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Abstract

We consider the problem of sequentially mak-
ing decisions that are rewarded by “successes”
and “failures” which can be predicted through
an unknown relationship that depends on a par-
tially controllable vector of attributes for each in-
stance. The learner takes an active role in select-
ing samples from the instance pool. The goal
is to maximize the probability of success, ei-
ther after the offline training phase or minimiz-
ing regret in online learning. Our problem is
motivated by real-world applications where ob-
servations are time consuming and/or expensive.
With the adaptation of an online Bayesian lin-
ear classifier, we develop a knowledge-gradient
type policy to guide the experiment by maximiz-
ing the expected value of information of labeling
each alternative, in order to reduce the number
of expensive physical experiments. We provide
a finite-time analysis of the estimated error and
demonstrate the performance of the proposed al-
gorithm on both synthetic problems and bench-
mark UCI datasets.

1. Introduction

There are many real-world optimization tasks where obser-
vations are time consuming and/or expensive. One exam-
ple arises in health services, where physicians have to make
medical decisions (e.g. a course of drugs, surgery, and ex-
pensive tests). Assume that a doctor faces a discrete set of
medical choices, and that we can characterize an outcome
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as a success (patient does not need to return for more treat-
ment) or a failure (patient does need followup care such
as repeated operations). Testing a medical decision may
require several weeks to determine the outcome. This cre-
ates a situation where experiments are time consuming and
expensive, requiring that we learn from our decisions as
quickly as possible. In contrast to most experimental work
on UCB policies which tends to assume large observation
budgets (which might fit applications such as optimizing
ad-clicks), we argue that the setting of expensive experi-
ments represents a different type of learning challenge.

The problem of deciding which medical decisions to evalu-
ate can be modeled mathematically as a sequential decision
making problem with stochastic binary outcomes. In this
setting, we have a small budget of measurements that we
allocate sequentially to medical decisions so that after the
budget exhausted, we have collected information to max-
imize our ability to choose the medical decision with the
highest probability of success.

Scientists can draw on an extensive body of literature on
the classic design of experiments (DeGroot, 1970; Wether-
ill & Glazebrook, 1986; Montgomery, 2008) whose goal is
to decide what observations to make when fitting a func-
tion. Yet in our settings, the decisions are guided by a
well-defined utility function (that is, maximize the proba-
bility of success). This problem also relates to active learn-
ing (Schein & Ungar, 2007; Tong & Koller, 2002; Freund
et al., 1997, Settles, 2010). Our model is most similar to
membership query synthesis where the learner may request
labels for unlabeled instances in the input space to learn a
classifier that accurately predicts the labels of new exam-
ples. By contrast, our goal is to maximize a utility function
such as the success of a treatment. Other relevant and yet
different works include budgeted learning to imitate the or-
acle’s behavior (He et al., 2012), and adaptive selection of
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pre-trained classifiers (Gao & Koller, 2011).

Another similar setting is multi-armed bandit problems
(Auer et al., 2002; Bubeck & Cesa-Bianchi, 2012; Filippi
et al., 2010; Mahajan et al., 2012; Chapelle & Li, 2011;
Li et al., 2010) for cumulative regret minimization in an
online setting. Our work will initially focus on offline
settings such as laboratory experiments or medical trials
where we are not punished for errors incurred during train-
ing and only concern with the final recommendation after
the offline training phases. The knowledge gradient for of-
fline learning extends easily to bandit settings with the goal
to minimize the cumulative regret (Ryzhov et al., 2012).
There are works to address the problem we describe here by
minimizing the simple regret. But first, the UCB type poli-
cies (Audibert et al., 2010) are not best suited for expen-
sive experiments. Second, the work on simple regret min-
imization (Hoffman et al., 2014; Hennig & Schuler, 2012)
mainly focuses on real-valued functions.

There is a literature on Bayesian optimization (He et al.,
2007; Chick, 2001; Powell & Ryzhov, 2012). EGO (and re-
lated methods such as SKO (Jones et al., 1998; Huang et al.,
2006)) assumes a Gaussian process belief model which
does not scale to the higher dimensional settings that we
consider. Others assume lookup table, or low-dimensional
parametric methods (e.g. response surface/surrogate mod-
els (Gutmann, 2001; Jones, 2001; Regis & Shoemaker,
2005)). The existing literature mainly focuses on real-
valued functions and none of these methods are directly
suitable for our problem of maximizing the probability of
success with binary outcomes.

