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Abstract
Many high dimensional sparse learning problems
are formulated as nonconvex optimization. A pop-
ular approach to solve these nonconvex optimiza-
tion problems is through convex relaxations such
as linear and semidefinite programming. In this
paper, we study the statistical limits of convex
relaxations. Particularly, we consider two prob-
lems: Mean estimation for sparse principal subma-
trix and edge probability estimation for stochas-
tic block model. We exploit the sum-of-squares
relaxation hierarchy to sharply characterize the
limits of a broad class of convex relaxations. Our
result shows statistical optimality needs to be com-
promised for achieving computational tractability
using convex relaxations. Compared with existing
results on computational lower bounds for statisti-
cal problems, which consider general polynomial-
time algorithms and rely on computational hard-
ness hypotheses on problems like planted clique
detection, our theory focuses on a broad class of
convex relaxations and does not rely on unproven
hypotheses.

1. Introduction
A broad variety of high dimensional statistical problems are
formulated as nonconvex optimization. For example, sparse
estimation can be formulated as optimization under `

0

-norm
constraints, where the `

0

-norm is a pseudo-norm defined
as the number of nonzero elements in a vector. To solve
these nonconvex optimization problems, a popular approach
is to resort to convex relaxations. Particularly, for sparse
estimation, significant progress has been made by using
`
1

-norm as a convex relaxation for the nonconvex `
0

-norm
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(see, e.g., (Bühlmann & van de Geer, 2011; Chandrasekaran
et al., 2012) and the references therein).

In this paper, we study the statistical limits of convex relax-
ations. In particular, we focus on the sum-of-squares (SoS)
hierarchy of convex relaxations (Lasserre, 2001; Parrilo,
2000; 2003), which is made up of a sequence of increasingly
tighter convex relaxations based on semidefinite program-
ming. We study the SoS hierarchy because it attains tighter
approximations than other hierarchies such as the hierar-
chies proposed by (Sherali & Adams, 1990) and (Lovász &
Schrijver, 1991), as well as their extensions (see (Laurent,
2003) for a comparison). Hence, the estimators in the SoS
hierarchy achieve superior statistical performance than the
estimators within other weaker hierarchies, which suggests
the statistical limits of the SoS hierarchy are also the limits
of weaker hierarchies.

To demonstrate the statistical limits of convex relaxations,
we focus on the examples of sparse principal submatrix esti-
mation and stochastic block model estimation. In detail, for
sparse principal submatrix estimation, we assume there is a
s⇤⇥ s⇤ submatrix with elevated mean �⇤ on the diagonal of
a d⇥ d noisy symmetric matrix. For stochastic block model
estimation, we assume there exists a dense subgraph with
s⇤ nodes planted in an Erdős-Rényi graph with d nodes. We
denote by �⇤ the edge probability of the subgraph. For both
examples, our goal is to estimate �⇤ under a challenging
regime where s⇤ = o

⇥

(d/
p
log d)2/3

⇤

and log d = o(s⇤).
We prove the following information-theoretic lower bound

inf

b�
sup

P2P(s⇤,d)

EP
�

�

b� � �⇤�
� � C

p

1/s⇤ · log(d/s⇤), (1.1)

where b� denotes any estimator, P(s⇤, d) is the distribution
family to be specified later and C is an absolute constant.
We prove that a computational intractable estimator b�scan

(to be specified later) attains the lower bound in (1.1). In
order to achieve computational tractability, we consider
convex relaxations of b�scan that fall within the SoS and
weaker hierarchies, which are denoted by H. Let C 0 be
a positive absolute constant. We prove that under certain
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conditions,
inf

b�2H
sup

P2P(s⇤,d)

EP
�

�

b� � �⇤�
� � C 0. (1.2)

Together with (1.1), (1.2) illustrates the statistical limita-
tions of a broad class of convex relaxations. Ignoring the
logarithmic factor, (1.1) and (1.2) suggest there exists a gap
of

p
s⇤ between the limits for any estimator and the limits

for estimators within the hierarchies of convex relaxations.
Hence, this result shows statistical optimality must be sac-
rificed for gaining computational tractability with convex
relaxations. For sparse principal submatrix estimation, we
prove that a linear-time estimator within H attains the lower
bound in (1.2) up to a logarithmic factor, and is therefore
nearly optimal within a general family of convex relaxations.

Our work is closely related to a recent line of research on
computational barriers for statistical problems (Arias-Castro
& Verzelen, 2014; Berthet & Rigollet, 2013a;b; Cai et al.,
2015; Chen & Xu, 2014; Gao et al., 2014; Hajek et al., 2014;
Krauthgamer et al., 2013; Ma & Wu, 2013; Wang et al.,
2014; Zhang et al., 2014). Under various computational
hardness hypotheses on problems like planted clique detec-
tion, these works quantify the gap between the information-
theoretic limits and the statistical accuracy achievable by
polynomial-time algorithms. For this purpose, their proofs
are based on polynomial-time reductions from hard compu-
tational problems to statistical problems. In contrast with
these works, we focus on the statistical limits of a broad
class of convex relaxations rather than all polynomial-time
algorithms. Correspondingly, our theory does not hinge on
unproven computational hardness hypotheses, and our proof
is based on constructions rather than reductions. Also, based
on another perspective, (Chandrasekaran & Jordan, 2013)
study the tradeoffs between computational complexity and
statistical performance for normal mean estimation via hi-
erarchies of convex relaxations. Their results are based on
hierarchies of convex constraints, which are obtained by
successively weakening the cone representation of the origi-
nal constraint set. In comparison, our results are based on
hierarchies of convex relaxations of the optimization prob-
lem itself rather than the constraints, which are obtained
by successively tightening a basic semidefinite relaxation
using variable augmentation techniques. In addition, our
work is connected to previous works on the SoS and other
convex relaxation hierarchies (see, e.g., (Barak & Moitra,
2015; Barak & Steurer, 2014; Chlamtac & Tulsiani, 2012;
Ma & Wigderson, 2015; Meka et al., 2015) and the refer-
ences therein). In particular, the key construction of feasible
solutions in our proof is based on the dual certificates de-
signed for the maximum clique problem, which is proposed
by (Meka et al., 2015).

