
A. Proof for Sparse Principal Submatrix
Estimation

Before we establish the proof of Theorem 1, we present
a corollary of Theorem 2.2 of [8]. Let � be a quantity
that scales with s⇤ and d. It establishes the sufficient
conditions under which distinguishing �⇤

= 0 and �⇤
=

� is impossible. Recall P(s⇤, d) denotes the distribution
family specified in §2.1.

Corollary 8. We consider testing H
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H
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X, if �2

(s⇤)4/d2=o(1) and lim sup�2s⇤/ log(d/s⇤)<
C, there exist P
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, such that
inf
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 � 1/4.

Here C > 0 is an absolute constant.

Proof. Theorem 2.2 of [8] gives a similar result for X
with Gaussian entries. Therefore, their P

0

and P
1

fall
within P(s⇤, d) specified in §2.1 up to rescaling of vari-
ance. Besides, it is worth noting that [8] do not assume
X is symmetric. Nevertheless, the proof for symmetric X
follows similarly from their proof.

Equipped with Corollary 8, we are now ready to prove
Theorem 1.

Proof of Theorem 1. We consider testing hypotheses H
0

:

�⇤
0

= 0 and H
1

: �⇤
1

= � with

� = C
p

1/s⇤ · log(d/s⇤), (A.1)
where C is an absolute constant that is sufficiently small.
By Corollary 8, there exist P

0

,P
1

2 P(s⇤, d) correspond-
ing to H

0

and H
1

, such that for any test � : Rd⇥d !
{0, 1},
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 � 1/4, (A.2)

for �(s⇤)2/d = o(1).

We consider a specific test �
�

b�
�

based on b�, which is
defined as �
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= 1
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. From (A.2) we have
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 � 1/4. (A.3)

Here the first inequality holds because under H
0

, �
�

b�
�

=

1 implies
�
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b� � �⇤
0

�

� � �/2 by definition and under H
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,
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� � �/2. Here the second last
inequality holds because �
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is a specific class of tests.

Consequently, we have
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where the second inequality is from Markov’s inequality
and the last is from (A.3). By plugging (A.1) into (A.4),
we reach the conclusion.

In the sequel, we prove the upper bound in Proposition 2.

Proof of Proposition 2. For integer s > 0, we denote by
Vs the set of v 2 Rd with exactly s entries being one and
the others being zero. By definition, in (2.1) we have

sup

S✓[d]
|S|=s⇤

X

(i,j)2S⇥S
Xi,j = sup

v2Vs⇤
v>Xv/2. (A.5)

Recall that by our definition we have Xi,i = 0 for all
i 2 [d] and EX = ⇥. Note that
�

�

�

�
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�

�.

(A.6)

Since X ⇠ P 2 P(s⇤, d), for any fixed v 2 Vs⇤ , v>
(X�

⇥)v is twice the summation of s⇤(s⇤�1)/2 independent
sub-Gaussian random variables that have mean zero and
 
2

-norm at most one. Hence, for any fixed v 2 Vs⇤ we
have
P
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�v>
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.

Then by union bound, we have
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d
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◆
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1� Ct2/[s⇤(s⇤ � 1)]
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1� Ct2/[s⇤(s⇤ � 1)] + s⇤ log(d/s⇤)
 

.

Setting the right-hand side to be �, we obtain

t = C
p

log(e/�) + s⇤ log(d/s⇤) ·
p

s⇤(s⇤ � 1). (A.7)
Plugging (A.7) into (A.6), we have that with probability
at least 1� �,
�

�

�
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v>⇥v
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�

 C
p

log(e/�) + s⇤ log(d/s⇤) ·
p

s⇤(s⇤ � 1).

Note that supv2Vs⇤
v>⇥v = s⇤(s⇤ � 1) · �⇤. Then by

(2.1) and (A.5) we obtain that
�

�

b�scan � �⇤�
�  C

p

log(e/�) + s⇤ log(d/s⇤)
�

p

s⇤(s⇤ � 1)

holds with probability at least 1� �. Setting � = 1/d, we
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reach the conclusion.

In the following we prove Proposition 4.

