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Abstract
Hawkes processes are powerful tools for
modeling the mutual-excitation phenomena
commonly observed in event data from a
variety of domains, such as social networks,
quantitative finance and healthcare records.
The intensity function of a Hawkes process is
typically assumed to be linear in the sum of
triggering kernels, rendering it inadequate to
capture nonlinear effects present in real-world
data. To address this shortcoming, we propose
an Isotonic-Hawkes process whose intensity
function is modulated by an additional nonlinear
link function. We also developed a novel iterative
algorithm which learns both the nonlinear link
function and other parameters provably. We
showed that Isotonic-Hawkes processes can fit
a variety of nonlinear patterns which cannot be
captured by conventional Hawkes processes, and
achieve superior empirical performance in real
world applications.

1. Introduction
Temporal point processes are powerful tools for modeling
the complex dynamics of events occurrences. In particular,
Hawkes processes (Hawkes, 1971) are well-suited to
capture the phenomenon of mutual excitation between the
occurrence of events, and have been applied successfully in
modeling criminal retaliations (Mohler et al., 2011), online
users behaviors (Farajtabar et al., 2014; 2015; Du et al.,
2015), and opinion dynamics (Wang et al., 2016).

A Hawkes process is characterized by a linear intensity
function, i.e., �(t) = w · xt where xt denotes
time-dependent features and w is the weight. The intensity
function parametrizes the likelihood of observing an event
in the time window [t, t+ dt) given that it has not occurred
before t. Such linearity may be insufficient to model many
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real world scenarios. For example, after purchasing a new
album, users may be initially highly engaged, and play the
album over and over again. However, the engagement will
saturate at some point as they become bored of the same
album. Such plateau pattern may not be captured by a
simple linear relation. In another scenario, a recent hospital
visit may trigger more future visits due to the progression
of a disease into a more severe stage. Such cumulative
influence from recent events may grow faster than a linear
model can explain.

Nonlinear Hawkes process (Brémaud & Massoulié, 1996)
has been introduced to provide more flexibility in
explaining the real-world phenomena. It applies a fixed
nonlinear link function g to the linear combination, i.e.,
�(t) = g(w · xt). For computational considerations, g(·)
is often assumed to be in some simple parametric forms,
such as exp(u) and max {0, u} (Carstensen et al., 2010;
Hansen et al., 2015). Although these models are more
flexible, they are still restricted to a few nonlinear patterns
with a fixed parametrization, which may not be correct
for real world data. Ideally, both g(·) and w should be
learned from data. Unfortunately, such desideratum leads
to a non-convex optimization problem, where efficient
algorithms with provable guarantees do not exist.

To address these challenges, we propose a novel model,
referred to as the Isotonic-Hawkes process, where both
g(·) and w can be directly learned from data. Rather
than committing to a fixed parametric form, we instead
use a non-parametric, monotonic nonlinear link function.
Therefore, it is extremely flexible to capture different
temporal dynamics without the need to select a fixed form
in advance.

To solve the non-convex learning problem with guarantees,
we propose a different loss function than the typical
log-likelihood for point processes. Moreover, by exploiting
the problem structure, we are still able to provide
theoretical guarantees on the computational and statistical
performance. Our work makes the following contributions:

• We propose a novel method for nonlinear Hawkes
process that can learn both the link function and other
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parameters directly from data.
• Although the learning involves a non-convex problem,

our algorithm can provably recover the true link function
and the model parameters. This also requires a novel
analysis for non i.i.d. observations.

• Our method achieves superior empirical performance,
significantly outperforming alternatives on both
synthetic and real-world datasets.

Related work. Prior work on nonlinear Hawkes process
focuses on theoretical properties (Brémaud & Massoulié,
1996; Zhu, 2015; Hansen et al., 2015). The link function
is usually given, and the discretization of time is needed
in order to evaluate the integral of the intensity function.
Hence, efficient algorithms are available only for specific
link functions (Paninski, 2004; Truccolo et al., 2005;
Carstensen et al., 2010). In contrast, our method is the
first algorithm that can learn both the link function and the
model parameters non-parametrically.

Our work is also closely related to Isotonic regression
and Single Index Model (SIM). The Isotonic
regression (Barlow et al., 1972; Robertson et al., 1988;
Mair et al., 2009) is a well studied technique to fit an
arbitrary monotonic 1-D function. SIM generalizes
the linear regression and estimates both the nonlinear
link function and the feature weights. However, earlier
work are usually heuristics, which are not guaranteed to
converge to a global optimum (Horowitz & Härdle, 1996;
Hristache et al., 2001; Naik & Tsai, 2004; Delecroix et al.,
2006). Only recently algorithms have been proposed with
global convergence guarantees (Kalai & Sastry, 2009;
Kakade et al., 2011; Acharyya & Ghosh, 2015) .