The rest of this paper is organized as follows. In §2 we
introduce the statistical models. In §3 we present the SoS
hierarchy of convex relaxations and apply it to estimate the

models in §2. In §4 we establish the main results and lay
out the proofs in §5. In §6 we conclude the paper.

2. Statistical Model
In the sequel, we briefly introduce the statistical models
considered in this paper. Then we present several common
estimators for them.

2.1. Sparse Principal Submatrix Estimation

Let X 2 Rd⇥d be a random matrix from distribution P and
E(X) = ⇥. We assume there exists an index set S⇤ ✓ [d]
with |S⇤| = s⇤ that satisfies ⇥i,j = �⇤ for i 6= j and
(i, j) 2 S⇤ ⇥ S⇤, while ⇥i,j = 0 for i 6= j and (i, j) /2
S⇤ ⇥ S⇤. Here �⇤ � 0 is the signal strength. For all i < j,
we assume that Xi,j’s are independently sub-Gaussian with
E(Xi,j) = ⇥i,j and kXi,j � ⇥i,jk 2  1. In addition,
we assume that Xi,i = 0 and Xi,j = Xj,i. We aim to
estimate the signal strength �⇤. For simplicity, hereafter we
assume s⇤ is known. We denote by P(s⇤, d) the family of
distribution P’s satisfying the above constraints.

This estimation problem is closely related to the problems
considered by (Butucea & Ingster, 2013; Butucea et al.,
2013; Cai et al., 2015; Kolar et al., 2011; Ma & Wu, 2013;
Shabalin et al., 2009; Sun & Nobel, 2013). These works con-
sider the detection problem and the recovery of S⇤, while
we consider the estimation of signal strength. Besides, we
focus on symmetric X for simplicity.

We consider the following estimator for �⇤ proposed by
(Butucea & Ingster, 2013),

b�scan

=

1

s⇤(s⇤ � 1)

sup

S✓[d]
|S|=s⇤

X

(i,j)2S⇥S
Xi,j , (2.1)

where |S| is the cardinality of set S. The intuition behind
b�scan is to exhaustively search all principal submatrices of
cardinality s⇤ and calculate the average of all entires within
each principal submatrix. In §4 we will prove that b�scan

attains the information-theoretic lower bound for estimat-
ing �⇤ within P(s⇤, d) under a challenging regime where
s⇤ = o

⇥

(d/
p
log d)2/3

⇤

. Nevertheless, it is computationally
intractable to obtain b�scan. In §3 we will introduce con-
vex relaxations of b�scan. We also consider the following
computational tractable estimators

b�avg

=

1

s⇤(s⇤ � 1)

d
X

i,j=1

Xi,j , b�
max

= max

i,j2[d]
Xi,j (2.2)

for further discussion in §4.

2.2. Stochastic Block Model

We consider the estimation of edge probability in a dense
subgraph with s⇤ nodes planted within an Erdős-Rényi
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graph with d nodes. If a pair of nodes are within the sub-
graph, they are independently connected with edge prob-
ability �⇤ 2 [0, 1]. Otherwise, they are independently
connected with edge probability e�⇤ 2 [0,�⇤

]. We denote
P(s⇤, d) to be the distribution family of graphs which sat-
isfy the above constraints and by A 2 Rd⇥d the adjacency
matrix. We assume Ai,i = 0 for all i 2 [d] and s⇤ is known.
Similar to principal submatrix estimation, we focus on the
challenging regime with s⇤ = o

⇥

(d/ log d)2/3
⇤

. Addition-
ally, we assume log(d/s⇤)

��

s⇤e�⇤�
= o(1) so that s⇤ is not

too small.

This estimation problem is connected to the ones studied
by (Arias-Castro & Verzelen, 2014; Bhaskara et al., 2010;
Chen & Xu, 2014; Coja-Oghlan, 2010; Decelle et al., 2011;
Fortunato, 2010; Hajek et al., 2014; Kučera, 1995; Mas-
soulié, 2014; Meka et al., 2015; Mossel et al., 2012; 2013;
Verzelen & Arias-Castro, 2013). However, we mainly fo-
cus on estimating the edge probability of the dense sub-
graph rather than detection or recovery of subgraphs. Also,
we assume that the dense subgraph and its size are fixed
rather than random as in some of the existing works. To
estimate �⇤, we use b�scan and b�max defined in (2.1) and
(2.2) with Xi,j replaced by Ai,j . Though stochastic model
estimation is closely related to sparse principal submatrix
estimation, in §4 we will illustrate that the respective upper
and lower bounds have subtle differences because of the
different deviations of Bernoulli random variables and gen-
eral sub-Gaussian random variables, which possibly have
unbounded support.

3. Convex Relaxation Hierarchy
In this section, we first introduce some specific notations
which will greatly simplify our presentation. Then we intro-
duce the SoS hierarchy for b�scan defined in (2.1).

Notation: We define a collection C to be an unordered array
of elements, where each element can appear more than once.
For instance, {1}, {1, 2} and {1, 1} are all collections. Let
the summation between two collections be the combination
of all elements in them, e.g., for C

1

= {1, 2}, C
2

= {1, 3}
we have C

1

+ C
2

= {1, 1, 2, 3}. Note that a collection is
different from a set, because a set has distinct elements. Let
the merge operation M(·) on a collection be the operation
that eliminates the duplicate elements and outputs a set, e.g.,
for C = {1, 1, 2, 2, 3} we have M(C) = {1, 2, 3}, which
is a set. We use |C| and |S| to denote the cardinality of a
collection and a set. Also, we denote by C

1

= C
2

if they
contain the same elements. For integer ` � 0, we define
d(`) =

P`
i=0

di for notational simplicity.

