(x; θ), for parameter θ ∈ Θn, and let T(X) =
(T1(X), . . . , Tr(X))> be any unbiased estimator of
ψ(θ) = (ψ1(θ), . . . , ψr(θ))

>, i.e., ψ(θ) = E[T(X)].
Then, we have

cov[T(X)] ≥ ∂ψ(θ)

∂θ
F−1(θ)

∂ψ(θ)

∂θ

>

where ∂ψ(θ)
∂θ is the Jacobian matrix of ψ and F (θ) is the

Fisher information matrix with (i, j) element defined by

Fi,j(θ) = E

[
∂2

∂θi∂θj
(− log(p(X; θ)))

]
.

A.2. Azuma-Hoeffding’s Inequality for Vectors

The inequality is known as the Azuma-Hoeffding’s in-
equality for multivariate random Variables, which was es-
tablished in Theorem 1.8 (Hayes).
Proposition 8 (Azuma-Hoeffding’s inequality). Sup-
pose that Sm =

∑m
t=1Xt is a martingale where

X1, X2, . . . , Xm take values in Rn and are such that
E[Xt] = 0 and ‖Xt‖2 ≤ D for all t, for D > 0. Then, for
every x > 0,

P [‖Sm‖2 ≥ x] ≤ 2e2e−
x2

2mD2 .

A.3. Chernoff’s Inequality for Matrices

The inequality is known as the Chernoff’s inequalities for
random matrices; e.g. stated as Theorem 5.1.1 in (Tropp,

2015).

Proposition 9 (Matrix Chernoff’s inequality). Let
X1, X2, . . . , Xm be a finite sequence of independent,
random, Hermitian matrices with dimension d. Assume
that

0 ≤ λ1(Xi) and ‖Xi‖2 ≤ α for all i.

Let

βmin = λ1

(
m∑
i=1

E[Xi]

)
and

βmax = λd

(
m∑
i=1

E[Xi]

)
.

Then, for ε ≥ 0,

P

[
λd

(
m∑
i=1

Xi

)
≥ (1 + ε)βmax

]

≤ d
(

eε

(1 + ε)1+ε

)βmax/α

for ε ≥ 0 (16)

and, for ε ∈ [0, 1),

P

[
λ1

(
m∑
i=1

Xi

)
≤ (1− ε)βmin

]

≤ d
(

e−ε

(1− ε)1−ε

)βmin/α

for ε ∈ [0, 1). (17)

We have the following corollary:

Corollary 10. Under the assumptions of Proposition 9, for
ε ∈ [0, 1),

P

[
λ1

(
m∑
i=1

Xi

)
≤ (1− ε)βmin

]
≤ de−

ε2βmin
2α
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Proof. This follows from (17) and the following fact

e−ε

(1− ε)1−ε
≤ e− ε

2

2 , for all ε ∈ (0, 1].

A.4. A Chernoff’s Tail Bound

The following tail bound follows from the Chernoff’s
bound and is proved in Appendix L.3.
Proposition 11. Suppose thatX is a sum ofm independent
Bernoulli random variables each with mean p, then if q ≤
p ≤ 2q,

P[X ≤ qm] ≤ exp

(
− (q − p)2

4q
m

)
(18)

and, if p ≤ q,

P[X ≥ qm] ≤ exp

(
− (q − p)2

4q
m

)
. (19)

A.5. Properties of Laplacian Matrices

If A is a symmetric non-negative matrix and the diagonal of
A is zero, we have the following properties (Boyd, 2006):

0 = λ1(ΛA) ≤ · · · ≤ λn(ΛA)

and

λi+1(ΛA) = λi(Q
>
1 ΛAQ1) for i = 1, 2, . . . , n− 1 (20)

where Q1 ∈ Rn×n−1 denotes a matrix whose columns are
orthonormal to the all-one vector 1.

From (20), we have for all symmetric matrices A and B
with zero diagonals, it holds that

ΛA � ΛB when A � B, (21)

where A � B means that A−B is a positive semi-definite
matrix.

B. TF Log-likelihoods
Let Hi,j(θ, S) be defined for θ ∈ Θn, S ⊆ N and i ∈ S,
j ∈ S, as follows

Hi,j(θ, S) =
∑
y∈S

py,S(θ)
∂2

∂θi∂θj
(− log(py,S(θ))).

Lemma 12. For every comparison set S ⊆ N , we have

Hi,j(0, S) =

k
2(k − 1)

(
∂pk(0)
∂x1

)2
if i = j

−k2
(
∂pk(0)
∂x1

)2
if i 6= j.

(22)

Proof of the last above lemma is provided in Appendix L.1.

Lemma 13. Let S ⊆ N and y ∈ S and let k be the cardi-
nality of set S. Then, it holds

1. 1>∇2(− log(py,S(0))) = 0, and

2. 1
k

∑
y∈S ∇2(− log(py,S(0))) = ΛMS

k2
(
∂pk(0)
∂x1

)2
where MS denotes a matrix that has all (i, j) elements
such that {i, j} ⊆ S equal to 1, and all other elements
equal to 0.

Proof of the last above lemma follows easily from that of
Lemma 12.

Lemma 14. If for a comparison set S ⊆ N of cardinality
k, ∇2(− log(py,S(0))) is a positive semi-definite matrix,
then it holds that∥∥∇2(− log(py,S(0)))

∥∥
2
≤ 2

γF,k
.

Proof of the last above lemma is given in Appendix L.2.

C. Proof of Theorem 1
Let ∆ = θ̂ − θ?. By the Taylor expansion, we have

`(θ̂) ≤`(θ?) +∇`(θ?)>∆

+
1

2
max
α∈[0,1]

∆>∇2`(θ? + α∆)∆. (23)

Note that ∆ is orthogonal to the all-one vector, i.e.,∑n
i=1 ∆i = 0.