Proof of Proposition 4. We have
P
�

�

�

b�max � �⇤�
� � t

�

(A.8)

 P
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�

�

�

sup

i,j2[d]
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i,j2[d]

⇥i,j

�

�

�

� t
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 P
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i,j2[d]

|Xi,j �⇥i,j | � t
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 d2 · P(|Xi,j �⇥i,j | � t),

where the last inequality follows from union bound. Since
EXi,j = ⇥i,j , we have E(Xi,j � ⇥i,j) = 0. Moreover,
we know that kXi,j �⇥i,jk 2  1. By the definition of
sub-Gaussian random variable, we have

P(|Xi,j �⇥i,j | � t)  exp

�

1� Ct2
�

. (A.9)
Substituting (A.9) into (A.8), we obtain

P
�
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(A.10)

= exp

�

1� Ct2 + 2 log d
�

.

Setting the right hand side of (A.10) to be 1/d, and solv-
ing for t, we obtain with probability at least 1 � 1/d
that

�

�

b�max � �⇤�
�  C

p

log d.

This completes the proof.

B. Proof for Stochastic Block Model
In this section, we present the detailed proofs of the main
results for edge probability estimation in stochastic block
model. We need the following lemma from [1], which pro-
vides the sufficient conditions under which the hypotheses
H

0

: �⇤
0

= p
0

and H
1

: �⇤
1

= p
1

are not distinguishable.
Recall A denotes the adjacency matrix and P(s⇤, d) de-
notes the distribution family specified in §2.2.

Lemma 9. We consider testing H
0

: �⇤
0

= p
0

against
H

1

: �⇤
1

= p
1

. For any test � : Rd⇥d ! {0, 1}
based on A, assuming (s⇤)2(p
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� p
0

)/(
p
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� p
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)
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0

) log(d/s⇤)] < 1 and
log(d/s⇤)/(s⇤p
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) = o(1), we have
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P
0
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 � 1/4,

where P
0

,P
1

2 P(s⇤, d) are distributions corresponding
to H

0

and H
1

.

Now we are ready to lay out the proof of Theorem 5.

Proof of Theorem 5. The proof strategy is similar to The-
orem 1. In the sequel, we assume e�⇤ is known, since
the obtained lower bound implies the lower bound for
unknown e�⇤. We invoke Lemma 9 with p

0

=

e�⇤ and

p
1

=

e�⇤
+ �, where

� = C
p

1/s⇤ · log(d/s⇤). (B.1)

Then we have that for any test � : Rd⇥d ! {0, 1} based
on the adjacency matrix A, it holds that
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 � 1/4, (B.2)

for (s⇤)2�/d = o(1) and log(d/s⇤)
��

s⇤e�⇤�
= o(1).

It is easy to verify the conditions in (B.2) are implied
by the conditions of Theorem 5 and (B.1). Following
the derivation of (A.4) in the proof of Theorem 1, we
consider a specific test �
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where the equality is obtained by plugging �⇤
0

and �⇤
1

.
The first inequality holds becasuse �

�

b�
�

= 1 implies
�

�

b� � e�⇤�
� � �/2, and �

�

b�
�

= 0 implies
�

�

b� � e�⇤ � �
�

� �
�/2. From (B.3) we obtain

inf

b�
sup

P2P(s⇤,d)

EP
�

�

b� � �⇤�
�

� inf max

n

EP0

�

�

b� � �⇤
0

�

�, EP1

�

�

b� � �⇤
1

�

�

o

� �/2 · inf
b�
max

n

P
0

�

�

�

b� � �⇤
0

�

� � �/2
�

,

P
1

�

�

�

b� � �⇤
1

�

� � �/2
�

o

� �/8,

where � is defined in (B.1), the second inequality follows
from Markov’s inequality. This concludes the proof.

In the following, we prove Proposition 6.

Proof of Proposition 6. The proof is similar to Proposi-
tion 2. We only need to note that A�E[A] is a symmetric
matrix, whose entires within the upper-right triangle are
independently sub-Gaussian and satisfy

kAi,j � EAi,jk 2  1, for all i < j,

since Ai,j is Bernoulli and |Ai,j � EAi,j |  1. Then
replacing X with A in the proof of Proposition 2, we
reach the conclusion.

In the following, we lay out the proof of Theorem 7.

Proof of Theorem 7. We consider a specific distribution
in P(s⇤, d) under which the edge probability �⇤

=

e�⇤
=

1/2. Let A = A + Id. Under such a distribution, we
construct a matrix ⇧(`) 2 Rd(`)⇥d(`)

, which is a feasible
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solution to the `-th level SoS optimization problem with
high probability. Then we prove the objective value corre-
sponding to ⇧(`) is one, which implies that the maximum
of the respective SoS program is at least one with high
probability.