Note that b�scan in (2.1) can be reformulated as
b�scan

= max

v2Vs⇤
v>Xv/[s⇤(s⇤ � 1)], (3.1)

where Vs⇤ =

⇢

v : v 2 {0, 1}d,
d
X

i=1

vi = s⇤
�

.

Because (3.1) involves maximizing a convex function sub-
ject to nonconvex constraints, it is computational intractable
to solve. Note that v>Xv = tr

�

Xvv>� in (3.1). We can
reparameterize vv> to be a d ⇥ d positive semidefinite
matrix with rank one. For notational simplicity, we define

Y =



0 0
1⇥d

0d⇥1

X

�

, v
0

= 1, (3.2)

⇧ =

�

1,v>�>�
1,v>�

=

2

6

6

6

4

1 ⇧

0,1 . . . ⇧

0,d

⇧

1,0 ⇧

1,1 . . . ⇧

1,d

...
...

. . .
...

⇧d,0 ⇧d,1 . . . ⇧d,d

3

7

7

7

5

.

Here Y,⇧ 2 R(d+1)⇥(d+1) and 0d1⇥d2 denotes a d
1

⇥ d
2

matrix whose entries are all zero. Meanwhile, note that Vs⇤

defined in (3.1) can be reformulated as

Vs⇤ =

⇢

v :

d
X

i=1

vi=s⇤, v2i �vi=0, 8i2 [d]

�

. (3.3)

According to the reparametrization in (3.2), it holds that
⇧i,j = vivj for all i, j 2 {0, . . . , d}. Hence, from (3.1) we
obtain the following semidefinite program

max

⇧
tr(Y⇧)/[s⇤(s⇤ � 1)], (3.4)

subject to
d
X

i=1

⇧i,0 = s⇤, ⇧
0,0 = 1, ⇧ ⌫ 0,

⇧i,j = ⇧j,i, ⇧i,i = ⇧i,0 for all i, j 2 {0, 1, . . . , d},
in which

Pd
i=1

⇧i,0 = s⇤ corresponds to
Pd

i=1

vi = s⇤,
⇧i,j = ⇧j,i corresponds to vivj = vjvi, while ⇧i,i = ⇧i,0

corresponds to v2i �vi = 0. Note that if rank(⇧) = 1, then
from our reparametrization in (3.2), the maximum of (3.4)
equals the maximum of (3.1). However, we drop this rank
constraint since it is nonconvex, and hence (3.4) is a convex
relaxation of (3.1).

The SoS hierarchy is obtained by increasingly tightening
the basic semidefinite program in (3.4) using variable aug-
mentation techniques. In particular, the reparametrization
in (3.4) only involves the second order interaction between
vi and vj . For integer ` � 1, we consider a d(`) ⇥ d(`)

matrix ⇧(`), where d(`) =

P`
i=0

di in our notations. For
notational simplicity, we index the entries of ⇧(`) using
collections C

1

and C
2

with |C
1

|, |C
2

|  `, whose elements
are indices 1, . . . , d. Our reparametrization takes the form

⇧

(`)
C1,C2

=

Y

i2C1

vi
Y

j2C2

vj =
Y

i2C1+C2

vi. (3.5)
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In particular, for C = ; we define
Q

i2C vi = 1. The `-th
level SoS relaxation of (3.1) takes the form
max

⇧
tr

�

Y(`)⇧(`)
�

/[s⇤(s⇤ � 1)], subject to (3.6)

d
X

i=1

⇧

(`)
{i}+C1,C2

= s⇤⇧(`)
C1,C2

, for all |C
1

|`�1, |C
2

|`,

⇧

(`)
{i,i}+C1,C2

= ⇧

(`)
{i}+C1,C2

,

for all i2 [d], |C
1

|`�2, |C
2

|`,

⇧

(`)
C1,C2

= ⇧

(`)
C0
1,C0

2
,

for all C
1

+ C
2

= C0
1

+ C0
2

, |C
1

|, |C
2

|, |C0
1

|, |C0
2

|  `,

⇧

(`)
;,; = 1, ⇧(`) ⌫ 0,

where Y(`) 2 Rd(`)⇥d(`)

is defined as

Y(`)
=

2

6

6

6

4

0 0
1⇥d . . . 0

1⇥d`

0d⇥1

X . . . 0d⇥d`

...
...

. . .
...

0d`⇥1

0d`⇥d . . . 0d`⇥d`

3

7

7

7

5

.

Note that the first constraint in (3.6) is corresponding to the
reparametrization in (3.5) and
Y

j2C
vj

✓ d
X

i=1

vi

◆

= s⇤
Y

j2C
vj , for all |C|  2`� 1,

which is equivalent to
Pd

i=1

vi = s⇤ in (3.3). The second
constraint corresponds to (3.5) and

Y

j2C
vj · v2i =

Y

j2C
vj · vi, for all |C|  2`� 2,

which is equivalent to v2i � vi = 0 in (3.3). Also, the third
constraint corresponds to (3.5) and

Y

j2C1+C2

vj =
Y

j2C0
1+C0

2

vj ,

for all C
1

+ C
2

= C0
1

+ C0
2

, |C
1

|, |C
2

|, |C0
1

|, |C0
2

|  `.

