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Appendix 0: Proof of Lemma 1

Applying the Sherman-Morrison-Woodbury formula

(A+ UDV )−1 = A−1 −A−1U(D−1 + V A−1U)−1V A−1,

we have

r(rIp +XTX)−1 = Ip −XT (In +
1

r
XXT )−1X

1

r
= Ip −XT (rIn +XXT )−1X.

Multiplying XTY on both sides, we get

r(rIp +XTX)−1XTY = XTY −XT (rIn +XXT )−1XXTY.

The right hand side can be further simplified as

XTY −XT (rIn +XXT )−1XXTY

= XTY −XT (rIn +XXT )−1(rIn +XXT − rIn)Y

= XTY −XTY + r(rIn +XXT )−1Y = rXT (rIn +XXT )−1Y.

Therefore, we have
(rIp +XTX)−1XTY = XT (rIn +XXT )−1Y.

Appendix A: Proof of Theorem 1

Recall the estimator β̂(HD) = XT (XXT )−1Y = XT (XXT )−1Xβ + XT (XXT )−1ε = ξ + η. The
following three lemmas will be used to bound ξ and η respectively.

Lemma 2. Let Φ = XT (XXT )−1X. Assume p > c0n for some c0 > 1, then for any C > 0 there
exists some 0 < c1 < 1 < c2 and c3 > 0 such that for any t > 0 and any i ∈ Q, j 6= i,

P

(
|Φii| < c1κ

−1n

p
) ≤ 2e−Cn, |Φii| > c2κ

n

p

)
≤ 2e−Cn (1)

and

P

(
|Φij | > c4κt

√
n

p

)
≤ 5e−Cn + 2e−t

2/2, (2)

where c4 =

√
c2(c0−c1)√
c3(c0−1)

.
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The proof can be found in the Lemma 4 and 5 in Wang and Leng (2015) for elliptical distribu-
tions. The special case of Gaussian is also proved in the Lemma 3 of Wang et al. (2015). Notice
that the eigenvalue assumption in Wang and Leng (2015) is not used for proving Lemma 4 and 5.

Lemma 3. Assume xi follows EN(L,Σ). If E[L−2] < M1 for some constant M1 > 0, var(ε) = σ2

and log p = o(n), then for any 0 < α < 1 we have

P

(
‖η‖∞ ≤

c1κ
−1τ∗

6

n

p

)
≥ 1−O

(
σ2κ4 log p

τ∗2n1−α

)
,

where τ∗ is defined as the minimum value for the important signals and κ = cond(Σ).

To prove Lemma 3 we need the following two propositions.

Proposition 1. (Lounici, 2008 Lounici (2008); Nemirovski, 2000 Akritas et al. (2014)) Let Yi ∈
Rp be random vectors with zero means and finite variances. Then we have for any k norm with
k ∈ [2,∞] and p ≥ 3, we have

E
∥∥ n∑
i=1

Yi
∥∥2
k
≤ C̃ min{k, log p}

n∑
i=1

E‖Yi‖2k, (3)

where C̃ is some absolute constant.

As each row ofX can be represented asX = L̄ZΣ1/2, where L̄ = diag(
√
pL1/‖z1‖2, · · · ,

√
pLn/‖zn‖2)

and Z is a matrix of independent Gaussian entries, i.e., Z ∼ N(0, Ip). For Z, we have the following
result.

Proposition 2. Let Z ∼ N(0, Ip), then we have the minimum eigenvalue of ZZT /p satisfies that

P

(
λmin(ZZT /p) > (1− n

p
− t

p
)2
)
≥ 1− 2 exp(−t2/2)

for any t > 0. Assume p > c0n for c0 > 1 and take t =
√
n. When n > 4c20/(c0 − 1)2, we have

P

(
λmin(ZZT /p) > c

)
≥ 1− 2 exp(−n/2), (4)

where c = (c0−1)2
4c20

.

The proof follows Corollary 5.35 in Vershynin (2010).

