The Knowledge Gradient for Sequential Decision Making with
Stochastic Binary Feedbacks

This note contains supplementary materials to The Knowledge Gradient for Sequential Decision Making
with Stochastic Binary Feedbacks.

A Proofs of theoretical statements

We provide detailed proofs of Lemma 1 and Theorem 1 in this section.

A.1 Proof of Lemma 1

Lemma 1 Let 7 € II be a policy, and ™ = arg max, Prly = +1|z, D] be the implementation decision
after the budget IV is exhausted. Then

E[Pr(y = +1]2", w)] = E[maxPr(y = +1]z, D),

where the expectation is taking over the prior distribution of w.

Proof. First notice that for any fixed point «,
En[Pr(y = +1lz,w)] = En[o(w’z)]
= /a(wTw)Pr(w|’DN)dw
= Pr(y = +1|z,DV).
By the tower property of conditional expectations, and since ™ is FV measurable,

E[Pr(y = +1|z™,w)] = E[o(w’z™)]
= EEy[o(w’z™))
= E[Pr(y = +1|z™,DV)].

Then by the definition of ™, we have Pr(y = +1|z™, DY) = max, Pr[y = +1|x, DV]. O

A.2 Proof of Theorem 1

Theorem 1 Let D" be the n measurements produced by the KG policy and w™ = arg max,, ¥(w|m?, x°0)
with the prior distribution Pr(w*) = N (w*|m? X). Then with probability P;(M), the expected error of
w" is bounded as
Cmin + /\min (2_1)

2 )
where the distribution B(D", w*) is the vector onBernoulli distribution with Pr(y* = +1) = o(w*Tx") of
each dimension, Py(M) is the probability of a d-dimensional standard normal random variable appears in

the ball with radius M = %\X”L and Cpin = )\mm(% i o(wTat)(1- a(w*T:Bi)):ci(a:i)T).

max

[w" —w™|; <
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Proof. In this proof, we use ¥ and m to denote X% and m?°, and use x;, y; to denote * and 3’ for notation
simplicity.
Let f(w) = g(w) + h(w), where

g(w) = 5 (w —m)"S " (w — m),

and

1 n
h(w) = _EyNB('D",w*) |:E Z IOg O'(yl’lUT(EZ)i| .

i=1

Then based on mean value theorem we have
1
h(w) — h(w*) = (w — w*)T Vh(w*) + 5(10 —w") H(w* +n(w - w*))(w — w*),

where H is the Hessian of h.
To analyze the first and second order terms, we use a similar technique adopted in [I]. For the first order
term, we have

Vh(w®) = Ey.porw) E > (- U(?Jinwi))yixi}

i=1

= % Z ((1 — O'(wTCCi))O'(wT:Bi) — (1 — O’(—wT:L'i)) (1 — Cf(wT.’L'z))):BZ =0.

For the second order term, we have

H(w* + n(w — w"))
=I%wwum<iZEWMf+Mw—wwfumrwwmm+Mw—wwfaﬁﬁd>
=1

= % ZU((“’* +n(w — w*)) ;) (1 —o((w* +n(w — w*))Tml))mlsz

1
= = Ji(w,n)za],
n i=1

“mﬂeﬁhmn)=0«w*+nhv—uﬂhﬂmml—GKw*+nhv—wﬂV@0)

We expand J;(w,n) to its first order and use mean value theorem again,

[Ti(w, ) = Ji(w*, )] = [n(w —w) @0l
< o(l—0)(1 = 20)[|(w — w*) |
< w —w,

where we omit the dependence of o on (w* + n(w — w*))Tx; for simplicity and use the fact o € (0, 1).
Combining the first order and second order analysis and denoting ||w — w*||2 as R, we have

haw) ~ h(w?) > 5w — w0 B (H (w0 + (o — w)))

> %Rz)\mm (% ; a(m?w*)(l — O‘(CL';Tw*))xlsz - R)
Lo p2 lpg
Z icman 2R 9

where we use the fact that ||@;||2 < 1 and use Ci,;y, to denote Apip (% Doict o(xTw*) (1 — J(a:Tw*))a:ia:iT).

%



On the other hand, for g(w) we have
1
g(w) —g(w™) = (w-w)' I (w —m)+ S (w-w)"' B (w - w)

Z —DR\/ Amaa: (E_1> + %Amzn (2_1)R27
whereD = || £~ 2 (w* —m)||».

Now define function F(A) as F(A) = f(w* + A) — f(w™*), then we have

1 1 1
F(A) = g(w) — glw") + h(w") = h(w) > —\Nae (57 DR+ L hin (SR + 5 Conin B — R,

From now on we will use the simplified symbols A4, and Ay, instead of Apyin (E_l) and A\ax (2_1). It
is easy to check that in the case when
1 A2,
- min A'l
S (A1)
F(A) > 0 at for all A with ||Allz = %(Cmin + Anin)-
Notice that F(0) = 0 and recall that w™ minimizes f(w) so we have

D<

Fw" — w*) = f(w) - f(w") <0.

~—

Then based on the convexity of F we know that [|w™ — w*||2 < 1(Cinin + Amin), otherwise the values of F
at 0, w” — w* and the intersection between the all |A|ls = %(Cmm + Amin) and line from 0 to w"™ — w*

form a concave pattern, which is contradictory.
Now we start to calculate the probability for Eq. (A.1)) to hold. Recall that w* has a prior distribution
w* ~ N(m,X). Then by denoting the right hand side of Eq. (A.1)) as M, we have

1 A2,
Pr(D < 2 man_
r< _8\/Amaa:)
= 27r*%2*%ex flafmTﬁflafm da
. (2m) 2| X p(— 5 ) ( )
152 (a—m)| <M 2

1
= / (2m) "% exp (— 5b7b)db,
lbll2< 1

which is the probability of a d-dimension standard normal random variable appears in the ball with radius
M, P;(M). This completes the proof. O
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