The last constraint that ⇧(`)
;,; = 1 follows from (3.5) and our

definition that
Q

i2C vi = 1 for C = ;. For ` = 1, (3.6)
reduces to the basic semidefinite relaxation in (3.4). We
denote by b�(`)

SoS

the maximum of (3.6). We have
b�scan  · · ·  b�(`)

SoS

 · · ·  b�(2)

SoS

 b�(1)

SoS

,

since we have more constraints in (3.6) for a larger `. Thus,
for a larger ` (3.6) gives a tighter convex relaxation of (3.1).
Meanwhile, note that the semidefinite program in (3.6) can
be solved in O

�

dO(`)
�

operations. Hereafter we focus on
the settings where ` does not increase with d.

(Laurent, 2003) proves that other existing convex relaxation
hierarchies, such as Sherali-Adams and Lovász-Schrijver hi-
erarchies as well as their extensions, are weaker than the SoS
hierarchy in the sense that b�scan  b�(`)

SoS

 b�(`)
other

, where
b�(`)
other

denotes the `-th level of other weaker hierarchies.

Note that relaxing constraints and objectives in the convex
relaxations also leads to looser approximations of b�scan.
Hence, we denote by H(`) the class of estimator b�’s that fall
in the `-th level of the SoS and weaker hierarchies, as well
as their weakened versions obtained by relaxing constraints
and objectives. By this definition, we have H(1) ✓ H(2) · · · .
For example, for ` > 1 we can drop constraints in (3.6) to
obtain (3.4), which corresponds to ` = 1. In particular, from
(3.1) we have

b�scan

= max

v2Vs⇤

v>Xv

s⇤(s⇤ � 1)

 max

u,v2Vs⇤

u>Xv

s⇤(s⇤ � 1)

 max

u,v2Vs⇤

u>Xv

s⇤(s⇤ � 1)

 max

⌦2Ws⇤

tr(X⌦)

s⇤(s⇤ � 1)

, (3.7)

where Vs⇤ =

⇢

v :

d
X

i=1

vi=s⇤, vi�0, 8i2 [d]

�

,

Ws⇤ =

⇢

⌦ :

d
X

i=1

⌦i,j=(s⇤)2, ⌦i,j�0, 8i, j2 [d]

�

.

Here Vs⇤ is a linear programming relaxation of Vs⇤ . Note
that the right-hand side of (3.7) is equal to s⇤/(s⇤�1)·b�max,
where b�max is defined in (2.2). Therefore, s⇤/(s⇤�1)·b�max

can be viewed as a linear programming relaxation of b�scan,
which falls in H(1) (see, e.g., §2 of (Chlamtac & Tulsiani,
2012) for details). It is also worth noting that the SoS
hierarchy has several equivalent formulations. See, e.g.,
Theorem 2.7 of (Barak & Steurer, 2014) for a proof of such
equivalence.

4. Main Result
As defined in §3, H(`) denotes the `-th level of the convex
relaxation hierarchy for b�scan defined in (2.1). For stochas-
tic block model, we replace X in (2.1) with the adjacency
matrix A respectively.

4.1. Sparse Principal Submatrix Estimation

In the following, we present the main theoretical results for
estimating the signal strength of sparse principal subma-
trix. In the sequel we establish the information-theoretic
lower bound for estimating �⇤ within the distribution family
P(s⇤, d) defined in §2.1.

Theorem 1. For all estimators b� constructed using X ⇠
P 2 P(s⇤, d) and s⇤ = o

⇥

(d/
p
log d)2/3

⇤

, there exists an
absolute constant C > 0 such that

inf

b�
sup

P2P(s⇤,d)

EP
�

�

b� � �⇤�
� � C

p

1/s⇤ · log(d/s⇤).

Proof. See §A for a detailed proof.

In Theorem 1 we consider a challenging regime. More
specifically, a straightforward calculation shows that



Statistical Limits of Convex Relaxations

b�avg defined in (2.2) achieves the d/(s⇤)2 rate of con-
vergence. For s⇤ = o

⇥

(d/
p
log d)2/3

⇤

, we have
p

1/s⇤ · log(d/s⇤) = o
⇥

d/(s⇤)2
⇤

. Thus, there exists a
gap between the rate attained by b�avg and the information-
theoretic lower bound. We will show that there is also such
a gap for b�max. The next proposition shows b�scan in (2.1)
attains the information-theoretic lower bound in Theorem 1.

Proposition 2. For b�scan defined in (2.1) with Xi,j being
the (i, j)-th entry of X ⇠ P 2 P(s⇤, d), we have that

�

�

b�scan � �⇤�
�  C

p

1/s⇤ · log(d/s⇤)
holds with probability at least 1 � 1/d for some absolute
constant C > 0.

Proof. See §A for a detailed proof.

Theorem 1 and Proposition 2 show b�scan is statistically
optimal under the regime where s⇤ = o

⇥

(d/
p
log d)2/3

⇤

.
However, it is computationally intractable to obtain b�scan.
Thus, we consider the family of convex relaxations of b�scan

within the `-th level SoS and weaker hierarchies as well
as their further relaxations, which is denoted by H(`). In
the sequel, we establish a minimax lower bound for the
statistical performance of all estimators within H(`). Recall
that P(s⇤, d) is the distribution family defined in §2.1.

Theorem 3. We assume that s⇤ = o
�⇥

d/(log d)2
⇤

1/2` .
There is an absolute constant C > 0 such that

inf

b�2H(`)
sup

P2P(s⇤,d)

EP
�

�

b� � �⇤�
� � C.

Proof. See §A for a detailed proof.

Note that the regime considered in Theorem 3 is within
the challenging regime considered in Theorem 1. Under
this regime, Theorem 3 proves that any estimator within
the convex relaxation hierarchy fails to attain a statistical
rate that decreases when s⇤ is increasing. A comparison
between Theorems 1 and 3 illustrates that there exists a gap
of

p
s⇤ (ignoring the log d factor) between the information-

theoretic lower bound and the statistical rate achievable by a
broad class of convex relaxations. In other words, to achieve
computational tractability via convex relaxations, we have
to compromise statistical optimality.