We investigate a knowledge gradient policy that maximizes
the value of information, since this approach is particularly
well suited to problems where observations are expensive.
After its first appearance for ranking and selection prob-
lems (Frazier et al., 2008), KG has been extended to vari-
ous other belief models (e.g. (Mes et al., 2011; Negoescu
et al., 2011; Wang et al., 2015)). Yet there is no KG vari-
ant designed for binary classification with parametric belief
models. A particularly relevant work in the Bayesian op-
timization literature is the expected improvement (EI) for
binary outputs (Tesch et al., 2013). EI is an approximation
of KG assuming no measurement noise (see Section 5.6 of
(Powell & Ryzhov, 2012) and (Huang et al., 2006) for de-
tailed explanations). In our setting with stochastic binary
outcomes, the stochasticity is not explicitly considered by
the EI calculation.

The main contributions of this paper are organized as fol-
lows. We first rigorously establish a sound mathematical
model for the problem of sequentially maximizing the re-
sponse under binary outcomes in Section 2. Due to the
sequential nature of the problem, we develop an online
Bayesian linear classification procedure for general link

functions to recursively predict the response of each alter-
native in Section 4. In Section 5, we design a knowledge-
gradient type policy for stochastic binary responses to
guide the experiment and provide a finite-time analysis on
the estimated error. This is different from the PAC (passive)
learning bound which relies on the i.i.d. assumption of the
examples. Extensive demonstrations and comparisons of
methods are demonstrated in Section 6.

2. Problem Formulation

Given a finite set of alternatives x € X = {x1,...,znp},
where each «x is represented by a d-dimensional feature
vector, the observation of measuring each x is a binary
outcome y € {—1,+1}/{failure, success} with some un-
known probability of success Pr(y = +1|z). Under a lim-
ited budget IV, our goal is to choose the measurement pol-
icy (z!,..., ) and implementation decision ¥ ! that
maximizes the probability of success Pr(y = +1|zV 1),

We adopt probabilistic modeling for the unknown proba-
bility of success. Under general assumptions, the posterior
probability of class 4+1 can be written as a link function
acting on a linear function of the feature vector

Pr(y = +1|z) = o(w’ x),

with the link function o(a) often chosen as the logistic
function o(a) = yygp—gy or probit function o(a) =

®(a) = [*  N(s]0,1%)ds.

Adapting the concept of Gaussian processes, we start with
a multivariate prior distribution for the unknown parame-
ter vector w. At iteration n, we choose an alternative x"
to measure and observe a stochastic binary outcome y" as-
suming labels are generated independently given w. Each
alternative can be measured more than once with poten-
tially different outcomes. Let D™ = {(z?,y")}_, denote
the previous measured data set for any n = 0, ..., N. De-
fine the filtration (F™))_, by letting " be the sigma-
algebra generated by !, y',..., ", y*. We use F" and
D™ interchangeably. Measurement and implementation de-
cisions " *! are restricted to be F"-measurable so that
decisions may only depend on measurements made in the
past. We use Bayes’ theorem to form a sequence of poste-
rior predictive distributions Pr(w|D™) for w from the prior
and the previous measurements.

The next lemma states the equivalence of using true prob-
abilities and sample estimates when evaluating a policy,
where II is the set of policies. The proof is left in the sup-
plementary material.

Lemma 1. Letr @ € Il be a policy, and x™ =
arg maxy, Pr(y = +1|x, DV) be the implementation de-
cision after the budget N is exhausted. Then

Eo [Pr(y = +1|2™, w)] = Eq[max Pr(y = +1|z, DV)).
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By denoting X7 as an implementation policy for selecting
an alternative after the measurement budget is exhausted,
then X! is a mapping from the history DV to an alterna-
tive X1 (DY). Then as a corollary of Lemma 1, we have
(Powell & Ryzhov, 2012)

Ir)lcafer[Pr(y = +1\X(DN))] = mgXPr(y = +1|x, D).