Proof of Lemma 3. Let A = pXT (XXT )−1L̄ and Z = L̄−1XΣ−1/2. Then η = p−1AL̄−1ε.

Part 1. Bounding |Aij |. Consider the standard SVD on Z as Z = V DUT , where V and D
are n × n matrices and U is a p × n matrix. Because Z is a matrix of iid Gaussian variables, its
distribution is invariant under both left and right orthogonal transformation. In particular, for any
T ∈ O(n), we have

TV DUT
(d)
= V DUT ,
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i.e., V is uniformly distributed on O(n) conditional on U and D (they are in fact independent, but
we don’t need such a strong condition). Therefore, we have

A = pXT (XXT )−1L = pΣ
1
2ZTL(LZΣZTL)−1L = pΣ

1
2UDV TL(LV DUTΣUDV TL)−1L

= pΣ
1
2U(UTΣU)−1D−1V T =

√
pΣ

1
2U(UTΣU)−1

( D
√
p

)−1
V T .

Because V is uniformly distributed conditional on U and D, the distribution of A is also invariant
under right orthogonal transformation conditional on U and D, i.e., for any T ∈ O(n), we have

A
(d)
= AT. (5)

Our first goal is to bound the magnitude of individual entries Aij . Let vi = eTi AA
T ei, which is

a function of U and D (see below). From (5), we know that eTi A is uniformly distributed on the
sphere Sn−1(

√
vi) if conditional on vi (i.e., conditional on U,D), which implies that

eTi A
(d)
=
√
vi

(
x1√∑n
j=1 x

2
j

,
x2√∑n
j=1 x

2
j

, · · · , xn√∑n
j=1 x

2
j

)
, (6)

where x′js are iid standard Gaussian variables. Thus, Aij can be bounded easily if we can bound
vi. Notice that for vi we have

vi = eTi AA
T ei = peTi Σ

1
2U(UTΣU)−1

(D2

p

)−1
(UTΣU)−1UTΣ

1
2 ei.

= peTi H(UTΣU)−
1
2
(D2

p

)−1
(UTΣU)−

1
2HT ei

≤ peTi HHT ei · λ−1min(UTΣU) · λ−1min
(D2

p

)
Here H = Σ

1
2U(UTΣU)−1/2 is defined the same as in Wang and Leng (2015) and can be bounded

as eTi HH
T ei ≤ c2nκ/p with probability 1− 2 exp(−Cn) (see the proof of Lemma 3 in Wang et al.

(2015)). Therefore, we have

P

(
vi ≤ c2κ2λ−1min

(D2

p

)
n

)
≥ 1− 2 exp(−Cn)

Now applying the tail bound and the concentration inequality to (6) we have for any t > 0 and any
C > 0

P (|xj | > t) ≤ 2 exp(−t2/2) P

(∑n
j=1 x

2
j

n
≤ c3

)
≤ exp(−Cn). (7)

Putting the pieces all together, we have for any t > 0 and any C > 0 that

P

(
max
ij
|Aij | ≤ κt

√
c2
c3
λ
− 1

2
min

(D2

p

))
≥ 1− 2np exp(−t2/2)− 3p exp(−Cn).

Now according to (4), we can further bound λmin(D2/p) and obtain that

P

(
max
ij
|Aij | ≤

√
c2
cc3

κt

)
≥ 1− 2np exp(−t2/2)− 3p exp(−Cn)− 2 exp(−n/2). (8)

3



Part 2. Bounding η he second step is to use (8) and Proposition 1 to bound η. The procedure
follows similarly as in Lounici’s paper. We first note that ‖zi‖22 follows a chi-square distribution
X 2(p). We have for any t

P

(
‖zi‖22
p
≥ 1 + 2

√
t

p
+

2t

p

)
≤ e−t,

from which we know

P

(
max
i
p−1‖zi‖22 < 5/2

)
≥ 1− pe−p/4. (9)

Now define Wj = (A1jp
−1/2‖zj‖2L−1j εj , A2jp

−1/2‖zj‖2L−1j εj , · · · , Apjp−1/2‖zj‖2L−1j εj). It’s
clear that η =

∑n
j=1Wj/p. Applying Proposition 1 to W ′js with the l∞ norm and noticing tht

Lj is independent of zj we have

E
∥∥ n∑
j=1

Wj

∥∥2
∞ ≤ log p

n∑
j=1

E‖Wj‖2∞ ≤ log p
7c2
cc3

σ2κ2t2
n∑
j=1

E[L−2j ] ≤ c2
cc3

σ2κ2t2M2
1n log p.