It is worth noting that this gap between computational
tractability and statistical optimality is effective under the
regime s⇤ = o

�⇥

d/(log d)2
⇤

1/2` , which shrinks as ` in-
creases. However, ` cannot increase with d and s⇤, because
otherwise the computational complexity required to solve
the convex relaxations increases exponentially, according to
our discussion in §3. For ` being any constant, the regime in
Theorem 3 is a nontrivial subset of the regime in Theorem 1.
As will be shown in our proof, s⇤ = o

�⇥

d/(log d)2
⇤

1/2` 

is a sufficient condition to establish the feasibility of the
constructed solution. In fact, for ` = 2, we can further

relax this condition to s⇤ = o
�

d1/3/ log d
�

with the results
of (Deshpande & Montanari, 2015). Under the regime in
Theorem 3, the next proposition shows that b�max defined
in (2.2) is nearly optimal under computational tractability
constraints.

Proposition 4. For b�max in (2.2), where Xi,j is the (i, j)-
th entry of X ⇠ P 2 P(s⇤, d), we have

�

�

b�max � �⇤�
�  C

p

log d

holds with probability at least 1 � 1/d for some absolute
constant C > 0.

Proof. See §A for a detailed proof.

According to (3.7) and the discussion in §3, we have
b�max 2 H(1) ✓ H(2) · · · . Thus b�max attains the mini-
max lower bound with computational constraints in Theo-
rem 3 for every ` up to a log d factor, which also suggests
that the lower bound in Theorem 3 is tight. Meanwhile,
note that the calculation of b�max in (2.2) requires O(d2)
operations, which is linear in the size of input. In con-
trast, tighter approximations in the `-th level SoS hierarchy
require O

�

dO(`)
�

operations. In practice, such a computa-
tional complexity is in general higher than the complexity
for calculating b�max. Theorem 3 indicates that this extra
computational cost can only result in limited possible im-
provements on the statistical rate of convergence, i.e., a
log d factor.

It is worth noting the gap between the lower bounds in The-
orems 1 and 3 vanishes when s⇤ is a constant that does not
increase with d. In this case, b�max achieves the information-
theoretic lower bound in Theorem 1. On the other hand,
b�scan is computational tractable to obtain in this case.

4.2. Stochastic Block Model

In this section, we present the main theory for edge prob-
ability estimation in stochastic block model. Recall that
P(s⇤, d) is the distribution family defined in §2.2. The fol-
lowing lemma establishes the information-theoretic lower
bound for estimating �⇤. Recall e�⇤ denotes the edge proba-
bility of the large Erdős-Rényi graph with d nodes.

Theorem 5. We assume that s⇤ = o
⇥

(d/
p
log d)2/3

⇤

and
log(d/s⇤)

��

s⇤e�⇤�
= o(1). There is an absolute constant

C > 0 such that
inf

b�
sup

P2P(s⇤,d)

EP
�

�

b� � �⇤�
� � C

p

1/s⇤ · log(d/s⇤).

Proof. See §B for a detailed proof.

Theorem 5 is similar to Theorem 1 but needs an extra con-
dition that log(d/s⇤)

��

s⇤e�⇤�
= o(1), which ensures s⇤ is

not too small. Recall each entry of the adjacency matrix A
is Bernoulli. (Arias-Castro & Verzelen, 2014) shows that a
larger s⇤ guarantees the moderate deviation of the Bernoulli
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distribution is in effect in the lower bound. Next, we prove
b�scan achieves the information-theoretic lower bound in
Theorem 5 and hence is optimal.

Proposition 6. For b�scan defined in (2.1), we have that with
probability at least 1� 1/d,

�

�

b�scan � �⇤�
�  C

p

1/s⇤ · log(d/s⇤).
Proof. See §B for a detailed proof.

The next theorem establishes the minimax lower bound on
the statistical performance of convex relaxations within H(`)

defined in §3.

Theorem 7. For s⇤ and d sufficiently large and s⇤ =

o
�⇥

d/(log d)2
⇤

1/2` , we have

inf

b�2H(`)
sup

P2P(s⇤,d)

EP
�

�

b� � �⇤�
� � 1/4.

Proof. See §B for a detailed proof.

Similar to Theorem 3, Theorem 7 shows the gap between
statistical optimality and computational tractability. Note
that �⇤ 2 [0, 1]. Meanwhile, it is easy to show P

�

b�max

=

1

� � 1� �1� e�⇤� d2�d
2 . Therefore, b�max exactly attains

such a minimax lower bound under computational con-
straints up to constants. From another point of view, for
s⇤ = o

�⇥

d/(log d)2
⇤

1/2` , every estimators within H(`) is
at most as accurate as the trivial estimator b� = 1.

Theorems 3 and 7 are similar. Note that for sparse princi-
pal submatrix estimation we consider sub-Gaussian entries,
while in the adjacency matrix for stochastic block model
each entry is Bernoulli. A direct way to establish The-
orem 3 is to adapt the construction of P in the proof of
Theorem 7, since Bernoulli is sub-Gaussian. However, as
illustrated in §A the information-theoretic lower bound in
Theorem 1 is established using the construction of P with
unbounded support. Correspondingly, we use a construction
of P with unbounded support to establish the lower bound
with computational constraints in Theorem 3. By matching
the constructions of P 2 P(s⇤, d) in the proofs of Theorems
1 and 3, we can sharply characterize the existence of thep
s⇤ gap particularly for sub-Gaussian distributions with

unbounded support.

5. Proof of Main Results
In the sequel, we present the proofs of the main results in
§4. Due to space limit, we lay out the proof of Theorem 3
for sparse principal submatrix estimation, which is one of
the major results, and defer the rest proofs to the appendix.

