The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks

This note contains supplementary materials to The Knowledge Gradient for Sequential Decision Making with Stochastic Binary Feedbacks.

A Proofs of theoretical statements

We provide detailed proofs of Lemma 1 and Theorem 1 in this section.

A. 1 Proof of Lemma 1

Lemma 1 Let $\pi \in \Pi$ be a policy, and $\boldsymbol{x}^{\pi}=\arg \max _{\boldsymbol{x}} \operatorname{Pr}\left[y=+1 \mid \boldsymbol{x}, \mathcal{D}^{N}\right]$ be the implementation decision after the budget N is exhausted. Then

$$
\mathbb{E}\left[\operatorname{Pr}\left(y=+1 \mid \boldsymbol{x}^{\pi}, \boldsymbol{w}\right)\right]=\mathbb{E}\left[\max _{\boldsymbol{x}} \operatorname{Pr}\left(y=+1 \mid \boldsymbol{x}, \mathcal{D}^{N}\right)\right]
$$

where the expectation is taking over the prior distribution of \boldsymbol{w}.
Proof. First notice that for any fixed point \boldsymbol{x},

$$
\begin{aligned}
\mathbb{E}_{N}[\operatorname{Pr}(y=+1 \mid \boldsymbol{x}, \boldsymbol{w})] & =\mathbb{E}_{N}\left[\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)\right] \\
& =\int \sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}\right) \operatorname{Pr}\left(\boldsymbol{w} \mid \mathcal{D}^{N}\right) \mathrm{d} \boldsymbol{w} \\
& =\operatorname{Pr}\left(y=+1 \mid \boldsymbol{x}, \mathcal{D}^{N}\right)
\end{aligned}
$$

By the tower property of conditional expectations, and since \boldsymbol{x}^{π} is \mathcal{F}^{N} measurable,

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{Pr}\left(y=+1 \mid \boldsymbol{x}^{\pi}, \boldsymbol{w}\right)\right] & =\mathbb{E}\left[\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}^{\pi}\right)\right] \\
& =\mathbb{E} \mathbb{E}_{N}\left[\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}^{\pi}\right)\right] \\
& =\mathbb{E}\left[\operatorname{Pr}\left(y=+1 \mid \boldsymbol{x}^{\pi}, \mathcal{D}^{N}\right)\right]
\end{aligned}
$$

Then by the definition of \boldsymbol{x}^{π}, we have $\operatorname{Pr}\left(y=+1 \mid \boldsymbol{x}^{\pi}, \mathcal{D}^{N}\right)=\max _{\boldsymbol{x}} \operatorname{Pr}\left[y=+1 \mid \boldsymbol{x}, \mathcal{D}^{N}\right]$.

A. 2 Proof of Theorem 1

Theorem 1 Let \mathcal{D}^{n} be the n measurements produced by the KG policy and $\boldsymbol{w}^{n}=\arg \max _{\boldsymbol{w}} \Psi\left(\boldsymbol{w} \mid \boldsymbol{m}^{0}, \Sigma^{0}\right)$ with the prior distribution $\operatorname{Pr}\left(\boldsymbol{w}^{*}\right)=\mathcal{N}\left(\boldsymbol{w}^{*} \mid \boldsymbol{m}^{0}, \boldsymbol{\Sigma}^{0}\right)$. Then with probability $P_{d}(M)$, the expected error of \boldsymbol{w}^{n} is bounded as

$$
\mathbb{E}_{\boldsymbol{y} \sim \mathcal{B}\left(\mathcal{D}^{n}, \boldsymbol{w}^{*}\right)}\left\|\boldsymbol{w}^{n}-\boldsymbol{w}^{*}\right\|_{2} \leq \frac{C_{\min }+\lambda_{\min }\left(\boldsymbol{\Sigma}^{-1}\right)}{2},
$$

where the distribution $\mathcal{B}\left(\mathcal{D}^{n}, \boldsymbol{w}^{*}\right)$ is the vector onBernoulli distribution with $\operatorname{Pr}\left(y^{i}=+1\right)=\sigma\left(\boldsymbol{w}^{* T} \boldsymbol{x}^{i}\right)$ of each dimension, $P_{d}(M)$ is the probability of a d-dimensional standard normal random variable appears in the ball with radius $M=\frac{1}{8} \frac{\lambda_{\text {min }}^{2}}{\sqrt{\lambda_{\text {max }}}}$ and $C_{\text {min }}=\lambda_{\min }\left(\frac{1}{n} \sum_{i=1} \sigma\left(\boldsymbol{w}^{* T} \boldsymbol{x}^{i}\right)\left(1-\sigma\left(\boldsymbol{w}^{* T} \boldsymbol{x}^{i}\right)\right) \boldsymbol{x}^{i}\left(\boldsymbol{x}^{i}\right)^{T}\right)$.

Proof. In this proof, we use $\boldsymbol{\Sigma}$ and \boldsymbol{m} to denote $\boldsymbol{\Sigma}^{\mathbf{0}}$ and \boldsymbol{m}^{0}, and use $\boldsymbol{x}_{i}, y_{i}$ to denote \boldsymbol{x}^{i} and y^{i} for notation simplicity.