In other words, the optimal decision at time N is to go
with our final set of beliefs. By the equivalence as stated in
Lemma 1, while we want to learn the unknown true value
maxg Pr(y = +1|x), we may write our problem’s objec-
tive as

max E" [max Pr(y = +1|x, D). (1)
S T

3. Background: Bayesian Linear Classfication

Linear classifiers are widely used in machine learning
for binary classification (Hosmer Jr & Lemeshow, 2004).
Given a training set D = {(z;,y;)}"; with x; a d-
dimensional vector and y; € {—1,+1}, with the as-
sumption that training labels are generated independently
given w, the likelihood Pr(D|w) is defined as Pr(D|w) =
[T, o(y; - wle;). The weight vector w is found by
maximizing the likelihood of the training data Pr(D|w) or
equivalently, minimizing the negative log likelihood:

i _ oawl .
111111’11; log(o(y; - w" x;)).

It is well-known that regularization is required to avoid
over-fitting. Under [y regularization, the estimate of the
weight vector w given by:

A S
min §||w||2 — Z log(o(y;w” x;)). 2
i=1

It can be shown that the log-likelihood function is glob-
ally concave in w. Numerous optimization techniques are
available for solving it such as steepest ascent, Newton’s
method and conjugate gradient ascent.

In this paper, we illustrate the ideas using the logistic link
function given its analytic simplicity, but any monotoni-
cally increasing function o : R +— [0, 1] can be used.

3.1. Bayesian Setup

A Bayesian approach to linear classification models re-
quires first a prior distribution p(w) for the weight parame-
ters w, from which we apply Bayes’ theorem to derive the
posterior p(w|D) x Pr(D|w)p(w). An ly-regularized lo-
gistic regression can be interpreted as a Bayesian model
with a Gaussian prior on the weights with standard de-
viation 1/ VvX. Unfortunately, exact Bayesian inference

for linear classifier is intractable. Different approximation
methods can be used. In what follows, we consider the
Laplace approximation. Laplace’s method uses a Gaussian
approximation to the posterior. It can be obtained by find-
ing the mode of the posterior distribution and then fitting
a Gaussian distribution centered at that mode (see Chapter
4.5 of (Bishop et al., 2006)). Specifically, define the loga-
rithm of the unnormalized posterior distribution

U(w|m, 3, D) = log Pr(D|w) + log Pr(w).  (3)

The Laplace approximation is based on a second-order
Taylor expansion to ¥ around its MAP (maximum a poste-
riori) solution W = arg max,, ¥(w|m, X, D):
1
U(w) ~ V() — 5(w — ) TH(w —w), 4
where H is the Hessian of the negative log posterior eval-
uated at w:
H = VU (w)| - (5)

The Laplace approximation results in a normal approxima-
tion to the posterior

p(w|D) =~ N (wlw, H™). 6)

4. Fast Online Bayesian Linear Classification

Starting from a Gaussian prior N (w|m?, £°), after the
first n observed data, the Laplace approximated posterior
distribution is Pr(w|D") ~ N (w|m™, X™) according to
(6). We formally define the state space S to be the cross-
product of R? and the space of positive semidefinite ma-
trices. At each time n, our state of knowledge is thus
S™ = (m",X"). Observations come one by one due to
the sequential nature of our problem setting. After each
new observation, if we retrain the Bayesian classifier using
all the previous data, we need to calculate the MAP solu-
tion of (3) with D = D" to update from S™ to S™*1. It is
computationally inefficient even with a diagonal covariance
matrix. It is better to extend the Bayesian linear classifier
to leverage for recursive updates with each observation.

Here, we propose a fast and stable online updating formu-
lation with independent normal priors (with & = A7'T,
where I is the identity matrix), which is equivalent to [,
regularization and which also offers greater computational
efficiency. In this recursive way of model updating, the
Laplace approximated posterior is A/ (w|m™, 3™) serves
as a prior to update the model when the next observation is
made. By setting the batch size n = 1 in Eq. (3) and (5),
we have the sequential Bayesian linear model for classifi-

cation as in Algorithm 1, where t:= %}Z(ym ‘f:ﬁ,Tm.

It is generally assumed that log o (+) is concave to ensure a
unique solution of Eq. (3). It is straightforward to check
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Algorithm 1 Online Bayesian Linear Classification

Input: Regularization parameter A > 0
m; = 0, ¢g; = A. (Bach weight w; has an independent
prior N (m;, q{l)).
fort =1toT do
Get a new point (x, y).
Find w as the maximizer of (3):
—3 ;-1:1 qi(w; —m;)? +log(o(ysw™x;)).
m; = If]j.
Update ¢; according to (5): qj < q; — fx?.
end for

that the sigmoid functions that are commonly used for
classification problems, including logistic function, pro-
bit function, complementary log-log function and log-log
function all satisfy this assumption.