Using the Markov inequality on η, we have for any r > 0

P

(
‖η‖∞ ≥

√
nr

p

)
= P

(
p√
n
‖η‖∞ ≥ r

)
≤ p2E‖η‖2∞

nr2
=
E‖
∑n

j=1Wj‖2∞
nr2

≤ 7c2σ
2κ2M2

1 t
2 log p

cc3r2
.

To match our previous result, we take r = c1
√
nτ∗κ−1/6 and t = n(1−α)/2 for some small α,

P

(
‖η‖∞ ≤

c1κ
−1τ∗

6

n

p

)
≥ 1− 342c2σ

2κ4M1

c21cc3τ
∗2

log p

nα
− 2np exp(−n1−α/2)− 3p exp(−Cn)− 2 exp(−n/2)

≥ 1−O
(
σ2κ4 log p

τ∗2nα

)
.

Lemma 4. Assume var(Y ) ≤ M0. Define Φ = XT (XXT )−1X. If p > c0n for some c0 > 1, then
we have for any t > 0

P

(
max
i

∑
j 6=i
|Φijβj | ≥ c4

√
M0κ

3
2 t

√
n

p

)
≤ 2pe−t

2/2 + 5pe−Cn.

where c4, κ are defined in Lemma 2.

Proof of Lemma 4. Following Wang and Leng (2015); Wang et al. (2015), we defineH = XT (XXT )−
1
2 .

When X ∼ N(0,Σ), H follows the MACG(Σ) distribution as indicated in Lemma 3 in Wang et al.
(2015) and Theorem 1 in Wang and Leng (2015). For simplicity, we only consider a particular case
where i = 1.

For vector v with v1 = 0, we define v′ = (v2, v3, · · · , vp)T and we can always identify a (p− 1)×
(p− 1) orthogonal matrix T ′ such that T ′v′ = ‖v′‖2e′1 where e′1 is a (p− 1)× 1 unit vector with the
first coordinate being 1. Now we define a new orthogonal matrix T as

T =

(
1 0
0 T ′

)
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and we have

Tv =

(
1 0
0 T ′

)(
0
v′

)
=

(
0

‖v‖2e′1

)
= ‖v‖2e2. and eT1 T

T = eT1

(
1 0

0 T
′T

)
= eT1

Therefore, we have

eT1HH
T v = eT1 T

TTHHTT TTv = eT1 T
THHTT T e2 = ‖v‖2eT1 H̃H̃T e2.

Since H follows MACG(Σ), H̃ = T TH follows MACG(T TΣT ) for any fixed T . Therefore, we can
apply Lemma 2 again to obtain that

P

(
|eT1XT (XXT )−1Xv| ≥ ‖v‖2c4κt

√
n

p

)
= P

(
|eT1HHT v| ≥ ‖v‖2c4κt

√
n

p

)
= P

(
‖v‖2|eT1 H̃H̃T e2| ≥ ‖v‖2c4κt

√
n

p

)
= P

(
‖v‖2|Φ12| ≥ ‖v‖2c4κt

√
n

p

)
= P

(
|Φ12| ≥ c4κt

√
n

p

)
≤ 5e−Cn + 2e−t

2/2.

Applying the above result to v = (0, β
(−1)
∗ ) we have

∑
j 6=1

|Φ1jβj | ≤ c4κt‖β‖2
√
n

p

with probability at least 1− 5e−Cn − 2e−t
2/2.

In addition, we know that var(Y ) = βT∗ Σβ∗ + σ2 ≤M0 and thus

‖β‖2 ≤
√
M0κ.