Let $f(\boldsymbol{w})=g(\boldsymbol{w})+h(\boldsymbol{w})$, where

$$
g(\boldsymbol{w})=\frac{1}{2}(\boldsymbol{w}-\boldsymbol{m})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{w}-\boldsymbol{m}),
$$

and

$$
h(\boldsymbol{w})=-\mathbb{E}_{\boldsymbol{y} \sim \mathcal{B}\left(\mathcal{D}^{n}, \boldsymbol{w}^{*}\right)}\left[\frac{1}{n} \sum_{i=1}^{n} \log \sigma\left(y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}\right)\right] .
$$

Then based on mean value theorem we have

$$
h(\boldsymbol{w})-h\left(\boldsymbol{w}^{*}\right)=\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)^{T} \nabla h\left(\boldsymbol{w}^{*}\right)+\frac{1}{2}\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)^{T} H\left(\boldsymbol{w}^{*}+\eta\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)\right)\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right),
$$

where H is the Hessian of h.
To analyze the first and second order terms, we use a similar technique adopted in 11. For the first order term, we have

$$
\begin{aligned}
\nabla h\left(\boldsymbol{w}^{*}\right) & =\mathbb{E}_{\boldsymbol{y} \sim \mathcal{B}\left(\mathcal{D}^{n}, \boldsymbol{w}^{*}\right)}\left[\frac{1}{n} \sum_{i=1}\left(1-\sigma\left(y_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}\right)\right) y_{i} \boldsymbol{x}_{i}\right] \\
& =\frac{1}{n} \sum_{i=1}\left(\left(1-\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right)\right) \sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right)-\left(1-\sigma\left(-\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right)\right)\left(1-\sigma\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right)\right)\right) \boldsymbol{x}_{i}=0 .
\end{aligned}
$$

For the second order term, we have

$$
\begin{aligned}
& H\left(\boldsymbol{w}^{*}+\eta\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)\right) \\
= & \mathbb{E}_{\boldsymbol{y} \sim \mathcal{B}\left(\mathcal{D}^{n}, \boldsymbol{w}^{*}\right)}\left(\frac{1}{n} \sum_{i=1} \sigma\left(y_{i}\left(\boldsymbol{w}^{*}+\eta\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)\right)^{T} \boldsymbol{x}_{i}\right)\left(1-\sigma\left(y_{i}\left(\boldsymbol{w}^{*}+\eta\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)\right)^{T} \boldsymbol{x}_{i}\right)\right) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right) \\
= & \frac{1}{n} \sum_{i=1} \sigma\left(\left(\boldsymbol{w}^{*}+\eta\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)\right)^{T} \boldsymbol{x}_{i}\right)\left(1-\sigma\left(\left(\boldsymbol{w}^{*}+\eta\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)\right)^{T} \boldsymbol{x}_{i}\right)\right) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \\
= & \frac{1}{n} \sum_{i=1} J_{i}(\boldsymbol{w}, \eta) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T},
\end{aligned}
$$

where $J_{i}(\boldsymbol{w}, \eta)=\sigma\left(\left(\boldsymbol{w}^{*}+\eta\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)\right)^{T} \boldsymbol{x}_{i}\right)\left(1-\sigma\left(\left(\boldsymbol{w}^{*}+\eta\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)\right)^{T} \boldsymbol{x}_{i}\right)\right)$.
We expand $J_{i}(\boldsymbol{w}, \eta)$ to its first order and use mean value theorem again,

$$
\begin{aligned}
\left|J_{i}(\boldsymbol{w}, \eta)-J_{i}\left(\boldsymbol{w}^{*}, \eta\right)\right| & =\left|\eta\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)^{T} \boldsymbol{x}_{i} \sigma^{\prime}\right| \\
& \leq\left|\sigma(1-\sigma)(1-2 \sigma) \|\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)^{T} \boldsymbol{x}_{i}\right| \\
& \leq\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2},
\end{aligned}
$$

where we omit the dependence of σ on $\left(\boldsymbol{w}^{*}+\eta\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)\right)^{T} \boldsymbol{x}_{i}$ for simplicity and use the fact $\sigma \in(0,1)$.
Combining the first order and second order analysis and denoting $\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}$ as R, we have

$$
\begin{aligned}
h(\boldsymbol{w})-h\left(\boldsymbol{w}^{*}\right) & \geq \frac{1}{2}\left\|\boldsymbol{w}-\boldsymbol{w}^{*}\right\|_{2}^{2} \lambda_{\min }\left(H\left(\boldsymbol{w}^{*}+\eta\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)\right)\right) \\
& \geq \frac{1}{2} R^{2} \lambda_{\min }\left(\frac{1}{n} \sum_{i=1} \sigma\left(\boldsymbol{x}_{i}^{T} \boldsymbol{w}^{*}\right)\left(1-\sigma\left(\boldsymbol{x}_{i}^{T} \boldsymbol{w}^{*}\right)\right) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}-R\right) \\
& \geq \frac{1}{2} C_{\min } R^{2}-\frac{1}{2} R^{3},
\end{aligned}
$$

where we use the fact that $\left\|\boldsymbol{x}_{i}\right\|_{2} \leq 1$ and use $C_{\text {min }}$ to denote $\lambda_{\text {min }}\left(\frac{1}{n} \sum_{i=1} \sigma\left(\boldsymbol{x}_{i}^{T} \boldsymbol{w}^{*}\right)\left(1-\sigma\left(\boldsymbol{x}_{i}^{T} \boldsymbol{w}^{*}\right)\right) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}\right)$.