5.1. Proof of Theorem 3

Proof of Theorem 3. In this proof, we focus on specific dis-
tributions in P(s⇤, d) with �⇤

= 0. We consider Xi,j’s (i <
j) being sub-Gaussian random variables which satisfy the
constraints in §2.1. In addition, we assume that |Xi,j | � ⌫
almost surely and P(Xi,j > 0) = P(Xi,j < 0) = 1/2 for
all i < j and constant ⌫ > 0. Under such a distribution, we
construct a matrix ⇧(`) 2 Rd(`)⇥d(`)

, which is a feasible
solution to the `-th level SoS program in (3.6) with high
probability. We further prove that the objective value corre-
sponding to ⇧(`) is larger than ⌫, which indicates that the
maximum of the corresponding SoS program is at least ⌫
with high probability. In the rest of this proof, we denote
X+ ⌫ · Id to be X.

Hereafter, we denote by XS,S0 the submatrix of X whose
row indices are in S and column indices are in S 0. For
notational simplicity, we define the expansivity ⌘(S,X) of
some set S ✓ [d] to be the number of sets S 0 ✓ [d] that
satisfy |S 0| = 2`, S ✓ S 0 and sign

�

XS0,S0
�

= 1
2`,2`.

Here sign(X) is a matrix that satisfies [sign(X)]i,j = 1 if
Xi,j > 0 and [sign(X)]i,j = 0 if Xi,j  0. Note that
⌘(S,X) is nonzero only if Xi,j > 0 for all i 2 S, j 2 S.
Hence, ⌘(S,X) gives the number of X’s submatrices that
are extended from XS,S and have size 2` ⇥ 2` with all
entries being positive. It is worth noting that by definition
⌘(S,X) is a random quantity, which depends on the random
matrix X. Recall that each entry ⇧

(`)
C1,C2

of ⇧(`) are indexed
by collections C

1

and C
2

, and M(C
1

) and M(C
1

) are the
respective sets, which have distinct elements. Based on the
construction of dual certificates of (Meka et al., 2015), we
construct ⇧(`) as

⇧

(`)
C1,C2

=

⌘
⇥

M(C
1

) [M(C
2

),X
⇤

⌘
�;,X� (5.1)

· s⇤!/[s⇤ � |M(C
1

) [M(C
2

)|]!
(2`)!/[2`� |M(C

1

) [M(C
2

)|]! .

Now we verify ⇧(`) defined in (5.1) satisfies all the con-
straints of the `-th level SoS program in (3.6). First, we have
⇧

(`)
;,; = 1 from (5.1). Also, ⇧(`) satisfies ⇧(`)

C1,C2
= ⇧

(`)
C0
1,C0

2

for C
1

+ C
2

= C0
1

+ C0
2

, since
M(C

1

) [M(C
2

) = M(C
1

+ C
2

)

= M(C0
1

+ C0
2

) = M(C0
1

) [M(C0
2

)

by the definition of the merge operation M(·). Meanwhile,
it holds that ⇧(`)

C1+{i,i},C2
= ⇧

(`)
C1+{i},C2

for all C
1

and C
2

with |C
1

|  `� 2 and |C
2

|  `, since in (5.1) we have
M(C

1

+ {i, i}) [M(C
2

) = M(C
1

+ {i}) [M(C
2

).

Now we prove that
Pd

i=1

⇧

(`)
C1+{i},C2

= s⇤⇧(`)
C1,C2

holds for
all |C

1

|  ` � 1 and |C
2

|  `. Let C = C
1

+ C
2

, which
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satisfies |M(C)|  |C|  2`� 1. By (5.1) we have
d
X

i=1

⇧

(`)
C1+{i},C2

=

d
X

i=1

⌘
⇥

M(C + {i}),X⇤

⌘
�;,X� (5.2)

· s⇤!/[s⇤ � |M(C + {i})|]!
(2`)!/[2`� |M(C + {i})|]! ,

where we use the fact that
M(C

1

+{i})[M(C
2

)=M(C
1

+C
2

+{i})=M(C+{i}).
Also, note that M(C + {i}) = M(C) for i 2 M(C). In
addition, it holds that M(C + {i}) = M(C) [ {i} and
|M(C + {i})| = |M(C)|+ 1 for i /2 M(C). From (5.2) we
have
d
X

i=1

⇧

(`)
C1+{i},C2

(5.3)

=

(i)

z }| {

X

i2M(C)

⌘
⇥

M(C),X⇤

⌘
�;,X� · s⇤!/[s⇤ � |M(C)|]!

(2`)!/[2`� |M(C)|]!

+

X

i/2M(C)

⌘
⇥

M(C) [ {i},X⇤

⌘
�;,X� · s⇤!/[s⇤ � |M(C)|� 1]!

(2`)!/[2`� |M(C)|� 1]!

| {z }

(ii)

.

In the following, we characterize the relationship between
⌘
⇥

M(C),X⇤ and ⌘
⇥

M(C) [ {i},X⇤ with i /2 M(C). We
define S

1

,S
2

, . . . ,S⌘[M(C),X]

✓ [d] to be the distinct
sets that satisfy |Sj | = 2` � |M(C)|, M(C) \ Sj = ;,
as well as sign

�

XSj[M(C),Sj[M(C)
�

= 1
2`⇥2` for every

j 2 �

1, . . . , ⌘
⇥

M(C),X⇤ . Setting S] = [⌘[M(C),X]

j=1

Sj ,
we have that
X

i/2M(C)
⌘
⇥

M(C) [ {i},X⇤ =
X

i2S]

⌘
⇥

M(C) [ {i},X⇤

=

X

i2S]

⌘[M(C),X]

X

j=1

1(i 2 Sj) =

⌘[M(C),X]

X

j=1

X

i2S]

1(i 2 Sj)

=

⌘[M(C),X]

X

j=1

|Sj | = ⌘
⇥

M(C),X⇤ · [2`� |M(C)|].