Consequently, we have

P

(
max
i

∑
j 6=i
|Φijβj | ≥ c4

√
M0κ

3
2 t

√
n

p

)
≤ 2pe−t

2/2 + 5pe−Cn.

Now we are ready to prove Theorem 1

Proof of Theorem 1. Recall the definition of ξ as ξ = XT (XXT )−1Xβ. For any i we have

ξi = eTi X
T (XXT )−1Xβ =

∑
j∈S

Φiiβi +
∑
j 6=i

Φijβj ,

For the first term, we have

|min
ii
βi| ≥ c1κ−1τ∗

n

p
∀i ∈ S∗

with probability 1− |S∗|e−Cn and

|min
ii
βi| ≤ c1κτ∗

n

p
∀i ∈ S∗
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with probability 1− |S∗|e−Cn. Now, for the second term, using Lemma 4, we have

∑
j 6=i
|Φijβj | ≤

c1κ
−1τ∗

6
∀i = 1, 2, · · · , p

with probability at least 1− 2p exp{− c21κ
−1τ∗2

72c24M0
n} − 5pe−Cn. Therefore, we have for any i ∈ S∗

|ξi| ≥ c1κ−1τ∗
n

p
− c1κ

−1τ∗

6

n

p
≥ 5c1κ

−1τ∗

6

n

p
.

and for i ∈ S∗ we have

|ξi| ≤ c1κτ∗
n

p
+
c1κ
−1τ∗

6

n

p
≤ 7c1κ

−1τ∗

12

n

p
,

where we use the assumption that τ∗ > 4κ2τ∗. Now combining the result from Lemma 3, we can
obtain

P

(
min
i∈S∗
|β̂i| ≥

2c1κ
−1τ∗

3

n

p

)
≥ 1−O

(
σ2κ4 log p

τ∗2nα

)
,

and

P

(
max
i∈S∗
|β̂i| ≤

7c1κ
−1τ∗

12

n

p

)
≥ 1−O

(
σ2κ4 log p

τ∗2nα

)
.

Taking γ = 2c1κ−1τ∗

3 np, we have

P

(
min
i∈S∗
|β̂i| ≥ γ ≥ max

i∈S∗
|β̂i|
)
≥ 1−O

(
σ2κ4 log p

τ∗2nα

)
.

Proof of Theorem 2 and 3

For the selected submodel M̂d, we define Xd to be the variables contained in M̂d and Xd,c to be

variables that are excluded from M̂d. It is clear that

β̂
(OLS)
d = (XT

d Xd)
−1XT

d Y = βd + (XT
d Xd)

−1XT
d ε+ (XT

d Xd)
−1XT

d Xd,cβd,c = βd + ηd + ω.

To prove Theorem 2 is essentially to bound η and ω. Thus, we need following three lemmas.

Lemma 5 (Garvesh, Wainwright and Yu. (2010) Raskutti et al. (2010)). Assume Z ∼ N(0,Σ).
There exists some absolute constant c′, c′′ > 0 such that

‖Zv‖2√
n
≥ 1

4
‖Σ

1
2 v‖2 − 9ρ(Σ)

√
log p

n
‖v‖1, ∀v ∈ Rp,

with probability at least 1− c′′ exp(−c′n), where ρ(Σ) = maxi=1,2,··· ,p Σii.

In our case, for any v with d nonzero coordinates, we have ‖v‖1 ≤
√
d‖v‖2, ρ(Σ) = 1 and
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‖Σ1/2v‖2 ≥ λ
1
2
min(Σ)‖v‖2. Therefore,

‖Zv‖2√
n
≥
(
λ

1
2
min(Σ)

4
− 9

√
d log p

n

)
‖v‖2, ‖v‖0 ≤ d.

Thus, as long as n ≥ 64κd log p, we have

min
|M̂|≤d

λ
1/2
min(ZTM̂ZM̂/n) ≥

λ
1
2
min(Σ)

8
.