On the other hand, for $g(\boldsymbol{w})$ we have

$$
\begin{aligned}
g(\boldsymbol{w})-g\left(\boldsymbol{w}^{*}\right) & =\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{w}^{*}-\boldsymbol{m}\right)+\frac{1}{2}\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{w}-\boldsymbol{w}^{*}\right) \\
& \geq-D R \sqrt{\lambda_{\max }\left(\boldsymbol{\Sigma}^{-1}\right)}+\frac{1}{2} \lambda_{\min }\left(\boldsymbol{\Sigma}^{-1}\right) R^{2}
\end{aligned}
$$

where $D=\left\|\boldsymbol{\Sigma}^{-\frac{1}{2}}\left(\boldsymbol{w}^{*}-\boldsymbol{m}\right)\right\|_{2}$.
Now define function $F(\Delta)$ as $F(\Delta)=f\left(\boldsymbol{w}^{*}+\Delta\right)-f\left(\boldsymbol{w}^{*}\right)$, then we have

$$
F(\Delta)=g(\boldsymbol{w})-g\left(\boldsymbol{w}^{*}\right)+h\left(\boldsymbol{w}^{n}\right)-h\left(\boldsymbol{w}^{*}\right) \geq-\sqrt{\lambda_{\max }\left(\boldsymbol{\Sigma}^{-1}\right)} D R+\frac{1}{2} \lambda_{\min }\left(\boldsymbol{\Sigma}^{-1}\right) R^{2}+\frac{1}{2} C_{\min } R^{2}-\frac{1}{2} R^{3} .
$$

From now on we will use the simplified symbols $\lambda_{\max }$ and $\lambda_{\min }$ instead of $\lambda_{\min }\left(\boldsymbol{\Sigma}^{-1}\right)$ and $\lambda_{\max }\left(\boldsymbol{\Sigma}^{-1}\right)$. It is easy to check that in the case when

$$
\begin{equation*}
D \leq \frac{1}{8} \frac{\lambda_{\min }^{2}}{\sqrt{\lambda_{\max }}} \tag{A.1}
\end{equation*}
$$

$F(\Delta) \geq 0$ at for all Δ with $\|\Delta\|_{2}=\frac{1}{2}\left(C_{\min }+\lambda_{\text {min }}\right)$.
Notice that $F(0)=0$ and recall that \boldsymbol{w}^{n} minimizes $f(\boldsymbol{w})$ so we have

$$
F\left(\boldsymbol{w}^{n}-\boldsymbol{w}^{*}\right)=f(\boldsymbol{w})-f\left(\boldsymbol{w}^{*}\right) \leq 0
$$

Then based on the convexity of F we know that $\left\|\boldsymbol{w}^{n}-\boldsymbol{w}^{*}\right\|_{2} \leq \frac{1}{2}\left(C_{\min }+\lambda_{\min }\right)$, otherwise the values of F at $0, \boldsymbol{w}^{n}-\boldsymbol{w}^{*}$ and the intersection between the all $\|\Delta\|_{2}=\frac{1}{2}\left(C_{\min }+\lambda_{\min }\right)$ and line from 0 to $\boldsymbol{w}^{n}-\boldsymbol{w}^{*}$ form a concave pattern, which is contradictory.

Now we start to calculate the probability for Eq. A.1 to hold. Recall that \boldsymbol{w}^{*} has a prior distribution $\boldsymbol{w}^{*} \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{\Sigma})$. Then by denoting the right hand side of Eq. A.1) as M, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(D \leq \frac{1}{8} \frac{\lambda_{\min }^{2}}{\sqrt{\lambda_{\max }}}\right) \\
= & \int_{\left\|\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{a}-\boldsymbol{m})\right\| \leq M}(2 \pi)^{-\frac{d}{2}}|\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp \left(-\frac{1}{2}(\boldsymbol{a}-\boldsymbol{m})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{a}-\boldsymbol{m})\right) \mathrm{d} \boldsymbol{a} \\
= & \int_{\|\boldsymbol{b}\|_{2} \leq M}(2 \pi)^{-\frac{d}{2}} \exp \left(-\frac{1}{2} \boldsymbol{b}^{T} \boldsymbol{b}\right) \mathrm{d} \boldsymbol{b}
\end{aligned}
$$

which is the probability of a d-dimension standard normal random variable appears in the ball with radius $M, P_{d}(M)$. This completes the proof.

References

[1] Pradeep Ravikumar, Martin J Wainwright, John D Lafferty, et al. High-dimensional ising model selection using 1-regularized logistic regression. The Annals of Statistics, 38(3):1287-1319, 2010.