We can tap a wide range of convex optimization algorithms
including gradient search, conjugate gradient, and BFGS
method (see (Wright & Nocedal, 1999) for details). But
ifwesetn = 1land ¥ = A~'T in Eq. (3), a stable and
efficient algorithm for solving

d
1 2 T
g =5 3 ai(ws = mo? +loglo(’@) - O
i

can be obtained as follows. First taking derivatives with
respect to w; and setting % to zero, we have

_ yzo’ (ywTz)

qi(w; —m;) = , 1=1,2,...,d.

o(yw'z)
’ T
Defining p as p := %, we have w; = m; +ypz;/q;.
Plugging this back to the definition of p to eliminate w;’s,
we get the equation for p:
d
p= a'(p 2121 x?/(h + yme)
= - .
a(pdie %2/(1@ +ymTx)

Since log(o(+)) is concave, by its derivative we know the
function ¢’/o is monotonically decreasing, and thus the
right hand side of the equation decreases as p goes from 0 to
oo. We notice that the right hand side is positive when p =
0 and the left hand side is larger than the right hand side
when p = o/ (ymTx)/o(ymTz). Hence the equation has
a unique solution in interval [0, o’ (ymTz)/oc(ymTz)]. A
simple one dimensional bisection method is sufficient to
efficiently find the root p* and thus the solution to the d-
dimensional optimization problem (7).

5. Knowledge Gradient Policy for Bayesian
Linear Classification Belief Model

We are going to build on this framework to compute the
knowledge gradient for a ranking and selection problem

which each choice (say, a medical decision) influences the
success or failure of a medical outcome.

We begin by developing the general framework for the
knowledge gradient (KG) for ranking and selection prob-
lems, where the performance of each alternative is repre-
sented by a (non-parametric) lookup table model of Gaus-
sian distribution with unknown mean and known variance.
The goal is to adaptively allocate alternatives to measure so
as to find an implementation decision that has the largest
mean after the budget is exhausted. By imposing a Gaus-
sian prior N/ (u”, %) on mean values of the alternatives,
the posterior after the first n observations is N (p™, X™).
The value of a state is defined as max, p. At the nth iter-
ation, the knowledge gradient policy chooses its (n + 1)th
measurement to maximize the single-period expected in-
crease in value (Frazier et al., 2008). It enjoys nice proper-
ties, including myopic and asymptotic optimality. KG has
been extended to various belief models (e.g. (Mes et al.,
2011; Negoescu et al., 2011; Ryzhov et al., 2012; Wang
et al., 2015)). The knowledge gradient can always be ex-
tended to online problems where we need to maximize cu-
mulative rewards (Ryzhov et al., 2012).

Yet there is no KG variant designed for binary classification
with parametric models, primarily because of the complex-
ity of dealing with nonlinear belief models. In what fol-
lows, we first formulate our learning problem as a Markov
decision process and then extend the KG policy for stochas-
tic binary outcomes.

5.1. Markov Decision Process Formulation

The state space S is the space of all possible predic-
tive distributions ¢(w) for w. The transition function 7T":
S X X x {—1,1} is defined as:

T(q<w>,x,y) xqw)olywTs).  ®

The transition function for updating the belief state depends
on the belief model o(-) and the approximation strategy.
For example, for the online Bayesian linear classifier with
logistic function, the transition function can be defined as
follows with a degenerate state space S := R? x (0, o0]:

Definition 1. The transition function T: S x X x {—1,1}
is defined as

T((m7 q),, y) = ((w(m% q+p(1 —p)diag(wa)))

where w(m) = argmin,, V(w|m,q,(x,y)), p =
o(wTz) and diag(xx™) is a column vector contain-
ing the diagonal elements of xx™, so that S"t! =
T(S", z, Y™,

In a dynamic program, the value function is defined as the
value of the optimal policy given a particular state S™ at
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time n. In the case of stochastic binary feedback, the ter-
minal value function V™ : § + R is given by (1) as

VN(s) = maxPr(y = +1|z,s),Vs € S.

The value function at times n = 0,..., N — 1, V"™ is given
recursively through Bellman’s equation:

V™ (s) = max E[V" (T (s, x, Y™ )|z, 5], s € S.

x

Since the “curse of dimensionality” makes direct computa-
tion of the value function intractable, in what follows, KG
will be extended to handle Bayesian classification models.