Lemma 6. Assume E[L−12] ≤M1 and e[L12] ≤M2. For any M̂ such that S∗ ⊂ M̂ and |M̂| ≤ d,
we have for any α > 0

P

(
max
|M̂|≤d

‖ηd‖∞ ≤ σ
√

log p

nα

)
= 1−O

(
λ−2∗ d log d

n
1
3
(1−α)

+
M1 +M2

n
1
3
(1−4α)

)
,

where λ∗ = λmin(Σ).

Proof of Lemma 6. Define A = (XT
d Xd)

−1XT
d , we have

η = (XT
d Xd)

−1XT
d ε = Aε.

For A, we can bound its entries as

max
ij
|Aij | ≤ max

ij
|eTi (XT

d Xd)
−1XT

d ej | ≤ max
ij
‖eTi (XT

d Xd)
−1‖1‖XT

d ej‖∞

≤
√
dmax

ij
‖eTi (XT

d Xd)
−1‖2 max

ij
|XT

d | ≤
√
d

n
λ−1min

(
XT
d Xd

n

)
max
ij
|XT

d |.

Recall that X = L̄ZΣ1/2, where L̄ = diag(
√
pL1/‖z1‖2, · · · ,

√
pLn/‖zn‖2) and thus Xd possesses a

representation as Xd = L̄ZΣ
1/2
d , where Σ

1/2
d is an p × d matrix formed by the selected d columns

of Σ1/2. We can now further bound λ−1min

(
XT
d Xd
n

)
as

λ−1min

(
XT
d Xd

n

)
= λ−1min

(
Σ
T
2
d Z

T L̄T L̄ZΣ
1
2
d

n

)
≤
(
λmin(L̄T L̄)λmin(Σ

T
2
d Z

TZΣ
1
2
d /n)

)−1
.

Using Lemma 5, it is clear that

min
|M̂|≤d

λmin(Σ
T
2
d Z

TZΣ
1
2
d /n) ≥ λmin(Σ)

64
≥ λ∗

64
,

with probability at least 1−O(e−c
′n). In addition, since E[L−12] ≤M1 and E[L12] ≤M2, we have

for any k1 > 0, k2 > 0

P (L2 ≤ k1) ≤ k61M1 and P (L ≥ k2) ≤
M2

k122
.
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Combining with equation (9) implies that

λmin(L̄T L̄) ≥ 2k1
5
,

with probability at least 1− pe−p/4 − nk61M1. Therefore, we have

max
|M̂|≤d

λ−1min

(
XT
d Xd

n

)
≤ 162

λ∗k1
.

with probability 1−O(nk61M1).

For maxij |XT
d |, we just need to bound maxij Xij . Using the representation X = L̄ZΣ1/2, we

know that

Xij =

√
pLi

‖zi‖2
ZiΣ

1/2ej .

It is easy to see that ZiΣ
1/2ej is a Gaussian random variable with mean zero and variance 1, thus

for any t > 0

P (|ZiΣ1/2ej | ≥ t) ≤ 2e−t
2/2.

In addition, ‖zi‖22/p follows a X 2(p) and we have

P

(
‖zi‖22
p
≥ 1− 2

√
t

p

)
≥ 1− e−t.

Taking t = p/4, we have maxi ‖zi‖2/
√
p ≥ 1/2 with probability at least 1− ne−p/4 and thus

P (max
ij
|Xij | ≤ 4k2

√
log p) ≥ 1− M2n

k122
− 2p−1 − ne−p/4.

Combining all pieces of results, we obtain that

P

(
min
|M̂|≤d

max
ij
|Aij | ≤

648k2
√
d
√

log p

λ∗k1n

)
≥ 1−O

(
nk61M1 +

nM2

k122

)
.

Following a similar argument in proving Lemma 3, we define Wj = (A1jεj , A2jεj , · · · , Adjεj) and
then

η =
n∑
j=1

Wj .

Using Proposition 1, we have

E‖η‖2∞ = E‖
n∑
j=1

Wj‖2∞ ≤ C̃ log d
n∑
j=1

E‖Wj‖2∞ ≤ O
(
σ2k22
λ2∗k

2
1

d log d log p

n

)
.