By the Cauchy-Schwartz inequality, we have

∇`(θ?)>∆ ≤ ‖∇`(θ?)‖2‖∆‖2. (24)

Since θ̂ is a maximum likelihood estimator, we have

`(θ̂)− `(θ?) ≥ 0. (25)

From (23), (24) and (25),

− max
α∈[0,1]

∆>∇2`(θ?+α∆)∆ ≤ 2‖∇`(θ?)‖2‖∆‖2. (26)

Now, note that for every θ ∈ Rn and i, j ∈ N ,

d2

dx2
log(p2(θi − θj)) =

∂2

∂θ2i
log(p2(θi − θj))

=
∂2

∂θ2j
log(p2(θi − θj))

= − ∂2

∂θi∂θj
log(p2(θi − θj)).
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Hence, for every θ ∈ Θn and x ∈ Rn, we have

x>∇2`(θ)x

=

n∑
i=1

∑
j 6=i

wi,j(xi − xj)2
d2

dx2
log(p2(θi − θj))

≤−
n∑
i=1

∑
j 6=i

wi,jB(xi − xj)2

=−B 4m

n
x>ΛMx

≤−B 4m

n
‖x‖22λ2(ΛM), (27)

where we deduce the last inequality from (20).

From (26) and (27), we obtain

2Bm

n
‖∆‖22λ2(ΛM) ≤ ‖∇`(θ?)‖2‖∆‖2. (28)

We bound ‖∇`(θ?)‖2 using the Azuma-Hoeffding’s in-
equality for multivariate random variables in Proposition 8.
Note that ∇`(θ?) is a sum of m independent random vec-
tors having zero-mean, where each comparison of a pair of
items (i, j) results in a vector of value ∇ log(p2(θ?i − θ?j ))
with probability p2(θ?i − θ?j ) and of value ∇ log(p2(θ?j −
θ?i )) with probability p2(θ?j − θ?i ). Note that for every pair
of items (i, j), ‖∇ log(p2(θ?i − θ?j ))‖2 ≤ A

√
2.

By the Azuma-Hoeffding’s inequality in Proposition 8, it
follows that

P
[
‖∇`(θ?)‖2 ≥ 2A

√
m(log(n) + 2)

]
≤ 2

n
. (29)

Finally, from (28), (24) and (29), with probability 1− 2/n,
it holds

‖∆‖2 ≤
An
√

(log(n) + 2)

Bλ2(ΛM)
√
m

.

D. Proof of Theorem 2
This proof follows the main steps of the proof of Theo-
rem 1. Let ∆ = θ̂ − θ?. By the same arguments as in the
proof of Theorem 1, we have that equation (26) holds, i.e.,

− max
α∈[0,1]

∆>∇2`(θ?+α∆)∆ ≤ 2‖∇`(θ?)‖2‖∆‖2. (30)

Since ∇2(−`(θ)) is a Laplacian matrix, from assumption
A1 and (21), we have

∇2(−`(θ)) � AF,b∇2(−`(0)) for all θ ∈ [−b, b]n. (31)

From (30) and (31), we obtain

λ1
(
Q>1∇2(−`(0))Q1

)
AF,b ‖∆‖2

≤ 2‖∇`(θ?)‖2, (32)

which follows by the fact that θ̂ is orthogonal to 1.

We state two lemmas whose proofs are given at the end of
this section, in Appendix D.1 and D.2.

Lemma 15. Suppose that

m ≥ 32
σF,K

BF,bλ2(ΛMF
)
n log(n)

then, with probability at least 1− 1/n,

λ1
(
Q>1∇2(−`(0))Q1

)
≥
BF,bm

2n
λ2(ΛMF

).

and

Lemma 16. With probability at least 1− 2/n, it holds that

‖∇`(θ?)‖2 ≤ CF,b
√
σF,K

√
2m(log(n) + 2).

From (32) and the bounds in Lemma 15 and Lemma 16, it
follows that if

m ≥ 32
σF,K

BF,bλ2(ΛMF
)
n log(n),

then, with probability at least 1− 3/n,

‖∆‖2 ≤ 32

(
CF,b

AF,bBF,b

)2

σF,K
n(log(n) + 2)

λ2(ΛMF
)2

1

m
.

D.1. Proof of Lemma 15

From the definition of the log-likelihood function `(θ),
Q>1∇2(−`(0))Q1 is a sum of a sequence of random ma-
trices {Q>1∇2(− log(pyt,St(0)))Q1}1≤t≤m, i.e.,

Q>1∇2(−`(0))Q1 =

m∑
t=1

Q>1∇2(− log(pyt,St(0)))Q1.

From assumption A1 and (20), for every observation t,

λ1
(
Q>1∇2(− log(pyt,St(0)))Q1

)
≥ 0.

We can thus apply the matrix Chernoff’s inequality,
given in Proposition 9, once we find a lower bound
for λ1

(
E
[
Q>1∇2(−`(0))Q1

])
and an upper bound for∥∥Q>1 (∇2 log(pyt,St(0))

)
Q1

∥∥
2

for every observation t.

We have the following sequence of relations

Eθ?
[
∇2(− log(`(0)))

]
=

m∑
t=1

Eθ?
[
∇2(− log(pyt,St(0)))

]
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=

m∑
t=1

∑
y∈St

py,St(θ
?)∇2(− log(py,St(0)))

� BF,b

m∑
t=1

∑
y∈St

1

|St|
∇2(− log(py,St(0)))

= BF,b

m∑
t=1

∑
y∈St

1

|St|
ΛMSt

|St|2
(
∂p|St|(0)

∂x1

)2

(33)

= BF,b
m

n
ΛMF

(34)

where (33) follows Lemma 13 and MS denotes a matrix
that has all (i, j) elements such that {i, j} ⊆ S equal to 1,
and all other elements equal to 0.

From (34), we have

λ1
(
E
[
Q>1∇2(−`(0))Q1

])
≥ BF,b

m

n
λ1
(
Q>1 ΛMF

Q1

)
= BF,b

m

n
λ2(ΛMF

), (35)

where the last equality holds by (20).