Unlike SIM, which only focuses on regression, our work
is concerned with learning a temporal point process where
the response variable is not directly observed. At the same
time, the observations are non i.i.d. , a setting significantly
different from previous works. The added complexity of
temporal point processes requires us to develop a new
efficient algorithm and its analysis.

2. Preliminaries
In this section, we will first provide some background on
isotonic regression and point processes.

Isotonic Regression and Single Index Model. Given
1-D data points {(zi, yi)}ni=1

, Isotonic regression solves a
least-square problem with monotonicity constraints:

min

ˆy2Rn

nX

i=1

(yi � ŷi)
2, s.t. ŷi  ŷj if zi  zj . (1)

The problem can be solved efficiently by a Pool Adjacent
Violators (PAV) algorithm (Mair et al., 2009) in O(n log n),
and the input and the solution {(zi, ŷi)}ni=1

implicitly
define a monotonic function with g(zi) = ŷi.

The Single Index Model is a generalized linear model with
the following assumption E[y|x] = g(w ·x), where g is the
link function. The Isotron algorithm can provably recover
w and g (Kalai & Sastry, 2009; Kakade et al., 2011) under
the mild assumption that g is monotonic and Lipschitz
continuous.

Temporal Point Processes A temporal point process is
a random process of which the realization consists of a
list of discrete temporal events {ti}ni=1

. It is equivalent
to a counting process, {N(t), t � 0}, which records
the cumulative number of events happening right before
time t, and satisfies N(t0)  N(t) for t0  t and
N(0) = 0. A counting process is also a submartingale, i.e.,
E[N(t)|Ht0 ] � N(t0) for all t > t0, where Ht0 = {ti|ti <
t0} denotes the history up to but not including time t0.

A useful characterization of temporal point processes is the
intensity function. Specifically, according to Doob-Meyer
theorem (Aalen et al., 2008), N(t) has the unique
decomposition: N(t) = ⇤(t) + M(t), where ⇤(t) is an
increasing predictable process called the compensator (or
cumulative intensity) and M(t) is a zero-mean martingale.
Alternatively, we have E[dM(t)|Ht] = 0, and

E[dN(t)|Ht] = d⇤(t) := �(t)dt (2)
where �(t) is the intensity function. Intuitively, the larger
�(t), the greater the chance an event happens in time
interval [t, t+ dt).

The functional form of the intensity function characterizes
the temporal point process. A particular useful form is the
intensity of a Hawkes process, which captures the mutual
excitation phenomena between events:

�(t) = �
0

+ ↵
X

ti2Ht

(t� ti) (3)

where �
0

captures the long-term incentive to generate
events. (t) > 0 models temporal dependencies, and
↵ > 0 quantifies how the influence from each past event
evolves over time, making the intensity function depend on
the history Ht.

In the Hawkes process, past events affect the occurrence
of future events, which makes it particularly useful for
modeling clustered event patterns. However, the linear
link function of the intensity function may be insufficient
to model many real world scenarios. In the next section,
we propose Isotonic-Hawkes processes with a flexible link
function and a provable learning algorithm.

3. Isotonic Hawkes Processes
We propose a new family of nonlinear Hawkes processes:
Isotonic-Hawkes processes. We present the moment
matching learning framework for the non-convex problem.
To facilitate learning, we optimize the representation of the
objective function by showing that the intensity integral in
the objective function can be exactly computed. Then we
present the overall algorithm, which applies an alternating
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minimization scheme to update the link function g and
weights parameters w.

3.1. Model Formulation
In Isotonic-Hawkes processes, we model its intensity as the
composition of a monotonic, non-parametric link function
and a linear Hawkes intensity.
Definition 1. A Isotonic-Hawkes process is a counting
process N(t), with associated history Ht = {ti|ti < t},
such that the intensity function �(t) can be written as:

�(t) = g

 
�
0

+ ↵
X

ti2Ht

(t� ti)

!
= g(w · xt) (4)

where (t) : R+ ! R+ is a continuous monotonic
decreasing triggering kernel capturing the influence of the
history Ht, �

0

> 0 is a baseline intensity independent
of the history, and g 2 G : R ! R+, is a monotonic
increasing and G-Lipschitz link function, i.e.,

0 6 g(b)� g(a) 6 G(b� a) for all 0 6 a 6 b (5)

We set w = (�
0

,↵)
>, and xt =

�
1,
P

ti2Ht
(t� ti)

�>.