5.2. Knowledge Gradient for Binary Responses

The knowledge gradient of measuring an alternative x can
be defined as follows:

Definition 2. The knowledge gradient of measuring an al-
ternative x while in state s is

VRO (s) = E[VN(T(s,2,Y)) — VV(s)|z,s]. (9)

Since the outcome Y of an experiment where we made
choice x is not known at the time of selection, the expecta-
tion is computed conditional on the current model specified
by s = (m,X). Specifically, in the case of stochastic bi-
nary feedbacks, given a state s = (m, X), the label y for
an alternative a follows from a Bernoulli distribution with
a predictive distribution

Pr(y = +1|x,s) = /Pr(y = +1jz, w)p(w|s)dw

= /a(me)p(w|s)dw. (10)

We can calculate the expected value in the next state as

B[V (T (s, 2,y))]
= Pr(y = +1|z, s)VN(T(s,x,+1))
+Pr(y = —1|x,s) - VN (T (s, @, 1))
= Pr(y = +1|z,s) -n:}xpr(y = 41|z, T (s, x,+1))

+Pr(y = —1|x, s) - max Pr(y = +1|’, T(s, z, —1)).
m/

The knowledge gradient policy suggests at each time n
selecting the alternative that maximizes vX9(S™) where
ties are broken randomly. The knowledge gradient pol-
icy can work with any choice of link function o(-) and ap-
proximation procedures by adjusting the transition function

T(s,x,-) accordingly.

The predictive distribution Pr(y = +1|x, s) is obtained by
marginalizing under current belief p(w|s) = N (w|m, X).

Denoting a = w”x and §(-) as the Dirac delta function,
we have

[ ot @pwisie = [ atapada

where p(a) = [§(a — w”x)p(w|s)dw. Since the delta
function imposes a linear constraint on w and p(w|s) =
N (w|m,X) is Gaussian, we can evaluate p(a) by calcu-
lating the mean and covariance (Bishop et al., 2006):

T

to = Ela) = mTx, 02 = Var[a] = 2’ Zx.

Thus [ o(w”z)p(w|s)dw = [o(a)N (a|u,,o?)da.

For the logistic link function, the convolution cannot be
evaluated analytically. We apply the approximation o (a) ~
®(aa) with a = 7/8 (Barber & Bishop, 1998). Denoting
k(0?) = (14 702/8)~/2 , we have

Pr(y = +1|x,s) = /U(wTw)p(w\s)dw ~ o (k(02)ta).

Because of the one-step look ahead, the KG calculation can
also benefit from the online recursive update of the belief.
We summarize the KG policy with online logistic regres-
sion in Algorithm 2.

Algorithm 2 Knowledge Gradient Policy under online
Bayesian Logistic Regression

Input: m;, g; (Each weight w; has an independent prior
N(mja q]_l))
for z in X' do 4
Let ¥(w,y) = —% ijl gi(w; — m;)? — log(1 +
exp(—yw’x))
Use one dimensional bisection method to find
Wi = arg max,, ¥(w, +1)
W_ = argmax,, U(w,—1)
d _
p=mTz, o’ = gt
Define yuy (x') = wia/, p_(z') =

Define o3 (z') =

~—
+
—~
—
|

(02)1) maxg o (x(0? (&) ) ()
o(s(0?)n)) - maser o (s(0? (/) ("))

K6 = arg maxgy, U,

The knowledge gradient for offline learning extends easily
to bandit settings (Ryzhov et al., 2012) with the goal to

minimize the cumulative regret by selecting X ¥ at each
time step n as:

XKOm(8™) = argmax Pr(y = +1|x, S™) + (N — n)vs’(S™).

We close this section by presenting the following finite-
time bound on the MSE of the estimated weight for
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Bayesian logistic regression with the proof in the supple-
ment. Since the learner plays an active tole in selecting the
measurements, the bound does not make the i.i.d. assump-
tion of the examples. Without loss of generality, we assume
lz]l2 < 1,Vx € X.