From Lemma 14, for every observation t,∥∥∇2 log(pyt,St(0))
∥∥
2
≤ 2

γF,|St|
≤ 2σF,K . (36)

Using the matrix Chernoff’s inequality in Corollary 10 with
ε = 1/2, βmin ≥ BF,b

m
n λ2(ΛMF

) by (35) and α ≤ σF,K
by (36), we obtain the assertion of the lemma.

D.2. Proof of Lemma 16

For every comparison set S ⊆ N and i ∈ S, we have

∂ log pi,S(θ)

∂θi
= − 1

pi,S(θ)

∑
v∈S\{i}

∂pv,S(θ)

∂θi
(37)

and, for all j ∈ S \ {i},

∂ log pj,S(θ)

∂θi
=

1

pj,S(θ)

∂pj,S(θ)

∂θi
. (38)

From (37) and (38), we have

E [∇ log py,S(θ?)] = 0 (39)

and

‖∇ log py,S(0)‖22 = k3(k − 1)

(
∂pk(0)

∂x1

)2

=
1

γF,k
.

By assumption A3, every S ⊆ N such that |S| ∈ K,

‖∇ log py,S(θ?)‖22 ≤ C
2

F,b‖∇ log py,S(0)‖22

≤ C
2

F,bσF,K . (40)

Using (39) and (40) with the Azuma-Hoeffding inequality
for multivariate random variables in Proposition 8, we ob-
tain that with probability at least 1− 2/n,

‖∇`(θ?)‖2 ≤ CF,b
√
σF,K

√
2m(log(n) + 2).

E. Remark for Theorem 2
For the special case of noise according to the double-
exponential distribution with parameter β, we have

pk(x) =
1

1 +
∑k−1
i=1 e

−xi/β
.

For every θ ∈ θn and every S ⊆ N of cardinality k and
i, j, y ∈ S, we can easily check that

∂2

∂θi∂θj
(− log(py,S(θ))) = − 1

β2
pi,S(θ)pj,S(θ).

Furthermore, the following two relations hold

k

β(k − 1)
(1− py,S(θ))

2 ≤ ‖∇py,S(θ)‖2 ≤
2

β
(1− py,S(θ))

2
.

Since

min
y∈S,θ∈[−b,b]n

py,S(θ) =
1

1 + (k − 1)e2b/β

≥ py,S(0)e−2b/β

and

max
y∈S,θ∈[−b,b]n

py,S(θ) =
1

1 + (k − 1)e−2b/β

≤ py,S(0)e2b/β

we have that
σF,K ≤

1

β2

and

e−4b/β ≤ AF,b ≤ AF,b ≤ e4b/β , (41)

e−2b/β ≤ BF,b ≤ BF,b ≤ e2b/β , (42)

e−4b/β ≤ CF,b ≤ CF,b ≤ 4. (43)

F. Proof of Theorem 3
The proof of the theorem follows from the well-known
Cramér-Rao inequality, which is given in Proposition 7.

Since
∑n
i=1 θi = 0, we define ψi(θ) = θi − 1

n

∑n
l=1 θl.

Note that
∑n
i=1 ψi(θ) = 0. Then,

∂ψ(θ)

∂θ
= I− 1

n
11>. (44)
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Let F (θ) be the Fisher information matrix of the random
vector X = (S,y) where S = (S1, S2, . . . , Sm) are the
comparison sets and y = (y1, y2, . . . , ym) are the choices
of comparisons.

Then, we have that the (i, j) element of matrix F (θ) is
given by

F (θ) =

m∑
t=1

E
[
∇2(− log(pyt,St(θ)))

]
. (45)

From the assumptions A1, A2, and Lemma 13, we have

E
[
∇2(− log(pyt,St(θ)))

∣∣St = S
]

=
∑
y∈S

py,S(θ)∇2(− log(py,S(θ)))

�
∑
y∈S

BF,b
|S|
∇2(− log(py,S(θ)))

�
∑
y∈S

AF,bBF,b
|S|

∇2(− log(py,S(0)))

= AF,bBF,b

(
|S|

∂p|S|(0)

∂x1

)2

ΛMS
(46)

where we use (21) for the two inequalities and MS that has
each element (i, j) such that {i, j} ⊆ S equal to 1 and all
other elements equal to 0.

From (45) and (46),

F (θ) � AF,bBF,b
m

n
ΛMF

. (47)

For a n × n matrix A = [ai,j ], let tr(A) denote its trace,
i.e. tr(A) =

∑n
i=1 ai,i. Note that

E[‖θ̂ − θ‖22] = tr(cov[T(X)])

=

n∑
i=1

λi (cov[T(X)]) .

By the Cramér-Rao bound and (47), we have

1

n
E[‖θ̂ − θ‖22] ≥ 1

n

n∑
i=1

λi

(
∂ψ(θ)

∂θ
F−1(θ)

∂ψ(θ)

∂θ

>
)

=
1

n

n−1∑
i=1

λi(Q
>
1 F
−1(0)Q1)

=
1

n

n−1∑
i=1

1

λi(Q>1 F (0)Q1)

≥ 1

AF,bBF,bm

n−1∑
i=1

1

λi(Q>1 ΛMF
Q1)

=
1

AF,bBF,bm

n∑
i=2

1

λi(ΛMF
)
,

where the last equality is obtained from (20).

G. Proof of Theorem 4
Let pe denote the probability that the point score ranking
method incorrectly classifies at least one item:

pe = P

[ ⋃
l∈N1

{l ∈ N̂1} ∪
⋃
l∈N2

{l ∈ N̂2}

]

Let Ri denote the point score of item i ∈ N . If the point
scores are such that Rl > m/n for every l ∈ N1 and
Rl < m/n for every l ∈ N2, then this implies a correct
classification. Hence, it must be that in the event of a mis-
classification of an item, Rl ≤ m/n for some l ∈ N1 or
Rl ≥ m/n for some l ∈ N2. Combining this with the
union bound, we have

pe ≤ P

[ ⋃
l∈N1

{
Rl ≤

m

n

}
∪
⋃
l∈N2

{
Rl ≥

m

n

}]
≤

∑
l∈N1

P
[
Rl ≤

m

n

]
+
∑
l∈N2

P
[
Rl ≥

m

n

]
. (48)

Let i and j be arbitrarily fixed items such that i ∈ N1 and
j ∈ N2. We will show that for every observation t,

P[yt = i] ≥ 1

n
+
bk2

4n

∂pk(0)

∂x1
(49)

and

P[yt = j] ≤ 1

n
− bk2

4n

∂pk(0)

∂x1
. (50)

From the Chernoff’s bound in Lemma 11, we have the fol-
lowing bounds.