Using the Markov inequality implies that for any r > 0

P

(
max
|M̂|≤d

‖η‖∞ > r

)
≤ ‖η‖

2
∞

r2
= O

(
σ2k22
λ2∗k

2
1r

2

d log d log p

n

)
+O

(
nk61M1 +

nM2

k122

)
.
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Let r = σ
√

log p
nα , k1 = n−

2(1−α)
9 and k2 = n

1−α
9 , we have

P

(
max
|M̂|≤d

‖η‖∞ ≤ σ
√

log p

nα

)
= 1−O

(
λ−2∗ d log d

n
1
3
(1−α)

+
M1 +M2

n
1
3
(1−4α)

)

Lemma 7. Assume E[L−12] ≤M1 and e[L12] ≤M2. For any M̂ such that S∗ ⊂ M̂ and |M̂| ≤ d.
Assume that d− |S∗| ≤ c̃ and

∑
i 6∈S∗ |βi|ι ≤ R for some ι ∈ (0, 1), then for any α > 0, we have

P

(
max
|M̂|≤d

‖w‖2 ≤ σ
√

log p

nα

)
≥ 1−O

(
(M1 +M2)R

3

(log p)2ιn3−4α−2ι

)
.

Proof of Lemma 7. According to our definition that ω = (XT
d Xd)

−1XT
d Xd,cβd,c, we can directly

bound the l2 norm of ω as

‖ω‖22 = βTd,cX
T
d,cXd(X

T
d Xd)

−2XT
d Xd,cβd,c ≤

1

n
βTd,cX

T
d,cXd,cβd,cλ

−1
min

(
XT
d Xd

n

)

where λ−1min

(
XT
d Xd
n

)
has already obtained a bound in Lemma 6 as

max
|M̂|≤d

λ−1min

(
XT
d Xd

n

)
≤ 162

λ∗k1
.

with probability 1−O(nk61M1). Now for 1
nβ

T
d,cX

T
d,cXd,cβd,c we have

1

n
βTd,cX

T
d,cXd,cβd,c =

1

n
βTd,cΣ

T/2
d,c Z

T L̄T L̄ZΣ
1/2
d,c βd,c ≤

1

n
βTd,cΣ

T/2
d,c Z

TZΣ
1/2
d,c βd,c max

i

pL2
i

‖zi‖22

Since Z ∼ N(0, Ip), we can choose an orthogonal matrix Q such that βd,cΣ
1/2
d,c = e1Q‖βd,cΣ

1/2
d,c ‖2

and

1

n
βTd,cΣ

T/2
d,c Z

TZΣ
1/2
d,c βd,c = ‖βd,cΣ

1/2
d,c ‖

2
2e1Z̃

T Z̃eT1 ≤ ‖βd,c‖22λ∗e1Z̃T Z̃e1,

where Z̃ ∼ N(0, Ip). It is easy to see that for any t > 0

P

(
eT1 Z̃

T Z̃e1
n

≤ 1 + 2

√
t

n
+

2t

n

)
≥ 1− e−t.

and ‖βd,c‖22 ≤ τ2−ι∗ R. Thus, taking t = (1 + c̃) log p, we have

max
|M̂|≤d

1

n
βTd,cΣ

T/2
d,c Z

TZΣ
1/2
d,c βd,c ≤ 5τ2−ι∗ Rλ∗

with probability 1 − p−1 as long as n ≥ (1 + c̃) log p where c̃ is the upper bound on d − |S∗|. For
maxi pL

2
i /‖zi‖22, we follow the same argument in Lemma 6

P

(
max
i

pL2
i

‖zi‖22
≤ 2k22

)
≥ 1− ne−p/4 − nM2

k122
.