We require (t) to be monotonically decreasing, such as
the exponential kernel exp(�t)I[t > 0], Gaussian kernel
and heavy tailed log-logistic kernel. This property is useful
for computing the integral of the intensity discussed later.

The linear term in Hawkes process alone is not sufficient
to capture the general trend in real-world applications. For
instance, linearity leads to unbounded intensity, which is at
odds with the saturation phenomenon. The nonlinear link
function g enables the model to adapt to such nonlinearities
in the data, hence achieving better performance. We
assume g is nonparametric and monotonic increasing,
which covers a wide range of functions, and also maintains
the properties of the composed intensity function.

3.2. Moment Matching Objective
Maximum Likelihood Estimation (MLE) is often used to
learn Hawkes processes, yielding a convex problem w.r.t.
w. The estimator has good statistical rates and is consistent
and asymptotically efficient (Ozaki, 1979). However,
if we want to learn g(·) and w jointly, MLE becomes
non-convex, and we no longer have statistical guarantees.
To solve this problem, we use a different learning criteria
based on the moment matching idea (Aalen et al., 2008).
We can establish global convergence guarantees despite the
non-convexity by establishing the connections to Isotonic
regression and SIM.

Let Ni = N(ti). Since N(t) is a counting process, the
count increases by one at each time ti. Hence for a list of
events {ti}ni=1

, we have Ni = i for i 2 [n]. We have

E[Ni|Hti ] =

Z ti

0

�(t)dt =

Z ti

0

g(w · xt)dt. (6)

Therefore, we can estimate the parameters g and w by
matching the integral

R ti
0

�(t)dt with observations Ni,

Figure 1. Illustration of integral computation. (A) the function g
has 3 pieces and is constant on intervals I1, I2 and I3. (B) The
function z(t) = w · x

t

is restricted on the interval [t1, t2]. It
is continuous and monotonic decreasing due to the property of
triggering kernel . The pre-image of I2 is shown as the light
yellow area on the t axis, and b22 is the intersection of [t1, t2] and
z�1

(I2). It is found by locating the pre-image of the endpoints,
t0 and another point outside the interval [t1, t2] (not shown here).
which leads to the following objective function:

min

g2G,w

1

n

nX

i=1

✓
Ni �

Z ti

0

g(w · xt)dt

◆
2

. (7)

Note that we need to optimize an integral w.r.t. a
function g, which is challenging in representation and
computation. Instead of optimizing over G, we replace
it with the family of piecewise constant non-decreasing
functions, F , and the jumps of g is defined only at the
intensity of each observed event. As shown in Theorem 2,
the integral of such functions can be computed exactly
as weighted combinations of g(w · xti) defined on the
observed time points ti. For notation simplicity, we set
xi = xti . The piecewise-constant function will provide a
good approximation to the original function as we increase
the number of training samples.

3.3. Integral Computation
We assume g is a piecewise constant function defined on
each time ti. Then we have the following result:

Theorem 2. Assume g is piecewise constant, then the
integral on [0, ti] is a weighted sum of yj = g(w · xj) with
weights aij . That is

R ti
0

g(w · xt)dt =
P

j2Si
aijyj .

To efficiently compute the aij’s, we can first compute the
integral on intervals [ti�1

, ti], then use cumulative sum to
arrive at the final results.

Set z(t) = w · xt, since g(·) is a piecewise constant
function, we have:

g(z(t)) =

nX

j=1

yjI [z(t) 2 Ij ]

where I [·] is the indicator function, and Ij denotes the j-th
interval where g(·) is a constant. Therefore, we can write
the integral on [ti�1

, ti] as:
Z ti

ti�1

g
�
z(t)

�
dt =

nX

j=1

yj

Z ti

ti�1

I
⇥
t 2 z�1

(Ij)
⇤
dt

where z�1

(Ij) denotes the pre-image of the interval Ij .
Next, we need to compute bij :=

R ti
ti�1

I
⇥
t 2 z�1

(Ij)
⇤
dt.