Using (18) for the random variable Ri, we obtain

P
[
Ri ≤

m

n

]
≤ exp

(
−1

4
n

(
1

n
−E[y1 = i]

)2

m

)

≤ exp

(
−1

4

(
bk2

4n

∂pk(0)

∂x1

)2

m

)
≤ exp (− log(n/δ))

=
δ

n
.

Using (19) and using the same arguments, we obtain

P
[
Rj ≥

m

n

]
≤ δ

n
.

Combining with (48), it follows that

pe ≤ δ.
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In the remainder of the proof we show that inequalities (49)
and (50) hold.

Let A be the set of all A ⊆ N such that |A| = k − 1 and
A ∩ {i, j} = ∅ and B be the set of all B ⊆ N such that
|B| = k − 2 and B ∩ {i, j} = ∅. Then, we have

P[yt = i]−P[yt = j]

=
∑
A∈A

P[St = A ∪ {i}]Di,j(A)

+
∑
B∈B

P[St = B ∪ {i, j}]Di,j(B) (51)

where

Di,j(A) = P[yt = i|St = A ∪ {i}]
−P[yt = j|St = A ∪ {j}]

and

Di,j(B) = P[yt = i|St = B ∪ {i, j}]
−P[yt = j|St = B ∪ {i, j}].

Let b be a k−1-dimensional vector with all elements equal
to b. Then, note that

Di,j(A) = pk(b− θA)− pk(−b− θA).

By limited Taylor series development, we have

pk(x) ≥ pk(0) +∇pk(0)>x− 1

2
β‖x‖22 (52)

pk(x) ≤ pk(0) +∇pk(0)>x +
1

2
β‖x‖22 (53)

where
β = max

x∈[−2b,2b]k−1
‖∇2pk(x)‖2. (54)

Hence, it follows that for every θA ∈ {−b, b}k−1,

Di,j(A) ≥ 2(k − 1)b
∂pk(0)

∂x1
− 4(k − 1)b2β. (55)

Under the condition of the theorem, we have

β ≤ 1

4b

∂pk(0)

∂x1
.

Hence, combining with (55), for every θA ∈ {−b, b}k−1,

Di,j(A) ≥ (k − 1)b
∂pk(0)

∂x1

≥ kb

2

∂pk(0)

∂x1
. (56)

By the same arguments, we can show that

Di,j(B) = pk(b− θ(−b)B )− pk(−b− θ(b)B )

≥ kb

2

∂pk(0)

∂x1
(57)

where θ(b)B ∈ {−b, b}k−1 and θ(−b)B ∈ {−b, b}k−1 are (k−
1)-dimensional with the first elements equal to b and −b,
respectively, and other elements equal to the parameters of
items B.

Since the comparison sets are sampled uniformly at random
without replacement, note that

P[St = A ∪ {i}] =

(
n−1
k−1
)(

n
k

) , for all A ∈ A (58)

and

P[St = B ∪ {i, j}] =

(
n−2
k−2
)(

n
k

) , for all B ∈ B. (59)

From (51), (56), (57), (58) and (59), we have

P[yt = i]−P[yt = j] ≥ k2b

2n

∂pk(0)

∂x1
.

Using this inequality together with the following facts (i)
P[yt = l] = P[yt = i] for every l ∈ N1, (ii) P[yt = l] =
P[yt = j] for every l ∈ N2, (iii)

∑
l∈N P[yt = l] = 1, and

(iv) |N1| = |N2| = n/2, it can be readily shown that

P[yt = i] ≥ 1

n
+
k2b

4n

∂pk(0)

∂x1
,

which establishes (49). By the same arguments one can
establish (50).

H. Proof of Theorem 5
Suppose that n is a positive even integer and θ is the pa-
rameter vector such that θi = b for i ∈ N1 and θi = −b
for i ∈ N2, where N1 = {1, 2, . . . , n/2} and N2 =
{n/2 + 1, . . . , n}. Let θ′ be the parameter vector that is
identical to θ except for swapping the first and the last item,
i.e. θ′i = b for i ∈ N ′1 and θ′i = −b for i ∈ N ′2, where
N ′1 = {n, 2, . . . , n/2} and N ′2 = {n/2 + 1, . . . , n− 1, 1}.

We denote with Pθ[A] and Pθ′ [A] the probabilities of an
event A under hypothesis that the generalized Thurstone
model is according to parameter θ and θ′, respectively. We
denote with Eθ and Eθ′ the expectations under the two re-
spective distributions.

Given observed data (S,y) = (S1, y1), . . . , (Sm, ym), we
denote the log-likelihood ratio statistic L(S,y) as follows

L(S,y) =

m∑
t=1

log

(
pyt,St(θ

′)ρt(St)

pyt,St(θ)ρt(St)

)
, (60)
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where ρt(S) is the probability that S is drawn at time t.

The proof follows the following two steps:

Step 1: We show that for given δ ∈ [0, 1], for the exis-
tence of an algorithm that correctly classifies all the items
with probability at least 1 − δ, it is necessary that the fol-
lowing condition holds

Pθ′ [L(S,y) ≥ log(n/δ)] ≥ 1

2
. (61)

Step 2: We show that

Eθ′ [L(S,y)] ≤ 36
m

n

(
k2b

∂pk(0)

∂x1

)2

(62)

σ2
θ′ [L(S,y)] ≤ 144

m

n

(
k2b

∂pk(0)

∂x1

)2

(63)

where σ2
θ′ [L(S,y)] denotes the variance of random vari-

able L(S,y) under a generalized Thurstone model with pa-
rameter θ′.