9



Putting all pieces together, we have

max
|M̂|≤d

‖w‖2 ≤ 36τ
1− ι

2
∗ R

1
2κ

1
2

√
k22
k1
,

with probability at least 1 − O
(
nM2

k122
+ nk61M1

)
. According to our assumption that τ∗ ≤ σ

κ

√
log p
n

and taking k1 = nι/4R1/2

(log p)ι/4n(1−α)/2 and k2 = 1/
√
k1 we have

P

(
max
|M̂|≤d

‖w‖2 ≤ σ
√

log p

nα

)
≥ 1−O

(
(M1 +M2)R

3

(log p)2ιn3−4α−2ι

)
.

We are now ready to prove Theorem 2

Proof of Theorem 2. We just need to combine the results of Lemma 6 and 7, i.e.,

β̂
(OLS)
d = βd + η + ω,

where

P

(
max
|M̂|≤d

‖η‖∞ ≤ σ
√

log p

nα

)
= 1−O

(
λ−2∗ d log d

n
1
3
(1−α)

+
M1 +M2

n
1
3
(1−4α)

)
and

P

(
max
|M̂|≤d

‖w‖2 ≤ σ
√

log p

nα

)
≥ 1−O

(
(M1 +M2)R

3

(log p)2ιn3−4α−2ι

)
.

Therefore, we have

P

(
max

|M̂|≤d,S∗⊂M̂
‖β̂(OLS)d − βd‖∞ ≤ 2σ

√
log p

nα

)
= 1−O

(
λ−2∗ d log d

n
1
3
(1−α)

+
M1 +M2

n
1
3
(1−4α)

+
(M1 +M2)R

3

(log p)2ιn3−4α−2ι

)

Proof of Theorem 3. Recall that Xd consists of variables contained in M̂d, the definition of
β̂(r)(Ridge) becomes

β̂(r)(Ridge) = (XT
d Xd + rId)

−1XT
d Xdβ + (XT

d Xd + rId)
−1XT

d ε+ (XT
d Xd + rId)

−1XT
d Xd,cβd,c

= β − r(XT
d Xd + rId)

−1β + (XT
d Xd + rId)

−1XT
d ε+ (XT

d Xd + rId)
−1XT

d Xd,cβd,c

= β − ξ̃(r) + η̃(r) + ω̃(r).

For ξ̃(r) we have

‖ξ̃(r)‖22 ≤ r2βT (XT
d Xd + rId)

−2β ≤ r2‖β‖22
n2λ2min(XT

d Xd/n+ r/n)
≤ 84r2κ3M0

n2

As proved in Lemma 6, we know that

max
|M̂|≤d

λmin

(
XT
d Xd

n

)
≥ λ∗k1

162
.
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with probability 1 − O(nk61M1). Adding r/n to the above matrix will only increase the smallest
eigenvalue. Thus, we have

‖ξ̃(r)‖2 ≤ r2βT (XT
d Xd + rId)

−2β ≤ 162rλ∗M0

nλ∗k1
=

162rκM0

nk1
.

Where we used M0 ≥ var(Y ) ≥ ‖β‖22λ−1max(Σ). Choosing k1 = n−
2(1−α)

9 , we have

P

(
max
|M̂|≤d

‖ξ̃(r)‖2 ≤
162rκM0

n
1
9
(7+2α)

)
= 1−O

(
M1

n
1
3
(1−4α)

)
,

which implies that as long as r ≤ σn(7/9−5α/18)
√
log p

162κM0
, we have

P

(
max
|M̂|≤d

‖ξ̃(r)‖2 ≤ σ
√

log p

nα

)
= 1−O

(
M1

n
1
3
(1−4α)

)
.

In addition, the proof for ‖η‖∞ and ‖ω‖2 shows that the only key quantity that has changed is

max|M̂|≤d λmin

(
XT
d Xd
n

)
which is replaced by max|M̂|≤d λmin

(
XT
d Xd+rId

n

)
for β(ridge). While the

latter is trivially lower bounded by the former, we thus have

P

(
max
|M̂|≤d

‖η̃(r)‖∞ ≤ σ
√

log p

nα

)
= 1−O

(
λ−2∗ d log d

n
1
3
(1−α)

+
M1 +M2

n
1
3
(1−4α)

)
and

P

(
max
|M̂|≤d

‖w̃(r)‖2 ≤ σ
√

log p

nα

)
≥ 1−O

(
(M1 +M2)R

3

(log p)2ιn3−4α−2ι

)
.