Theorem 1. Let D" be the n measurements produced
by the KG policy and w™ = argmax,, ¥(w|/m°, %)
with the prior distribution Pr(w*) = N(w*|m° X°).
Then with probability Py(M), the expected error of w" is
bounded as

Cmin + )\mzn (2_1)
2 )

|wn —’UJ*H2 <

Ey~B(Dr,w)

where the distribution B(D",w*) is the vector on-
Bernoulli distribution with Pr(y® = +1) = o(w*Tx?)
of each dimension, Py(M) is the probability of a d-
dimensional standard normal random variable appears

2
in the ball with radius M = %\;‘% and Crin =

Amin (% Sy o(w Tz (1 - a(w*Tmi))mi(wi)T).

In the special case where X% = A\~'I, we have A4, =

Amin = Aand M = 222 The bound holds with higher
probability P;(M) with larger A\. This is natural since
a larger \ represents a normal distribution with narrower
bandwidth, resulting in a more concentrated w* around

mo.

6. Experimental Results

We evaluate the proposed method on both synthetic
datasets and the UCI machine learning repository (Lich-
man, 2013) which includes classification problems drawn
from settings including sonar, glass identification, blood
transfusion, survival, breast cancer (wpbc), planning relax
and climate model failure. We first analyze the behavior of
the KG policy and then compare it to state-of-the-art learn-
ing algorithms. On synthetic datasets, we randomly gener-
ate a set of M d-dimensional alternatives  from [—3, 3].
At each run, the stochastic binary labels are simulated us-
ing a d 4+ 1-dimensional weight vector w* which is sam-
pled from the prior distribution w; ~ N(0,\). The +1
label for each alternative x is generated with probability
o(ws + Z?:l wizq). For each UCI dataset, we use all the
data points as the set of alternatives with their original at-
tributes. We then simulate their labels using a weight vector
w?*. This weight vector could have been chosen arbitrarily,
but it was in fact a perturbed version of the weight vector
trained through logistic regression on the original dataset.

6.1. Behavior of the KG Policy

To better understand the behavior of the KG policy, we
provide snapshots of the KG policy at each iteration on a

2-dimensional synthetic dataset and a 3-dimensional syn-
thetic dataset in one run. Fig. 1 shows the snapshot on
a 2-dimensional dataset with 200 alternatives. The scatter
plots illustrate the KG values with both the color and the
size of the point reflecting the KG value of each alterna-
tive. The star denotes the true alternative with the largest
response. The red square is the alternative with the largest
KG value. The pink circle is the implementation decision
(that maximizes the response under current estimation of
w™) if the budget is exhausted after that iteration.
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Figure 1. Snapshots on a 2-dimensional dataset. The scatter plots
illustrate the KG values at 1-4 iterations from left to right, top to
bottom. The star, the red square and pink circle indicate the true
best alternative, the alternative to be selected and the implemen-
tation decision, respectively.

It can be seen from the figure that the KG policy finds the
true best alternative after only three measurements, reach-
ing out to different alternatives to improve its estimates. We
can infer from Fig. 1 that the KG policy tends to choose
alternatives near the boundary of the region. This crite-
rion is natural since in order to find the true maximum, we
need to get enough information about w* and estimate well
the probability of points near the true maximum which ap-
pears near the boundary. On the other hand, in a logistic
model with labeling noise, a data  with small Tz in-
herently brings little information as pointed out in (Zhang
& Oles, 2000). For an extreme example, when € = 0
the label is always completely random for any w since
Pr(y = +1jw,0) = 0.5. This is an issue when perfect
classification is not achievable. So it is essential to label a
data with larger 7'« that has the most potential to enhance
its confidence non-randomly.

Fig. 2 illustrates the snapshots of the KG policy on a 3-
dimensional synthetic dataset with 300 alternatives. It can
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Figure 2. Snapshots on a 3-dimensional dataset. The scatter plots illustrate the KG values at 2,4,6,8,10 iterations from left to right. The
star, the red square and pink circle indicate the best alternative, the alternative to be selected and the implementation decision.

be seen that the KG policy finds the true best alternative
after only 10 measurements. This set of plots also veri-
fies our statement that the KG policy tends to choose data
points near the boundary of the region.

Also depicted in Fig. 3 is the absolute class distribution er-
ror of each alternative, which is the absolute difference be-
tween the predictive probability of class +1 under current
estimate and the true probability on the 2-dimensional date-
set after 4 iterations in Fig. 3(a) and on the 3-dimensional
dateset after 10 iterations in Fig. 3(b). We see that in both
cases, the probability at the true maximum is well approxi-
mated, while moderate error in the estimate is located away
from this region of interest.