By Chebyshev’s inequality, for every g ∈ R,

Pθ′ [|L(S,y)−Eθ′ [L(S,y)]| ≥ |g|] ≤ σ2
θ′ [L(S,y)]

g2
.

Using this for g = log(n/δ)−Eθ′ [L(S,y)], it follows that
(61) implies the following condition:

log(n/δ)−Eθ′ [L(S,y)] ≤ | log(n/δ)−Eθ′ [L(S,y)]|
≤
√

2σθ′ [L(S,y)].

Further combining with (62) and (63), we obtain

m ≥ 1

62

1

b2k4(∂pk(0)/∂x1)2
n(log(n) + log(1/δ))

which is the condition asserted in the theorem.

Proof of Step 1. Let us define the following two events

A = {|N1 \ N̂1| = 1} ∩ {|N2 \ N̂2| = 1}

and
B = {N̂1 = N ′1} ∩ {N̂2 = N ′2}.

Let Bc denote the complement of the event B.

Note that

Pθ[B] = Pθ[B|A]Pθ[A]

=

(
2

n

)2

Pθ[A]

≤ 4

n2
δ

where the second equation holds becauseB ⊆ A and every
possible partition in A has the same probability under θ.

For every g ∈ R, we have

Pθ′ [L(S,y) ≤ g] = Pθ′ [L(S,y) ≤ g,B]

+Pθ′ [L(S,y) ≤ g,Bc].

Now, note

Pθ′ [L(S,y) ≤ g,B] =Eθ′ [1(L(S,y) ≤ g,B)]

=Eθ[e
L(S,y)1(L(S,y) ≤ g,B)]

≤Eθ[eg1(L(S,y) ≤ g,B)]

=egPθ[L(S,y) ≤ g,B]

≤egPθ[B]

≤eg 4

n2
δ (64)

where in the second equation we make use of the standard
change of measure argument.

Since the algorithm correctly classifies all the items with
probability at least 1− δ, we have

Pθ′ [L(S,y) ≤ g,Bc] ≤ Pθ′ [B
c] ≤ δ. (65)

For g = log(n/δ), from (64) and (65), it follows that

Pθ′ [L(S,y) ≤ log(n/δ)] ≤ δ +
4

n
≤ 1

2

where the last inequality is by the conditions of the theo-
rem.

Proof of Step 2. If the observed comparison sets
S1, S2, . . . , Sm are such that St ∩ {1, n} = ∅, for every
observation t, then we obviously have

log

(
pyt,St(θ

′)

pyt,St(θ)

)
= 0, for all t.

We therefore consider the case when St ∩ {1, n} 6= ∅.

Using (52), (53), and (54), we have for every S and i ∈ S,

|pi,S(θ′)− pi,S(θ)|

≤2kb
∂pk(0)

∂x1
+ 4βbk

≤3kb
∂pk(0)

∂x1
, (66)

where the last inequality is obtained from the condition of
this theorem.
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From (66), for every comparison set S such that S ∩
{1, n} 6= ∅, we have∑

i∈S
(pi,S(θ′)− pi,S(θ))

2

≤
∑

i∈{1,n}∩S

(pi,S(θ′)− pi,S(θ))
2

+

 ∑
i∈S\{1,n}

pi,S(θ′)− pi,S(θ)

2

≤2

(
3kb

∂pk(0)

∂x1

)2

, (67)

which is because for every comparison set S such that 1 ∈
S,

p1,S(θ′) ≤ 1

k
≤ p1,S(θ) and

pi,S(θ′) ≥ pi,S(θ) ∀i 6= 1;

for every comparison set S such that n ∈ S,

pn,S(θ′) ≥ 1

k
≥ pn,S(θ) and

pi,S(θ′) ≤ pi,S(θ) ∀i 6= n.

From (66) and the assumption of the theorem, we have

min
S

min
i∈S

pi,S(θ) = min
S:n∈S

pn,S(θ)

≥1

k
− 3kb

∂pk(0)

∂x1

≥ 1

2k
. (68)

For simplicity of notation, let

D = 3kb
∂pk(0)

∂x1
. (69)

Then, for all S such that S ∩ {1, n} 6= ∅, we have

∑
i∈S

pi,S(θ′) log

(
pi,S(θ′)

pi,S(θ)

)
≤ 2kD2 (70)

which is obtained from

(i) pi,S(θ) ≥ 1/(2k) for all i ∈ S that holds by (68),

(ii)
∑
i∈S(pi,S(θ′)− pi,S(θ))2 = 2D2 from (67),

(iii) a log a
b ≤

(a−b)2
2b + a− b.

Similarly to (70), from (i) and (ii) and a
(
log a

b

)2 ≤
(a−b)2
a∧b

(
1 + |a−b|

3(a∧b)

)
, we have

∑
i∈S

pi,S(θ′)

(
log

(
pi,S(θ′)

pi,S(θ)

))2

≤ 8kD2. (71)

Since

Pθ′ [{St ∩ {1, n} 6= ∅}] = 1−
(
n−2
k

)(
n
k

) ≤ 2
k

n

and according to the model, the input observations are in-
dependent, from (70) and (71), we have

Eθ′ [L(S,y)]

= mEθ′

[
log

(
py1,S1(θ′)

py1,S1
(θ)

)]
= m

∑
S:S∩{1,n}6=∅

Pθ′ [S1 = S]

∑
y∈S

py,S(θ′)

[
log

(
py,S(θ′)

py,S(θ)

)]
≤ 4

m

n
k2D2 (72)

and

σ2
θ′ [L(S,y)]

= mσ2
θ′

[
log

(
py1,S1(θ′)

py1,S1
(θ)

)]
≤ mEθ′

[(
log

(
py1,S1

(θ′)

py1,S1(θ)

))2
]

= m
∑

S:S∩{1,n}6=∅

Pθ′ [S1 = S]

∑
y∈S

py,S(θ′)

[(
log

(
py,S(θ′)

py,S(θ)

))2
]

≤ 16
m

n
k2D2. (73)

I. Characterizations of ∂pk(0)/∂x1
In this section, we note several different representations of
the parameter ∂pk(0)/∂x1.