Here the first equality is from ⌘
⇥

M(C) [ {i},X⇤ = 0 for
i /2 S], since in this case
sign

�

XM(C)[{i},M(C)[{i}
� 6= 1|M(C)[{i}|,|M(C)[{i}|.

The second equality holds because to calculate ⌘
⇥

M(C) [
{i},X⇤, we only need to count the number of Sj’s that
include i. The last equality is from |Sj | = 2` � |M(C)|.

Therefore, for term (ii) in (5.3) we have
X

i/2M(C)

⌘
⇥

M(C) [ {i},X⇤

⌘
�;,X� · s⇤!/[s⇤ � |M(C)|� 1]!

(2`)!/[2`� |M(C)|� 1]!

=

⌘
⇥

M(C),X⇤

⌘
�;,X� ·(2`�|M(C)|)· s

⇤
!/[s⇤�|M(C)|� 1]!

(2`)!/[2`�|M(C)|�1]!

=

⌘
⇥

M(C),X⇤

⌘
�;,X� · s

⇤
!/[s⇤ � |M(C)|� 1]!

(2`)!/[2`� |M(C)|]! . (5.4)

Meanwhile, for term (i) in (5.3) we have
X

i2M(C)

⌘
⇥

M(C),X⇤

⌘
�;,X� · s⇤!/[s⇤ � |M(C)|]!

(2`)!/[2`� |M(C)|]! (5.5)

= |M(C)| · ⌘
⇥

M(C),X⇤

⌘
�;,X� · s⇤!/[s⇤ � |M(C)|]!

(2`)!/[2`� |M(C)|]!

= (|M(C)|� s⇤) · ⌘
⇥

M(C),X⇤

⌘
�;,X� · s⇤!/[s⇤ � |M(C)|]!

(2`)!/[2`� |M(C)|]!

+ s⇤ · ⌘
⇥

M(C),X⇤

⌘
�;,X� · s⇤!/[s⇤ � |M(C)|]!

(2`)!/[2`� |M(C)|]!

= �⌘
⇥

M(C),X⇤

⌘
�;,X� · s

⇤
!/[s⇤ � |M(C)|� 1]!

(2`)!/[2`� |M(C)|]!

+ s⇤ · ⌘
⇥

M(C),X⇤

⌘
�;,X� · s⇤!/[s⇤ � |M(C)|]!

(2`)!/[2`� |M(C)|]! .

Plugging (5.4) and (5.5) into (5.3), we obtain
d
X

i=1

⇧

(`)
C1+{i},C2

= s⇤ · ⌘
⇥

M(C),X⇤

⌘
�;,X� · s⇤!/[s⇤�|M(C)|]!

(2`)!/[2`�|M(C)|]!
= s⇤⇧(`)

C1,C2
.

Thus, we conclude that ⇧(`) satisfies all the constraints of
the `-th level SoS program in (3.6) except ⇧(`) ⌫ 0. We
defer the verification of this constraint to the end of the
proof. Next we calculate the value of objective function
corresponding to ⇧(`). Note that

d
X

i,j=1

Xi,j ·⇧(`)
{i},{j} =

d
X

i,j=1

Xi,j · sign
�

Xi,j

� ·⇧(`)
{i},{j}

=

d
X

i,j=1

Xi,j · 1
�

Xi,j > 0

� ·⇧(`)
{i},{j},

where the first equality holds because by the definition of
⌘
�·, ·�, it holds ⌘

�{i, j},X� = 0 for Xi,j  0, which
implies ⇧(`)

{i},{j} = 0 correspondingly. Moreover, we have
d
X

i,j=1

⇧

(`)
{i},{j} =

d
X

j=1

d
X

i=1

⇧

(`)
{i},{j} =

d
X

j=1

s⇤⇧(`)
;,{j}

= s⇤
d
X

j=1

⇧

(`)
{j},; = s⇤ · s⇤⇧(`)

;,; = (s⇤)2,
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where the third and second last equalities are from the con-
straint

Pd
i=1

⇧

(`)
C1+{i},C2

= s⇤⇧(`)
C1,C2

, while the last is from

⇧

(`)
;,; = 1. Similarly, we have

d
X

i=1

⇧

(`)
{i},{i} =

d
X

i=1

⇧

(`)
{i},; = s⇤⇧(`)

;,; = s⇤,

where the first equality follows from the constraints that
⇧

(`)
C1+{i,i},C2

= ⇧

(`)
C1+{i},C2

and ⇧

(`)
C1,C2

= ⇧

(`)
C0
1,C0

2
for C

1

+

C
2

= C0
1

+ C0
2

, and the second is from
Pd

i=1

⇧

(`)
C1+{i},C2

=

s⇤⇧(`)
C1,C2

. Recall that |Xi,j | � ⌫ almost surely and the
objective function is equivalent to

1

s⇤(s⇤ � 1)

d
X

i,j=1

Xi,j⇧
(`)
{i},{j}

=

1

s⇤(s⇤ � 1)

d
X

i,j=1

Xi,j · 1
�

Xi,j > 0

� ·⇧(`)
{i},{j}

� ⌫

s⇤(s⇤ � 1)

d
X

i=1

⇧

(`)
{i},{i}

� ⌫

s⇤(s⇤ � 1)

d
X

i,j=1

⇧

(`)
{i},{j} �

⌫

s⇤(s⇤ � 1)

d
X

i=1

⇧

(`)
{i},{i}

=

⌫[(s⇤)2 � s⇤]
s⇤(s⇤ � 1)

� ⌫.

