The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks

This note contains supplementary materials to The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks.

A Proofs of theoretical statements

We provide detailed proofs of Lemma 1 and Theorem 1 in this section.

A.1 Proof of Lemma 1

Lemma 1 Let $\pi \in \Pi$ be a policy, and $\mathbf{x}^{\pi} = \arg \max_{\mathbf{x}} \Pr[y = +1 | \mathbf{x}, \mathcal{D}^N]$ be the implementation decision after the budget N is exhausted. Then

$$\mathbb{E}[\Pr(y = +1 | \boldsymbol{x}^{\pi}, \boldsymbol{w})] = \mathbb{E}[\max_{\boldsymbol{x}} \Pr(y = +1 | \boldsymbol{x}, \mathcal{D}^{N})],$$

where the expectation is taking over the prior distribution of w.

Proof. First notice that for any fixed point \boldsymbol{x} ,

$$\begin{split} \mathbb{E}_N[\Pr(y = +1 | \boldsymbol{x}, \boldsymbol{w})] &= \mathbb{E}_N[\sigma(\boldsymbol{w}^T \boldsymbol{x})] \\ &= \int \sigma(\boldsymbol{w}^T \boldsymbol{x}) \Pr(\boldsymbol{w} | \mathcal{D}^N) \mathrm{d} \boldsymbol{w} \\ &= \Pr(y = +1 | \boldsymbol{x}, \mathcal{D}^N). \end{split}$$

By the tower property of conditional expectations, and since x^{π} is \mathcal{F}^{N} measurable,

$$\mathbb{E}[\Pr(y = +1 | \boldsymbol{x}^{\pi}, \boldsymbol{w})] = \mathbb{E}[\sigma(\boldsymbol{w}^T \boldsymbol{x}^{\pi})]$$

= $\mathbb{E}\mathbb{E}_N[\sigma(\boldsymbol{w}^T \boldsymbol{x}^{\pi})]$
= $\mathbb{E}[\Pr(y = +1 | \boldsymbol{x}^{\pi}, \mathcal{D}^N)].$

Then by the definition of \boldsymbol{x}^{π} , we have $\Pr(y = +1 | \boldsymbol{x}^{\pi}, \mathcal{D}^N) = \max_{\boldsymbol{x}} \Pr[y = +1 | \boldsymbol{x}, \mathcal{D}^N].$

A.2 Proof of Theorem 1

Theorem 1 Let \mathcal{D}^n be the *n* measurements produced by the KG policy and $\boldsymbol{w}^n = \arg \max_{\boldsymbol{w}} \Psi(\boldsymbol{w}|\boldsymbol{m}^0, \Sigma^0)$ with the prior distribution $\Pr(\boldsymbol{w}^*) = \mathcal{N}(\boldsymbol{w}^*|\boldsymbol{m}^0, \Sigma^0)$. Then with probability $P_d(M)$, the expected error of \boldsymbol{w}^n is bounded as

$$\mathbb{E}_{\boldsymbol{y}\sim\mathcal{B}(\mathcal{D}^{n},\boldsymbol{w}^{*})}||\boldsymbol{w}^{n}-\boldsymbol{w}^{*}||_{2}\leq\frac{C_{min}+\lambda_{min}(\boldsymbol{\Sigma}^{-1})}{2}$$

where the distribution $\mathcal{B}(\mathcal{D}^n, \boldsymbol{w}^*)$ is the vector on Bernoulli distribution with $Pr(y^i = +1) = \sigma(\boldsymbol{w}^{*T}\boldsymbol{x}^i)$ of each dimension, $P_d(M)$ is the probability of a d-dimensional standard normal random variable appears in the ball with radius $M = \frac{1}{8} \frac{\lambda_{min}^2}{\sqrt{\lambda_{max}}}$ and $C_{min} = \lambda_{min} \left(\frac{1}{n} \sum_{i=1} \sigma(\boldsymbol{w}^{*T}\boldsymbol{x}^i) \left(1 - \sigma(\boldsymbol{w}^{*T}\boldsymbol{x}^i)\right) \boldsymbol{x}^i(\boldsymbol{x}^i)^T\right)$.

Proof. In this proof, we use Σ and m to denote Σ^0 and m^0 , and use x_i , y_i to denote x^i and y^i for notation simplicity.