First, note that

∂pk(0)

∂x1
=

1

k − 1

∫
R

f(x)dF (x)k−1. (74)

The integral corresponds to E[f(X)] where X is a random
variable whose distribution is equal to that of a maximum
of k − 1 independent and identically distributed random
variables with cumulative distribution F .

Second, suppose that F is a cumulative distribution func-
tion with its support contained in [−a, a], and that has a
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differentiable density function f . Then, we have

∂pk(0)

∂x1
= AF,k +BF,k (75)

where

AF,k =
1

k − 1
f(a)

and

BF,k =
1

k(k − 1)

∫ a

−a
(−f ′(x))dF (x)k.

The identity (75) is shown to hold as follows. Note that

d2

dx2
F (x)k

=
d

dx
(kF (x)k−1f(x))

= k(k − 1)F (x)k−2f(x)2 + kF (x)k−1f ′(x).

By integrating over [−a, a], we obtain

d

dx
F (x)k|a−a = k(k − 1)

∫ a

−a
f(x)2F (x)k−2dx

+k

∫ a

−a
f ′(x)F (x)k−1dx.

Combining with the fact

d

dx
F (x)k|a−a = kf(x)F k−1(x)|a−a = kf(a),

we obtain (75).

Note that BF,k = E[−f ′(X)]/(k(k − 1)) where X is a
random variable with distribution that corresponds to that
of a maximum of k independent samples from the cumula-
tive distribution function F . Note also that if, in addition,
f is an even function, then (i) BF,k ≥ 0 and (ii) BF,k is
increasing in k.

Third, for any cumulative distribution function F with an
even density function f , we have F (−x) = 1 − F (x) for
all x ∈ R. In this case, we have the identity

∂pk(0)

∂x1
=

∫ ∞
0

f(x)2(F (x)k−2 + (1− F (x))k−2)dx.

(76)

J. Proof of Proposition 6
The upper bound follows by noting that that BF,k in (75) is
such that BF,k = Ω(1/k2). Hence, it follows that

γF,k = O(1).

The lower bound follows by noting that for every cumula-
tive distribution function F such that there exists a constant
C > 0 such that f(x) ≤ C for all x ∈ R,

∂pk(0)

∂x1
=

∫
R

f(x)2F (x)k−2dx

≤ C

∫
R

f(x)F (x)k−2dx

= C
1

k − 1
.

Hence, γF,k ≥ (1/C)(k − 1)/k3 = Ω(1/k2).

K. Derivations of parameter γF,k
We derive explicit expressions for parameter γF,k for our
example generalized Thurstone choice models introduced
in Section 2

Recall from (7) that we have that

γF,k =
1

(k − 1)k3
1

(∂pk(0)/∂x1)2

where

∂pk(0)

∂x1
=

∫
R

f(x)2F (x)k−2dx

Gaussian distribution A cumulative distribution func-
tion F is said to have a type-3 domain of maximum at-
traction if the maximum of r independent and identically
distributed random variables with cumulative distribution
function F has as a limit a double-exponential cumulative
distribution function:

e−e
− x−ar

br

where

ar = F−1
(

1− 1

r

)
and

br = F−1
(

1− 1

er

)
− F−1

(
1− 1

r

)
.

It is a well known fact that any Gaussian cumulative dis-
tribution function has a type-3 domain of maximum attrac-
tion. Let Φ denote the cumulative distribution function of
a standard normal random variable, and let φ denotes its
density.
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Note that ∫
R

φ(x)dΦ(x)r

∼ 1√
2π

∫
R

e−
x2

2 d(e−e
− x−ar

br )

=
1√
2π

∫ ∞
0

e−
1
2 (ar+br log(1/z))

2

e−zdz

=
1√
2π
e−

1
2a

2
r

∫ ∞
0

zarbre−
1
2 b

2
r log(1/z)

2

e−zdz

≤ 1√
2π
e−

1
2a

2
r

∫ ∞
0

zarbre−zdz

=
1√
2π
e−

1
2a

2
rΓ(arbr + 1).

Now, note that

ar ∼
√

2 log(r) and br = Θ(1), for large r.

It is readily checked that e−a
2
r/2 ∼ 1/r and Γ(arbr + 1) =

O(rε) for every constant ε > 0. Hence, we have that

∫
R

φ(x)dΦ(x)r = O(1/r1−ε)

and thus, ∂pk(0)/∂x1 = O(1/k2−ε). Hence,

γF,k = Ω(1/k2ε).

Double-exponential distribution Note that f(x) =
1
β e
− x+βγβ F (x). Hence, we have

∂pk(0)

∂x1
=

∫
R

f(x)2F (x)k−2dx

=
1

β2

∫
R

e−2
x+βγ
β F (x)kdx

=
1

β

∫ ∞
0

ze−kzdz

=
1

βk2
.

Laplace distribution Let β = σ/
√

2. Note that

F (x) = 1− 1

2
e−x/β and f(x) =

1

2β
e−x/β , for x ∈ R+.

A =

∫ ∞
0

f(x)2F (x)k−2dx

=

∫ ∞
0

(
1

2β

)2

e−2x/β
(

1− 1

2
e−x/β

)k−2
dx

=
1

2β

∫ 1

1/2

2(1− z)zk−2dz

=
1

β

(
1

k − 1

(
1− 1

2k−1

)
− 1

k

(
1− 1

2k

))
=

1

βk(k − 1)

(
1− k

2k−1
+
k − 1

2k

)
and

B =

∫ ∞
0

f(x)2(1− F (x))k−2dx

=

∫ ∞
0

(
1

2β

)2

e−2x/β
1

2k−2
e−(k−2)x/βdx

=
1

β22k

∫ ∞
0

e−kx/βdx

=
1

βk2k
.

Combining with (76), we obtain

∂pk(0)

∂x1
= A+B =

1

βk(k − 1)

(
1− 1

2k−1

)
.