5 g
[ 1)

-1 St e
g T e

: St
3tk

(a) 2-dimensional dataset (b) 3-dimensional dataset

Figure 3. Absolute error.

6.2. Comparison with Other Policies

Recall that our goal is to maximize the expected response
of the implementation decision. We define the Oppor-
tunity Cost (OC) metric as the expected response of the
implementation decision V¥ *! := argmax,Pr(y =
+1]z, w) compared to the true maximal response under
weight w*:

oC := ma))(cPr(y = 1|z, w*) — Pr(y = +1|=¥ 1, w*).
xEe

Note that the opportunity cost is always non-negative and
the smaller the better. To make a fair comparison, on each
run, all the time-/N labels of all the alternatives are ran-
domly pre-generated according to the weight vector w* and

shared across all the competing policies. We allow each al-
gorithm to sequentially measure N = 30 alternatives.

We compare with the following state-of-the-art active
learning and Bayesian optimization policies that are com-
patible with logistic regression: Random sampling (Ran-
dom), a myopic method that selects the most uncertain
instance each step (MostUncertain), discriminative batch-
mode active learning (Disc) (Guo & Schuurmans, 2008)
with batch size equal to 1, expected improvement (EI)
(Tesch et al., 2013) with an initial fit of 5 examples and
Thompson sampling (TS) (Chapelle & Li, 2011). Besides,
as upper confidence bounds (UCB) methods are often con-
sidered in bandit and optimization problems, we compare
against UCB on the latent function w”'« (UCB) (Li et al.,
2010) with « tuned to be 1. All the state transitions are
based on the online Bayesian logistic regression framework
developed in Section 4, while different policies provides
different rules for measurement decisions at each iteration.
The experimental results are shown in figure 4. In all the
figures, the x-axis denotes the number of measured alter-
natives and the y-axis represents the averaged opportunity
cost averaged over 100 runs.

It is demonstrated in Fig. 4 that KG outperforms the
other policies in most cases, especially in early iterations,
without requiring a tuning parameter. As an unbiased se-
lection procedure, random sampling is at least a consis-
tent algorithm. Yet it is not suitable for expensive exper-
iments where one need to learn the most in small bud-
gets. MostUncertain and Disc perform quite well on some
datasets while badly on others. A possible explanation is
that the goal of active leaning is to learn a classifier which
accurately predicts the labels of new examples so their cri-
teria are not directly related to maximize the probability of
success aside from the intent to learn the prediction. After
enough iterations when active learning methods presum-
ably have the ability to achieve a good estimator of w*,
their performance will be enhanced. Thompson sampling
works in general quite well as reported in other literature
(Chapelle & Li, 2011). Yet, KG has a better performance
especially during the early iterations. In the case when an
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Figure 4. Opportunity cost on UCI and synthetic datasets.

experiment is expensive and only a small budget is allowed,
the KG policy, which is designed specifically to maximize
the response, is preferred.

We also note that KG works better than EI in most cases,
especially in Fig. 4(b), 4(c) and 4(e). Although both KG
and EI work with the expected value of information, when
EI decides which alternative to measure, it ignores the po-
tential change of the posterior distribution resulting from
the next (stochastic) outcome y.

Finally, KG, EI and TS outperform the naive use of UCB
policies on the latent function w”  due to the errors in the
variance introduced by the nonlinear transformation. At
each time step, the posterior of log ﬁ is approximated
as a Gaussian distribution. An upper confidence bound
on log lfép does not translate to one on p with binary out-
comes. In the meantime, KG, EI and TS make decisions in
the underlying binary outcome probability space and find
the right balance of exploration and exploitation.

7. Conclusion

In this paper, we consider sequential decision making prob-
lems with binary outcomes where we have to run expensive
experiments, forcing us to learn the most from each exper-
iment. With a small budget of measurements, the goal is
to identify the alternative with the highest probability of
success as quickly as possible. Due to the sequential na-
ture of this problem, we develop a fast online Bayesian lin-
ear classifier for general response functions. We propose
a knowledge gradient policy using Bayesian linear classifi-
cation belief models, for which we develope an approxima-
tion method to overcome computational challenges in find-
ing the knowledge gradient. Other than a focus on offline
optimization, we extend the knowledge gradient policy to
bandit settings to minimize regret. We provide a finite-time
analysis on the estimated error, and report the results of a
series of experiments that demonstrate its efficiency.
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