Let $f(\boldsymbol{w}) = g(\boldsymbol{w}) + h(\boldsymbol{w})$, where

$$g(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{w} - \boldsymbol{m})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{w} - \boldsymbol{m}),$$

and

$$h(\boldsymbol{w}) = -\mathbb{E}_{\boldsymbol{y}\sim\mathcal{B}(\mathcal{D}^n,\boldsymbol{w}^*)} \Big[\frac{1}{n} \sum_{i=1}^n \log \sigma(y_i \boldsymbol{w}^T \boldsymbol{x}_i) \Big].$$

Then based on mean value theorem we have

$$h(\boldsymbol{w}) - h(\boldsymbol{w}^*) = (\boldsymbol{w} - \boldsymbol{w}^*)^T \nabla h(\boldsymbol{w}^*) + \frac{1}{2} (\boldsymbol{w} - \boldsymbol{w}^*)^T H \big(\boldsymbol{w}^* + \eta (\boldsymbol{w} - \boldsymbol{w}^*) \big) (\boldsymbol{w} - \boldsymbol{w}^*),$$

where H is the Hessian of h.

To analyze the first and second order terms, we use a similar technique adopted in [1]. For the first order term, we have

$$\nabla h(\boldsymbol{w}^*) = \mathbb{E}_{\boldsymbol{y} \sim \mathcal{B}(\mathcal{D}^n, \boldsymbol{w}^*)} \Big[\frac{1}{n} \sum_{i=1}^{n} \big(1 - \sigma(y_i \boldsymbol{w}^T \boldsymbol{x}_i) \big) y_i \boldsymbol{x}_i \Big]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \Big(\big(1 - \sigma(\boldsymbol{w}^T \boldsymbol{x}_i) \big) \sigma(\boldsymbol{w}^T \boldsymbol{x}_i) - \big(1 - \sigma(-\boldsymbol{w}^T \boldsymbol{x}_i) \big) \big(1 - \sigma(\boldsymbol{w}^T \boldsymbol{x}_i) \big) \Big) \boldsymbol{x}_i = 0.$$

For the second order term, we have

$$H(\boldsymbol{w}^{*} + \eta(\boldsymbol{w} - \boldsymbol{w}^{*}))$$

$$= \mathbb{E}_{\boldsymbol{y} \sim \mathcal{B}(\mathcal{D}^{n}, \boldsymbol{w}^{*})} \left(\frac{1}{n} \sum_{i=1}^{n} \sigma(y_{i}(\boldsymbol{w}^{*} + \eta(\boldsymbol{w} - \boldsymbol{w}^{*}))^{T} \boldsymbol{x}_{i}) \left(1 - \sigma(y_{i}(\boldsymbol{w}^{*} + \eta(\boldsymbol{w} - \boldsymbol{w}^{*}))^{T} \boldsymbol{x}_{i}) \right) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sigma((\boldsymbol{w}^{*} + \eta(\boldsymbol{w} - \boldsymbol{w}^{*}))^{T} \boldsymbol{x}_{i}) \left(1 - \sigma((\boldsymbol{w}^{*} + \eta(\boldsymbol{w} - \boldsymbol{w}^{*}))^{T} \boldsymbol{x}_{i}) \right) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}$$

$$= \frac{1}{n} \sum_{i=1}^{n} J_{i}(\boldsymbol{w}, \eta) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T},$$

where $J_i(\boldsymbol{w}, \eta) = \sigma((\boldsymbol{w}^* + \eta(\boldsymbol{w} - \boldsymbol{w}^*))^T \boldsymbol{x}_i) \Big(1 - \sigma((\boldsymbol{w}^* + \eta(\boldsymbol{w} - \boldsymbol{w}^*))^T \boldsymbol{x}_i) \Big).$

We expand $J_i(\boldsymbol{w}, \eta)$ to its first order and use mean value theorem again,

$$egin{array}{rcl} |J_i(oldsymbol{w},\eta)-J_i(oldsymbol{w}^*,\eta)|&=&|\eta(oldsymbol{w}-oldsymbol{w}^*)^Toldsymbol{x}_i\sigma'|\ &\leq&|\sigma(1-\sigma)(1-2\sigma)||(oldsymbol{w}-oldsymbol{w}^*)^Toldsymbol{x}_i|\ &\leq&\|oldsymbol{w}-oldsymbol{w}^*\|_2, \end{array}$$

where we omit the dependence of σ on $(\boldsymbol{w}^* + \eta(\boldsymbol{w} - \boldsymbol{w}^*))^T \boldsymbol{x}_i$ for simplicity and use the fact $\sigma \in (0, 1)$.