Hence, the objective value corresponding to ⇧(`) is ⌫. Be-
cause b� 2 H(`) is the maximum of the `-th level SoS pro-
gram or its relaxed versions, so far we obtain

P
�

b� � ⌫ | ⇧(`) ⌫ 0

�

= 1. (5.6)

In the sequel, we verify that ⇧(`) ⌫ 0 holds with high prob-
ability. We invoke Theorem 2.5 of (Meka et al., 2015). They
consider a matrix M(`) 2 R

P`
j=0 (

d
j)⇥

P`
j=0 (

d
j) indexed

by sets S
1

,S
2

✓ [d], which satisfies M (`)
S1,S2

= ⇧

(`)
C1,C2

for S
1

= M(C
1

) and S
2

= M(C
2

). Their result im-
plies that under the distribution within P(s⇤, d) specified at
the beginning of our proof, M(`) ⌫ 0 holds with prob-
ability at least 1/2 for sufficiently large s⇤ and d, and
s⇤ = o

�⇥

d/(log d)2
⇤

1/2` . Note M(`) is a submatrix of
⇧(`), i.e.,

M(`)
= ⇧(`)

{C:|C|=|M(C)|},{C:|C|=|M(C)|}.

In other words, we can simultaneously permute the rows and
columns of ⇧(`), which are indexed by the collection C’s
that satisfy |C| = |M(C)|, to the upper-left corner of ⇧(`).
Then M(`) is identical to such a

P`
j=0

�

d
j

� ⇥P`
j=0

�

d
j

�

upper-left submatrix of ⇧(`). Meanwhile, note that by (5.1)

we have
⇧(`)

C1,⇤ = ⇧(`)
C2,⇤, ⇧

(`)
⇤,C1

= ⇧(`)
⇤,C2

,

for all |C
1

| = |M(C
1

)|, M(C
1

) = M(C
2

).

Here ⇧(`)
C,⇤ and ⇧(`)

⇤,C denote the row and column correspond-
ing to collection C. Thus, for any vector u 2 Rd(`)

, we have
u>⇧(`)u (5.7)

= u>
"

X

C1:|C1|=|M(C1)|

 

X

C0
1:M(C0

1)=M(C1)

uC0
1

!

⇧(`)
⇤,C1

#

=

X

C2

uC2

"

X

C1:|C1|=|M(C1)|

 

X

C0
1:M(C0

1)=M(C1)

uC0
1

!

⇧(`)
C2,C1

#

=

X

C2:|C2|=|M(C2)|

 

X

C0
2:M(C0

2)=M(C2)

uC0
2

!

"

X

C1:|C1|=|M(C1)|

 

X

C0
1:M(C0

1)=M(C1)

uC0
1

!

⇧(`)
C2,C1

#

= u>M(`)u,

where u 2 R
P`

j=0 (
d
j) is indexed by sets and uS =

P

C:M(C)=S uC . Therefore, using (5.7) and the fact that
M(`) ⌫ 0 with probability at least 1/2, we have ⇧(`) ⌫ 0
holds with the same probability. Moreover, according to
(5.6) and our setting that �⇤

= 0, by Markov’s inequality
we have

E
�

�

b� � �⇤�
� � ⌫ · P�b� � ⌫

�

(5.8)

� ⌫ · P�b� � ⌫ | ⇧(`) ⌫ 0
� · P�⇧(`) ⌫ 0

�

� 1/2 · ⌫
for all b� 2 H(`) and s⇤ = o

�⇥

d/(log d)2
⇤

1/2` . Recall ⌫ is
a positive constant and our construction of distributions are
within P(s⇤, d). Hence, we conclude the proof.

6. Conclusions
In this paper, we investigate the statistical limits of convex
relaxations for two statistical problems: mean estimation
for sparse principal submatrix and edge probability esti-
mation for stochastic block model. Different from exist-
ing works, which consider the statistical limits of general
polynomial-time algorithms, we instead characterize the
loss in statistical rates incurred by a broad family of convex
relaxations. At the core of our main theoretical results is
a construction-based proof, which does not hinge on any
unproven hardness hypotheses. Our conclusion is that in
order to attain computational tractability with convex relax-
ations, under particular regimes we have to compromise the
statistical optimality.
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and Zdeborová, Lenka. Asymptotic analysis of the
stochastic block model for modular networks and its al-
gorithmic applications. Physical Review E, 84(6):066106,
2011.

Deshpande, Yash and Montanari, Andrea. Improved sum-
of-squares lower bounds for hidden clique and hidden
submatrix problems. arXiv preprint arXiv:1502.06590,
2015.

Fortunato, Santo. Community detection in graphs. Physics
Reports, 486(3):75–174, 2010.

Gao, Chao, Ma, Zongming, and Zhou, Harrison H. Sparse
CCA: Adaptive estimation and computational barriers.
arXiv preprint arXiv:1409.8565, 2014.

Hajek, Bruce, Wu, Yihong, and Xu, Jiaming. Computational
lower bounds for community detection on random graphs.
arXiv preprint arXiv:1406.6625, 2014.

Kolar, Mladen, Balakrishnan, Sivaraman, Rinaldo, Alessan-
dro, and Singh, Aarti. Minimax localization of structural
information in large noisy matrices. In Advances in Neu-
ral Information Processing Systems, pp. 909–917, 2011.

Krauthgamer, Robert, Nadler, Boaz, and Vilenchik, Dan. Do
semidefinite relaxations really solve sparse PCA? arXiv
preprint arXiv:1306.3690, 2013.
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Lovász, László and Schrijver, Alexander. Cones of matrices
and set-functions and 0-1 optimization. SIAM Journal on
Optimization, 1(2):166–190, 1991.



Statistical Limits of Convex Relaxations

Ma, Tengyu and Wigderson, Avi. Sum-of-squares lower
bounds for sparse PCA. In Advances in Neural Informa-
tion Processing Systems, pp. 1603–1611, 2015.

Ma, Zongming and Wu, Yihong. Computational barri-
ers in minimax submatrix detection. arXiv preprint
arXiv:1309.5914, 2013.
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