Since it is the length of the intersection of two intervals,
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Algorithm 1 COMPUTE-COEFFICIENT
1: Input: t

i

, for i = 1, · · · , n
2: Output: a

ij

3: for j = 1, · · · , n do
4: Compute t0

j

that satisfies x
t

0
j
= x

tj .
5: end for
6: for j = 1, · · · , n do
7: Set a0,j = 0

8: for i = 1, · · · , n do
9: Compute b

ij

= min(t0
j�1, ti)�max(t0

j

, t
i�1)

10: Compute a
ij

= a(i�1),j + b
ij

11: end for
12: end for

we can compute bij by finding all the endpoints of the
pre-images z�1

(Ij).

To do this, we first state a property of z�1

(Ij). Restricted
on [ti�1

, ti], z(t) is a continuous and monotonic decreasing
function due to the monotonic decreasing triggering kernel
 (Figure 1(B)). Combined with the fact that Ij are disjoint
and share endpoints (Figure 1(A)), the pre-images z�1

(Ij)
are also disjoint and share endpoints.

With this property, we can compute bij easily. According
to the definition of Ij , one endpoint of z�1

(Ij) is w ·xtj , so
we just need to find another endpoint as t0j = z�1

(w · xtj ),
which is equivalent to solving the equation w·xt0j

= w·xtj .

Note xt only has two dimensions, and the first dimension is
a constant. Hence, the above equation does not depend on
w, and it suffices to solve xt0j

= xtj , where the left-hand
side is a function of the unknown t0j , and the right-hand side
is a function of the observed data. It can be easily solved
by root finding algorithms. We can then compute bij as:

bij = min(t0j�1

, ti)�max(t0j , ti�1

)

The min and max operator implement the interval
intersection. Since z(t) is monotonic decreasing, we have
t0j�1

� t0j . Figure 1 illustrates the algorithm.

After we have computed bij , aij is readily available
by aij =

P
i0<=i bi0j . The corresponding index sets

Si contain nonzero aij’s. The detailed procedures are
presented in Algorithm 1.

3.4. Overall Algorithm
With Theorem 2, we can replace the integral of an unknown
function by the weighted summation of its values defined
at the intensity of each observed event. Hence we can
represent the g 2 F non-parametrically, and reformulate
the objective function as:

min

g2F,w

1

n

nX

i=1

✓
Ni �

X

j2Si

aijg(w · xj)

◆
2

. (8)

We optimize g and w alternatively until convergence. The
update rules for w and g are presented as follows.

Update ŵ. Given ĝk, the update rule for ŵk+1 is:

ŵk+1

= ŵk
+

1

n

nX

i=1

✓
Ni�

X

j2Si

aij ĝ
k
(ŵk ·xj)

◆ X

j2Si

aijxj

(9)
Similar to the Isotron algorithm (Kalai & Sastry, 2009), this
update rule is parameter free and Perceptron-like.

Update ĝ. Note that ĝ is a non-parametric function which
is represented by its values ŷki at ŵk · xi. Therefore, we
only need to determine its values on existing data points.

Given ŵk, we first sort
�
ŵk · xi

 n

i=1

such that it is an
increasing sequence. That is, we re-label the data points
according to the sorted order. Then we solve the following
Quadratic Programming problem for

�
ŷk+1

i

 n

i=1

:

min

nX

i=1

(Ni �
X

j2Si

aij ŷ
k+1

j )

2 (10)

s.t. ŷk+1

i  ŷk+1

i+1

, 1  i  n� 1 (11)
For simplicity we re-write the problem in matrix notations.
Denote N = (N

1

, · · · , Nn)
>, ˆy = (ŷ

1

, · · · , ŷn)>, Ai,j =

aij if j 2 Si and Ai,j = 0 otherwise. The monotonic
constraint in (11) can be written as By  0 where B is
the adjacent difference operator: Bi,i = 1, Bi,i+1

= �1

and other entries are zero. Then we arrive at the following
formulation:

min

ˆy

kN �A

ˆ

yk2, s.t. B ˆ

y  0

This is a convex problem and can be computed efficiently
using projected gradient descent:

ˆ

y

t+1

:= ⇧

⇥
ˆ

y

t
+ ⌘A> �

N �A

ˆ

y

t
�⇤

where ⇧ [u] is an operator that projects u into the feasible
set:

⇧ [u] = argmin

x

kx� uk2 , s.t. Bx  0

The projection is exactly the Isotonic regression problem
and can be solved by PAV (Mair et al., 2009) in O(n log n).
In addition, the computation of the gradient is also
efficient since A is a sparse matrix and it takes time
O(n + nnz(A)), where nnz(A) is the number of nonzero
elements. The number of iterations required to reach
✏ accuracy is O(1/✏), hence the overall complexity is
O((n log n+ nnz(A)) /✏). This can also be accelerated to
O((n log n+ nnz(A)) /

p
✏) using Nesterov’s acceleration

scheme (Nesterov, 1983). The algorithm is illustrated
in Algorithm 2 and the whole alternating minimization
procedure is summarized in Algorithm 3. Such procedure
will efficiently find the near-optimal ĝ and ŵ.