Uniform distribution Note that
∂pk(0)

∂x1
=

∫
R

f(x)2F (x)k−2dx

=
1

(2a)2

∫ a

−a

(
x+ a

2a

)k−2
dx

=
1

2a

∫ 1

0

zk−2dz

=
1

2a(k − 1)
.

L. Some Remaining Proofs
L.1. Proof of Lemma 12

Consider a set S ⊆ N such that |S| = k, for an arbitrary
integer 2 ≤ k ≤ n. Without loss of generality, consider
S = {1, 2, . . . , k}. Let xl(θ) = θi − θS\{l}, for l ∈ S. For
simplicity, with a slight abuse of notation, we write xl in
lie of xi(θ), for l ∈ S. We first consider the case i 6= j. By
straightforward derivation, we have

∂2

∂θi∂θj
(− log(pk(xl)))

= − 1

pk(xl)

∂2pk(xl)

∂θi∂θj
+

1

pk(xl)2
∂pk(xl)

∂θi

∂pk(xl)

∂θj
.
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We separately consider three different cases.

Case 1: i, j, l are all distinct. Note that

∂2

∂θi∂θj
(− log(pk(xl)))|θ=0 = I1 (77)

where

I1 = −k∂
2pk(0)

∂x1∂x2
+ k2

(
∂pk(0)

∂x1

)2

.

Case 2: i 6= l and j = l. In this case, we characterize the
following quantity for θ = 0,

∂2

∂θi∂θj
(− log(pk(xj)))

= − 1

pk(xj)

∂2pk(xj)

∂θi∂θj
+

1

pk(xj)2
∂pk(xj)

∂θi

∂pk(xj)

∂θj
.(78)

For every u ∈ S, pk(xu) does not change its value by
changing the parameter θ to value θ + ∆θ, for every con-
stant ∆θ ∈ R. Hence, by the full differential, we have

∂pk(xu)

∂θj
= −

∑
v∈S\{j}

∂pk(xu)

∂θv
. (79)

Using (79), we have

∂2pk(xj)

∂θi∂θj
= −∂

2pk(xj)

∂θ2i
−

∑
v∈S\{i,j}

∂2pk(xj)

∂θi∂θv
. (80)

Note that

∂2pk(xj)

∂θ2i
=

∫
R

f(z)f ′(xi + z)
∏

v∈S\{i,j}

F (xv + z)dz.

Hence, we can derive

∂2pk(xj)

∂θ2i
|θ=0

=

∫
R

f(z)f ′(z)
∏

v∈S\{i,j}

F (z)k−2dz

= f(z)2F (z)k−1|∞−∞ −
∫
R

f(z)(f(z)F (z)k−2)′dz

= −
∫
R

f(z)f ′(z)F (z)k−1 − (k − 2)

∫
R

f(z)2F (z)k−3dz

= −∂
2pk(xj)

∂θ2i
|θ=0 − (k − 2)

∂2pk(0)

∂x1∂x2

from which it follows that

∂2pk(xj)

∂θ2i
|θ=0 = −k − 2

2

∂2pk(0)

∂x1∂x2
. (81)

From (80) and (81), we obtain

∂2pk(xj)

∂θi∂θj
|θ=0 = −k − 2

2

∂2pk(0)

∂x1∂x2
. (82)

Using (79), we have

∂pk(xj)

∂θj
|θ=0 = (k − 1)

∂pk(0)

∂x1
. (83)

Combining (78), (82) and (83), we have

∂2

∂θi∂θj
(− log(pk(xj)))|θ=0 = I2 (84)

where

I2 =
k(k − 2)

2

∂2pk(0)

∂x1∂x2
− k2(k − 1)

(
∂pk(0)

∂x1

)2

.

Case 3: i = l and j 6= l. By symmetry, from Case 2, we
have

∂2

∂θi∂θj
(− log(pk(xi)))|θ=0 = I2. (85)

Final step Putting the pieces together, from (77), (84),
and (85), we have for θ = 0,

Hi,j(θ, S) =
∑

l∈S\{i,j}

pk(xl)
∂2

∂θi∂θj
(− log(pk(xl)))

+pk(xi)
∂2

∂θi∂θj
(− log(pk(xi)))

+pk(xl)
∂2

∂θi∂θj
(− log(pk(xj)))

=
k − 2

k
I1 +

1

k
I2 +

1

k
I2

= −k2
(
∂pk(0)

∂x1

)2

. (86)

Now, we consider the case i = j. Using same argument as
in (79), we have

∂2(− log(pk(xl)))

∂θ2i
= −

∑
v∈S\{i}

∂2(− log(pk(xl)))

∂θi∂θv
.

Hence,

Hi,i(θ, S) = −
∑

v∈S\{i}

∑
l∈S

pk(xl)
∂2(− log(pk(xl)))

∂θi∂θv
.

Combining with Hi,i(θ, S) = −
∑
v∈S\{i}Hi,v(θ, S) and

the result established in (86), we have for θ = 0,

Hi,i(θ, S) = k2(k − 1)

(
∂pk(0)

∂x1

)2

.
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L.2. Proof of Lemma 14

Without loss of generality, let y = 1 and S = {1, . . . , k}.
Then, we have

1

k2
∂2(− log(p1,S(0)))

∂θ1∂θ2
=− (k − 1)

(
∂pk(0)

∂x1

)2

+
k − 2

2k

∂2pk(0)

∂x1∂x2
(87)

and for i 6= 1 and j 6= i,

1

k2
∂2(− log(p1,S(0)))

∂θi∂θj
= −1

k

∂2pk(0)

∂x1∂x2

+

(
∂pk(0)

∂x1

)2

. (88)

From assumption A1 and (87),

∂2pk(0)

∂x1∂x2
≤ 2k(k − 1)

k − 2

(
∂pk(0)

∂x1

)2

. (89)

Note that it holds that

∂2pk(0)

∂x1∂x2
≥ 0. (90)

Combining (87), (88), (89), and (90), we have

∂2(− log(py,S(0)))

∂θi∂θj
≥ −k3

(
∂pk(0)

∂x1

)2

∀ i 6= j.