Consequently, we have

P

(
max

|M̂|≤d,S∗⊂M̂
‖β̂(ridge)d − βd‖∞ ≤ 3σ

√
log p

nα

)
= 1−O

(
λ−2∗ d log d

n
1
3
(1−α)

+
2M1 +M2

n
1
3
(1−4α)

+
(M1 +M2)R

3

(log p)2ιn3−4α−2ι

)
,

as long as

r ≤ σn(7/9−5α/18)
√

log p

162κM0
.

Proof of Corollary 1. As mentioned before, we have β̂(OLS) = βM̃d
+ (XT

M̃d
XM̃d

)−1XM̃d
ε. Be-

cause εi ∼ N(0, σ2) for i = 1, 2, · · · , n, we have for any i ∈ M̃d,

η̃i = eTi (XT
M̃d

XM̃d
)−1XT

M̃d
ε ∼ N(0, σ2eTi (XT

M̃d
XM̃d

)−1ei)
(d)
= σ

√
eTi (XT

M̃d
XM̃d

)−1eiN(0, 1). (10)

Likewise in the proof of Lemma 5, we know that as long as n ≥ 64κd log p

λmin(XT
M̃d

XM̃d
/n) ≥ 1

64κ
.

Thus, we have
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max
i∈M̃d

eTi (XT
M̃d

XM̃d
)−1ei ≤ 64κ/n.

Therefore, for any t > 0 and i ∈ M̃d, with probability at least 1− c′′ exp(−c′n)− 2 exp(−t2/2)
we have

|η̃i| ≤ σt
√
eTi (XT

M̃d
XM̃d

)−1ei ≤
8κ

1
2σt√
n

.

Then for any δ > 0, if n > log(2c′′/δ)/c′, then with probability at least 1− δ we have

max
i∈M̃d

|η̃i| ≤ 8σ

√
2κ log(4d/δ)

n
. (11)

Because σ needs to estimated from the data, we need to obtain a bound as well. Notice that σ̂2 is
an unbiased estimator for σ, and

σ̂2 = σ2εT (In −XM̃d
(XT
M̃d

XM̃d
)−1XM̃d

)ε ∼ σ2X 2(n− d)

n− d
,

where X 2(k) denotes a chi-square random variable with degree of freedom k. Using Proposition
5.16 in Vershynin (2010), we can bound σ̂2 as follows. Let K = ‖X 2(1)− 1‖ψ1 . There exists some
c5 > 0 such that for any t ≥ 0 we have,

P

(∣∣∣∣X 2(n− d)

n− d
− 1

∣∣∣∣ ≥ t) ≤ 2 exp

{
− c5 min

(
t2(n− d)

K2
,
t(n− d)

K

)}
.

Hence for any δ > 0, if n > d+ 4K2 log(2/δ)/c5, then with probability at least 1− δ we have,

|σ̂2 − σ2| ≤ σ2/2,

which implies that

1

2
σ2 ≤ σ̂2 ≤ 3

2
σ2.

Then we know that

max
i∈M̃d

|η̃i| ≤ 8σ

√
2κ log(4d/δ)

n
≤ 8
√

2σ̂

√
2κ log(4d/δ)

n
≤ 8
√

3σ

√
2κ log(4d/δ)

n
.

Now define γ′ = 8
√

2σ̂

√
2κ log(4d/δ)

n . If the signal τ = mini∈S |βi| satisfies that

τ ≥ 24σ

√
2κ log(4d/δ)

n
,

then with probability at least 1− 2δ, for any i 6∈ S

|β̂i| = |η̃i| ≤ 8σ

√
2κ log(4d/δ)

n
≤ γ′,

and for i ∈ S we have

|β̂i| ≥ τ − max
i∈M̃d

|η̃i| ≥ 16σ

√
2κ log(4d/δ)

n
≥ γ′.
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