Different from the proof of Theorem 3, we define the
expansivity ⌘

�S,A�

of S ✓ [d] as the number of sets
S 0 ✓ [d] satisfying |S 0| = 2`, S ✓ S 0 and AS0,S0

=

1
2`,2`. Note ⌘

�S,A�

is nonzero only if AS,S = 1|S|,|S|.
Therefore, ⌘

�S,A�

gives the number of A’s submatrices
which are extended from AS,S and have size 2`⇥2` with
all entries being one. Recall that each entry ⇧(`)

C1,C2
of ⇧(`)

are indexed by collections C
1

and C
2

, and M(C
1

) and
M(C

1

) are the corresponding sets, which have distinct
elements. Similar to (5.1), we construct each entry of
⇧(`) as

⇧

(`)
C1,C2

=

⌘
⇥

M(C
1

) [M(C
2

),A
⇤

⌘
�;,A� (B.4)

· s⇤!/[s⇤ � |M(C
1

) [M(C
2

)|]!
(2`)!/[2`� |M(C

1

) [M(C
2

)|]! .

Note that the construction of ⇧(`)
C1,C2

is exactly the same
as (5.1), except that we replace X with A. Also, by the
same calculation as in the proof of Theorem 3, we can
verify ⇧(`) defined in (B.4) satisfies the constraints of
`-th level SoS optimization problem.

Next we calculate the value of objective function corre-
sponding to ⇧(`). Note that

d
X

i,j=1

Ai,j⇧
(`)
{i},{j} =

d
X

i,j=1

1
�

Ai,j = 1

� ·⇧(`)
{i},{j}

=

d
X

i,j=1

⇧
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{i},{j}.

Here both equalities hold because according to the def-
inition of ⌘

�·,A�

, it holds that ⌘
�{i, j},A�

= 0 for
Ai,j 6= 1, which implies ⇧

(`)
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Moreover, we have
d
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i,j=1

⇧

(`)
{i},{j} =

d
X

j=1

d
X

i=1

⇧
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{i},{j}

=

d
X

j=1

s⇤⇧(`)
;,{j} = s⇤

d
X

j=1

⇧

(`)
{j},; = s⇤ · s⇤⇧(`)

;,; = (s⇤)2,

where the third and second last equalities are from the
constraint

Pd
i=1

⇧

(`)
C1+{i},C2

= s⇤⇧(`)
C1,C2

, while the last

is from ⇧

(`)
;,; = 1. Recall that the objective function is

equivalent to

1

s⇤(s⇤ � 1)

d
X

i,j=1

Ai,j⇧
(`)
{i},{j}

=

1

s⇤(s⇤�1)

d
X

i,j=1

Ai,j⇧
(`)
{i},{j}�

1

s⇤(s⇤�1)

d
X

i=1

⇧

(`)
{i},{i}

=

(s⇤)2 � s⇤

s⇤(s⇤ � 1)

= 1.

Here the last equality holds because we have
d
X

i=1

⇧

(`)
{i},{i} =

d
X

i=1

⇧

(`)
{i},; = s⇤⇧(`)

;,; = s⇤,

where the first equality follows from the constraints
⇧

(`)
C1+{i,i},C2

= ⇧

(`)
C1+{i},C2

and ⇧

(`)
C1,C2

= ⇧

(`)
C0
1,C0

2
for C

1

+

C
2

= C0
1

+C0
2

, and the second is from
Pd

i=1

⇧

(`)
C1+{i},C2

=

s⇤⇧(`)
C1,C2

. Therefore, the objective value corresponding
to ⇧(`) is one. Because b� 2 H(`) is the maximum of the
`-th level SoS program or its relaxed versions, so far we
obtain

P
�

b� � 1 | ⇧(`) ⌫ 0

�

= 1. (B.5)
According to the same proof of Theorem 3, we have
⇧(`) ⌫ 0 holds with probability at least 1/2 for s⇤ =

o
�⇥

d/(log d)2
⇤

1/2` . Also, according to (B.5) and our
setting that �⇤

= 1/2, from Markov’s inequality we have

E
�

�

b� � �⇤�
� � 1/2 · P���b� � �⇤�

� � 1/2
�

(B.6)

� 1/2 · P�b� � 1 | ⇧(`) ⌫ 0
� · P�⇧(`) ⌫ 0

� � 1/4,

for any b� 2 H(`) and s⇤ = o
�⇥

d/(log d)2
⇤

1/2` . Recall
that our construction of distribution is within P(s⇤, d).
Hence we conclude the proof.
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