4. Theoretical Guarantees
We now provide the theoretical analysis of convergence
property. First we define the error as:

"(ĝk, ŵk
) =

1

n

nX

i=1

�
ĝk(ŵkxi)� g⇤(w⇤ · xi)

�
2

(12)
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Algorithm 2 LEARN-ISOTONIC-FUNC

1: Input: {N
i

}, {a
ij

}, ⌘
2: Output: ˆy
3: Initialize ˆy0 randomly
4: Construct matrices N , A from input
5: t = 0

6: repeat
7: t = t+ 1

8: ˆyt+1
= ⇧

⇥
ˆyt

+ ⌘A> �
N �Aˆyt

�⇤

9: until convergence

Algorithm 3 ISOTONIC-HAWKES

1: Input: Sequences of events {t
i

}n
i=1

2: Output: ĝ, ŵ
3: Compute x

i

= (1,
P

tj2Hti
(t

i

� t
j

)

> for i 2 [n]

4: {a
ij

} = COMPUTE-COEFFICIENT({t
i

})
5: Compute N

i

= i for i 2 [n]
6: Initialize w0, g0 randomly
7: k = 0

8: repeat
9: k = k + 1

10: Sort the data according to ŵk · x
i

11: Update ĝk = LEARN-ISOTONIC-FUNC({N
i

}, {a
ij

})
12: Update ŵk+1 using (9)
13: until loss(ĝ, ŵ) 6 ✏

where g⇤(·) and w⇤ are the unknown true link function and
model parameters, respectively. The goal is to analyze how
quickly "(ĝk, ŵk

) decreases with k.

Notations. Set y⇤i = g⇤(w⇤ · xi) to be the expected value
of each yi. Let ¯Ni be the expected value of Ni. Then we
have ¯Ni =

P
j2Si

aijy
⇤
j . Clearly we do not have access to

¯Ni. However, consider a hypothetical call to the algorithm
with input {(xi, ¯Ni)}ni=1

and suppose it returns ḡk. In this
case, we define ȳki = ḡk(w̄k · xi).

We first bound the error using the squared distance kŵk �
w⇤k2 between two consecutive iterations:

Lemma 3. Suppose that kŵk � w⇤k  W , kxik  1,p
c 

P
j2Si

aij 
p
C, yj  M , and

1

n

nX

i=1

��
(Ni � ¯Ni)

��  ⌘
1

,
1

n

nX

i=1

X

j2Si

aij |ŷkj � ȳkj |  ⌘
2

then we have:
kŵk�w⇤k2�kŵk+1�w⇤k2 � C

2

"(ĝk, ŵk
)�C

1

(⌘
1

+⌘
2

),

where C
1

= max{5CW, 4M
p
c+ 2CW}, C

2

= 2c� C.

The squared distance decreases at a rate depending on
"(ĝk, ŵk

) and the upper bounds ⌘
1

and ⌘
2

. The following
two lemmas provide the concrete upper bounds.

Lemma 4 (Martingale Concentration Inequality). Suppose
dM(t)  K, V (t)  k for all t > 0 and some K, k � 0.
With probability at least 1� �, it holds that
1

n

nX

i=1

|Ni� ¯Ni|  O
⇣
(K +

p
4K2

+ 8k2)
�
log(1/�)

�
1/2

⌘
.

Note Ni � ¯Ni = Mi, which is the martingale at time ti.
A continuous martingale is a stochastic process such that
E[Mt|{M⌧ , ⌧  s}] = Ms. It means the conditional
expectation of an observation at time t is equal to the
observation at time s, given all the observations up to time
s  t. V (t) is the variation process. The martingale
serves as the noise term in point processes (similar to
Gaussian noise in regression) and can be bounded using
the Bernstein-type concentration inequality.
Lemma 5. (Kakade et al., 2011) With probability at least
1� �, it holds for any k that

1

n

nX

j=1

|ŷkj � ȳkj |  O

 ✓
W 2

log(Wn/�)

n

◆
1/3

!
.

Lemma 5 relates ŷkj (the value we can actually compute) to
ȳkj (the value we could compute if we had the conditional
means of Nj). The proof of this lemma uses the covering
number technique in (Kakade et al., 2011).