Combining the first order and second order analysis and denoting $\|\boldsymbol{w} - \boldsymbol{w}^*\|_2$ as R, we have

$$h(\boldsymbol{w}) - h(\boldsymbol{w}^*) \geq \frac{1}{2} \|\boldsymbol{w} - \boldsymbol{w}^*\|_2^2 \lambda_{min} \Big(H\big(\boldsymbol{w}^* + \eta(\boldsymbol{w} - \boldsymbol{w}^*)\big) \Big)$$

$$\geq \frac{1}{2} R^2 \lambda_{min} \Big(\frac{1}{n} \sum_{i=1}^{\infty} \sigma(\boldsymbol{x}_i^T \boldsymbol{w}^*) \big(1 - \sigma(\boldsymbol{x}_i^T \boldsymbol{w}^*) \big) \boldsymbol{x}_i \boldsymbol{x}_i^T - R \Big)$$

$$\geq \frac{1}{2} C_{min} R^2 - \frac{1}{2} R^3,$$

where we use the fact that $\|\boldsymbol{x}_i\|_2 \leq 1$ and use C_{min} to denote $\lambda_{min} \Big(\frac{1}{n} \sum_{i=1} \sigma(\boldsymbol{x}_i^T \boldsymbol{w}^*) \Big(1 - \sigma(\boldsymbol{x}_i^T \boldsymbol{w}^*) \Big) \boldsymbol{x}_i \boldsymbol{x}_i^T \Big).$

On the other hand, for $g(\boldsymbol{w})$ we have

$$g(\boldsymbol{w}) - g(\boldsymbol{w}^*) = (\boldsymbol{w} - \boldsymbol{w}^*)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{w}^* - \boldsymbol{m}) + \frac{1}{2} (\boldsymbol{w} - \boldsymbol{w}^*)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{w} - \boldsymbol{w}^*)$$

$$\geq -DR \sqrt{\lambda_{max} (\boldsymbol{\Sigma}^{-1})} + \frac{1}{2} \lambda_{min} (\boldsymbol{\Sigma}^{-1}) R^2,$$

where $D = \|\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{w}^* - \boldsymbol{m})\|_2$.

Now define function $F(\Delta)$ as $F(\Delta) = f(\boldsymbol{w}^* + \Delta) - f(\boldsymbol{w}^*)$, then we have

$$F(\Delta) = g(\boldsymbol{w}) - g(\boldsymbol{w}^*) + h(\boldsymbol{w}^n) - h(\boldsymbol{w}^*) \ge -\sqrt{\lambda_{max}(\boldsymbol{\Sigma}^{-1})}DR + \frac{1}{2}\lambda_{min}(\boldsymbol{\Sigma}^{-1})R^2 + \frac{1}{2}C_{min}R^2 - \frac{1}{2}R^3.$$

From now on we will use the simplified symbols λ_{max} and λ_{min} instead of $\lambda_{min}(\Sigma^{-1})$ and $\lambda_{max}(\Sigma^{-1})$. It is easy to check that in the case when

$$D \le \frac{1}{8} \frac{\lambda_{min}^2}{\sqrt{\lambda_{max}}},\tag{A.1}$$

 $F(\Delta) \ge 0$ at for all Δ with $\|\Delta\|_2 = \frac{1}{2}(C_{min} + \lambda_{min}).$

Notice that F(0) = 0 and recall that w^n minimizes f(w) so we have

$$F(\boldsymbol{w}^n - \boldsymbol{w}^*) = f(\boldsymbol{w}) - f(\boldsymbol{w}^*) \le 0.$$

Then based on the convexity of F we know that $\|\boldsymbol{w}^n - \boldsymbol{w}^*\|_2 \leq \frac{1}{2}(C_{min} + \lambda_{min})$, otherwise the values of F at 0, $\boldsymbol{w}^n - \boldsymbol{w}^*$ and the intersection between the all $\|\Delta\|_2 = \frac{1}{2}(C_{min} + \lambda_{min})$ and line from 0 to $\boldsymbol{w}^n - \boldsymbol{w}^*$ form a concave pattern, which is contradictory.

Now we start to calculate the probability for Eq. (A.1) to hold. Recall that w^* has a prior distribution $w^* \sim \mathcal{N}(m, \Sigma)$. Then by denoting the right hand side of Eq. (A.1) as M, we have

$$\begin{aligned} &\Pr\left(D \leq \frac{1}{8} \frac{\lambda_{min}^2}{\sqrt{\lambda_{max}}}\right) \\ &= \int_{\|\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{a}-\boldsymbol{m})\| \leq M} (2\pi)^{-\frac{d}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{a}-\boldsymbol{m})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{a}-\boldsymbol{m})\right) \mathrm{d}\boldsymbol{a} \\ &= \int_{\|\boldsymbol{b}\|_2 \leq M} (2\pi)^{-\frac{d}{2}} \exp\left(-\frac{1}{2}\boldsymbol{b}^T \boldsymbol{b}\right) \mathrm{d}\boldsymbol{b}, \end{aligned}$$

which is the probability of a d-dimension standard normal random variable appears in the ball with radius $M, P_d(M)$. This completes the proof.

References

 Pradeep Ravikumar, Martin J Wainwright, John D Lafferty, et al. High-dimensional ising model selection using 1-regularized logistic regression. The Annals of Statistics, 38(3):1287–1319, 2010.