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This note contains supplementary materials to The Knowledge Gradient for Sequential Decision Making
with Stochastic Binary Feedbacks.

A Proofs of theoretical statements

We provide detailed proofs of Lemma 1 and Theorem 1 in this section.

A.1 Proof of Lemma 1

Lemma 1 Let π ∈ Π be a policy, and xπ = arg maxx Pr[y = +1|x,DN ] be the implementation decision
after the budget N is exhausted. Then

E[Pr(y = +1|xπ,w)] = E[max
x

Pr(y = +1|x,DN )],

where the expectation is taking over the prior distribution of w.

Proof. First notice that for any fixed point x,

EN [Pr(y = +1|x,w)] = EN [σ(wTx)]

=

∫
σ(wTx)Pr(w|DN )dw

= Pr(y = +1|x,DN ).

By the tower property of conditional expectations, and since xπ is FN measurable,

E[Pr(y = +1|xπ,w)] = E[σ(wTxπ)]

= EEN [σ(wTxπ)]

= E[Pr(y = +1|xπ,DN )].

Then by the definition of xπ, we have Pr(y = +1|xπ,DN ) = maxx Pr[y = +1|x,DN ].

A.2 Proof of Theorem 1

Theorem 1 Let Dn be the n measurements produced by the KG policy and wn = arg maxw Ψ(w|m0,Σ0)
with the prior distribution Pr(w∗) = N (w∗|m0,Σ0). Then with probability Pd(M), the expected error of
wn is bounded as

Ey∼B(Dn,w∗)||wn −w∗||2 ≤
Cmin + λmin

(
Σ−1

)
2

,

where the distribution B(Dn,w∗) is the vector onBernoulli distribution with Pr(yi = +1) = σ(w∗Txi) of
each dimension, Pd(M) is the probability of a d-dimensional standard normal random variable appears in

the ball with radius M = 1
8
λ2
min√
λmax

and Cmin = λmin

(
1
n

∑
i=1 σ(w∗Txi)

(
1− σ(w∗Txi)

)
xi(xi)T

)
.
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Proof. In this proof, we use Σ and m to denote Σ0 and m0, and use xi, yi to denote xi and yi for notation
simplicity.

Let f(w) = g(w) + h(w), where

g(w) =
1

2
(w −m)TΣ−1(w −m),

and

h(w) = −Ey∼B(Dn,w∗)

[ 1

n

n∑
i=1

log σ(yiw
Txi)

]
.

Then based on mean value theorem we have

h(w)− h(w∗) = (w −w∗)T∇h(w∗) +
1

2
(w −w∗)TH

(
w∗ + η(w −w∗)

)
(w −w∗),

where H is the Hessian of h.
To analyze the first and second order terms, we use a similar technique adopted in [1]. For the first order

term, we have

∇h(w∗) = Ey∼B(Dn,w∗)

[ 1

n

∑
i=1

(
1− σ(yiw

Txi)
)
yixi

]
=

1

n

∑
i=1

((
1− σ(wTxi)

)
σ(wTxi)−

(
1− σ(−wTxi)

)(
1− σ(wTxi)

))
xi = 0.

For the second order term, we have

H
(
w∗ + η(w −w∗))

= Ey∼B(Dn,w∗)

(
1

n

∑
i=1

σ(yi(w
∗ + η(w −w∗))Txi)

(
1− σ(yi(w

∗ + η(w −w∗))Txi)
)
xix

T
i

)

=
1

n

∑
i=1

σ((w∗ + η(w −w∗))Txi)
(

1− σ((w∗ + η(w −w∗))Txi)
)
xix

T
i

=
1

n

∑
i=1

Ji(w, η)xix
T
i ,

where Ji(w, η) = σ((w∗ + η(w −w∗))Txi)
(

1− σ((w∗ + η(w −w∗))Txi)
)

.

We expand Ji(w, η) to its first order and use mean value theorem again,

|Ji(w, η)− Ji(w∗, η)| = |η(w −w∗)Txiσ
′|

≤ |σ(1− σ)(1− 2σ)||(w −w∗)Txi|
≤ ‖w −w∗‖2,

where we omit the dependence of σ on (w∗ + η(w −w∗))Txi for simplicity and use the fact σ ∈ (0, 1).
Combining the first order and second order analysis and denoting ‖w −w∗‖2 as R, we have

h(w)− h(w∗) ≥ 1

2
‖w −w∗‖22λmin

(
H
(
w∗ + η(w −w∗)

))
≥ 1

2
R2λmin

( 1

n

∑
i=1

σ(xTi w
∗)
(
1− σ(xTi w

∗)
)
xix

T
i −R

)
≥ 1

2
CminR

2 − 1

2
R3,

where we use the fact that ‖xi‖2 ≤ 1 and use Cmin to denote λmin

(
1
n

∑
i=1 σ(xTi w

∗)
(
1− σ(xTi w

∗)
)
xix

T
i

)
.

2



On the other hand, for g(w) we have

g(w)− g(w∗) = (w −w∗)TΣ−1(w∗ −m) +
1

2
(w −w∗)TΣ−1(w −w∗)

≥ −DR
√
λmax

(
Σ−1

)
+

1

2
λmin

(
Σ−1

)
R2,

whereD = ‖Σ− 1
2 (w∗ −m)‖2.

Now define function F (∆) as F (∆) = f(w∗ + ∆)− f(w∗), then we have

F (∆) = g(w)− g(w∗) + h(wn)− h(w∗) ≥ −
√
λmax

(
Σ−1

)
DR+

1

2
λmin

(
Σ−1

)
R2 +

1

2
CminR

2 − 1

2
R3.

From now on we will use the simplified symbols λmax and λmin instead of λmin
(
Σ−1

)
and λmax

(
Σ−1

)
. It

is easy to check that in the case when

D ≤ 1

8

λ2min√
λmax

, (A.1)

F (∆) ≥ 0 at for all ∆ with ‖∆‖2 = 1
2 (Cmin + λmin).

Notice that F (0) = 0 and recall that wn minimizes f(w) so we have

F (wn −w∗) = f(w)− f(w∗) ≤ 0.

Then based on the convexity of F we know that ‖wn −w∗‖2 ≤ 1
2 (Cmin + λmin), otherwise the values of F

at 0, wn − w∗ and the intersection between the all ‖∆‖2 = 1
2 (Cmin + λmin) and line from 0 to wn − w∗

form a concave pattern, which is contradictory.
Now we start to calculate the probability for Eq. (A.1) to hold. Recall that w∗ has a prior distribution

w∗ ∼ N (m,Σ). Then by denoting the right hand side of Eq. (A.1) as M , we have

Pr
(
D ≤ 1

8

λ2min√
λmax

)
=

∫
‖Σ− 1

2 (a−m)‖≤M
(2π)−

d
2 |Σ|− 1

2 exp
(
− 1

2
(a−m)TΣ−1(a−m)

)
da

=

∫
‖b‖2≤M

(2π)−
d
2 exp

(
− 1

2
bT b

)
db,

which is the probability of a d-dimension standard normal random variable appears in the ball with radius
M , Pd(M). This completes the proof.
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