From the above inequality and (21),

k3
(
∂pk(0)

∂x1

)2

ΛMS
� ∇(− log(py,S(0))).

Therefore, we conclude

‖∇2(− log(py,S(0)))‖2 ≤ k4
(
∂pk(0)

∂x1

)2

,

which holds because ‖ΛMS
‖2 = k.

L.3. Proof of Proposition 11

We prove only (19) as the proof of (18) follows by similar
arguments.

By Chernoff’s bound, for every s > 0,

P[X ≥ qm] ≤ e−sqmE[esX ]

= e−sqm(1− p+ pes)m

= e−mh(s)

where
h(s) = qs− log(1− p+ pes)

Now, using the elementary fact log(1− x) ≤ −x, we have

h(s) ≥ qs+ p− pes.

Take s = s∗ := log(q/p), then,

h(s∗) ≥ q log

(
q

p

)
+ p− q.

Now, let ε = q − p, and note that

q log

(
q

p

)
+ p− q := g(ε)

where

g(ε) = q log

(
q

q − ε

)
− ε.

Since

g′(ε) =
q

q − ε
− 1 =

ε

q − ε
≥ 1

2q
ε

we have

g(ε) =

∫ ε

0

g′(x)dx ≥ 1

4q
ε2

Hence, it follows that

h(s∗) ≥ 1

4q
(p− q)2

and, thus,

P[X ≥ qm] ≤ exp

(
− 1

4q
(p− q)2

)
.

M. Experimental Results: Fiedler Values of
Pair-weight Matrices

We found that Fiedler value of a pair-weight matrix is an
important factor that determines the mean square error in
Section 3.1 and Section 3.2. In the supplementary material,
we evaluate Fiedler value for different pair-weight matri-
ces of different schedules of comparisons. Throughout this
section, we use the definition of a pair-weight matrix in (5)
with the weight functionw(k) = 1/k2. Our first two exam-
ples are representative of schedules in sport competitions,
which are typically carefully designed by sport associations
and exhibit a large degree of regularity. Our second two ex-
amples are representative of comparisons that are induced
by user choices in the context of online services, which ex-
hibit much more irregularity. Please refer to the supple-
mentary material for more details.
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Figure 1. Fiedler value of the pair-weight matrices for the game
fixtures of two sports in the season 2014-2015: (left) football Bar-
clays premier league, and (right) basketball NBA league.

Sport competitions We consider the fixtures of games
for the season 2014-2015 for (i) football Barclays premier
league and (ii) basketball NBA league. In the Barclays pre-
mier league, there are 20 teams, each team plays a home
and an away game with each other team; thus there are 380
games in total. In the NBA league, there are 30 teams,
1,230 regular games, and 81 playoff games.1 We evalu-
ate Fiedler value of pair-weight matrices defined for firstm
matches of each season; see Figure 1.

For the Barclays premier league dataset, at the end of the
season, the Fiedler value of the pair-weight matrix is of
value n/[2(n−1)] ≈ 1/2. The schedule of matches is such
that at the middle of the season, each team played against
each other team exactly once, at which point the Fiedler
value is n/[4(n − 1)] ≈ 1/4. The Fiedler value is of a
strictly positive value after the first round of matches. For
most part of the season, its value is near to 1/4 and it grows
to the highest value of approximately 1/2 in the last round
of the matches.

For the NBA league dataset, at the end of the season, the
Fiedler value of the pair-weight matrix is approximately
0.375. It grows more slowly with the number of games
played than for the Barclays premier league; this is intu-
itive as the schedule of games is more irregular, with each
team not playing against each other team the same number
of times.

Crowdsourcing contests We consider participation of
users in contests of two competition-based online labour
platforms: (i) online platform for software development
TopCoder and (ii) online platform for various kinds of
tasks Tackcn. We refer to coders in TopCoder and work-
ers in Taskcn as users. We consider contests of different
categories observed in year 2012; more information about
datasets is provided in Appendix. We present results only
for one category of tasks for each system, which are repre-
sentative. In both these systems, the participation in con-
tests is according to choices made by users.

1The NBA league consists of two conferences, each with three
divisions, and the fixture of games has to obey constraints on the
number of games played between teams from different divisions.
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Figure 2. (Left) Topcoder data restricted to top-n coders and
(Right) same as left but for Taskcn, for Design and Website task
categories, respectively. The top plots show the Fiedler value and
the bottom plots show the minimum number of contests to observe
a strictly positive Fiedler value.

For each set of tasks of given category, we conduct the fol-
lowing analysis. We consider a thinned dataset that consists
only of a set of top-n users with respect to the number of
contests they participated in given year, and of all contests
attended by at least two users from this set. We then evalu-
ate Fiedler value of the pair-weight matrix for parameter n
ranging from 2 to the smaller of 100 or the total number of
users. Our analysis reveals that the Fiedler value tends to
decrease with n. This indicates that the larger the number
of users included, the less connected the pair-weight matrix
is. See the top plots in Figure 2.

We also evaluated the smallest number of contests from
the beginning of the year that is needed for the Fiedler
value of the pair-weight matrix to assume a strictly posi-
tive value. See the bottom plots in Figure 2. We observe
that this threshold number of contests tends to increase with
the number of top users considered. There are instances for
which this threshold substantially increases for some num-
ber of the top users. This, again, indicates that the algebraic
connectivity of the pair-weight matrices tends to decrease
with the number of top users considered.
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Table 1. Summary statistics for TopCoder and Taskcn datasets.
The rightmost two columns contain, repectively, mean and me-
dian values of comparison sets’ cardinalities.

Category # contests # workers mean median
TopCoder

Design 209 62 1.99 2
Development 198 171 3.07 2
Specification 75 39 2.39 2
Architecture 238 55 1.75 2

Taskcn
Website 131 636 9.87 6
Design 1,967 6,891 27.3 18
Coding 31 284 27.1 18
Writing 420 15,575 46.11 19
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Figure 3. Same as in Figure 3 but for different categories (Devel-
opment and Writing).
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