We now state the main theorem:
Theorem 6. Suppose E[Ni|Hti ] =

R ti
0

g⇤(w⇤ · xt)dt,
where g⇤ is monotonic increasing, 1-Lipschitz and kw⇤k 
W . Then with probability at least 1 � �, there exist some

iteration k < O

✓⇣
Wn

log(Wn/�)

⌘
1/3

◆
such that

"(ĝk, ŵk
)  O

 ✓
W 2

log(Wn/�)

n

◆
1/3

!
.

Theorem 6 implies that some iteration has "(ĝk, ŵk
) =

O(1/ 3
p
n). It is plausible the rate is sharp based on the

information-theoretic lower bounds in (Zhang, 2002).

Proof sketch. We conduct a telescoping sum of Lemma 3
and show that there are at most O

�
W/(⌘

1

+ ⌘
2

)

�
iterations

before the error "(ĝk, ŵk
) is less than O(⌘

1

+⌘
2

). Set ⌘
1

, ⌘
2

to be the right-hand sides in Lemma 4 and 5. Since ⌘
2

is
the dominant term compared with ⌘

1

, we replace ⌘
1

by ⌘
2

in the final results. This completes the proof.

5. Extensions
We provide several extensions of the Isotonic-Hawkes
processes to more general cases.

General point processes. The idea and algorithm
of Isotonic-Hawkes can be easily extended to other
point processes. The time-dependent feature xt in
Isotonic-Hawkes is designed to capture the influence of
history. However, one can also incorporate and extend
other features in prior work (Perry & Wolfe, 2013; Li &
Zha, 2014) or design it from users’ experiences and the
application domain.

Learning monotonic decreasing functions. Our model
can be easily extended to learn a monotonically decreasing
function. We just need to change the sign of the inequality
in (11). Note that Theorem 6 still holds in this case.
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tim
e 

Figure 2. The sequence of events for each pair is modeled as an
Isotonic-Hawkes process.
Low-rank Isotonic-Hawkes processes. We can also use
our model to learn low rank parameters. For example, in
the time-sensitive recommendations for online services (Du
et al., 2015), we model user u’s past consumption events on
item i as an Isotonic-Hawkes process (Figure 2) and need to
learn the parameters

�
�ui
0

,↵ui, gui
 

for each user-item pair
(u, i). That is, we Since group structure often exists within
users’ preferences and items’ attributes, we assume that
both matrices �

0

= (�ui
0

) and ↵ = (↵ui
) have low-rank

structures. We can then factorize them as product of two
rank r matrices: �

0

= X

0

Y

0

and ↵

0

= XY . Then we
formulate the learning problem by applying our objective
function in (7) for each observed pair (u, i):

min

X0,Y0,X,Y ,g

X
Hui2O

`
�
Hui

�
(13)

`
�
Hui

�
=

1

nui

nuiX

j=1

✓
Nui

j �
Z ti

0

gui(wui · xui
t )dt

◆
2

where wui
= (�ui,↵ui

). nui is total number of events and
Hui is the set of history events for user-item pair (u, i).
O = {Hui} is the collection of all observed sequences.

We use the alternating minimization technique to update
X

0

,Y
0

,X,Y and g. First keep g

k fixed and update the
parameters to X

k+1

0

,Y k+1

0

,Xk+1,Y k+1, then keep them
fixed and update gk+1. For the unobserved user-item pairs,
after the algorithm stops, we obtain gui by taking average
of the user’s link functions learned from data.

Multi-dimensional Isotonic-Hawkes processes. We
extend the Isotonic-Hawkes process to multi-dimension,
which is particular useful to model information diffusion
in social networks. It is defined by a U -dimensional point
process N(t), with intensity for the u-th dimension as:

�u
(t) = gu

✓
�u
0

+ ↵uui
X

i:ti2Ht

(t� ti)

◆
= gu(wu · xu

t )

where ↵uu0
captures the degree of influence in the u0-th

dimension to the u-th dimension. As for learning, the
input data is a sequence of events observed in the form of
{(ti, ui)} and each pair represents an event occurring at the
ui-th dimension at time ti. Hence, for each dimension u,
set Nu

i = Nu
(ti), and we solve the problem:

min

gu,wu

1

nu

nuX

i=1

✓
Nu

i �
Z ti

0

gu(wu · xu
t )dt

◆
2

(14)
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Figure 3. Convergence by number of samples.

where the i-th entry of wu and xu
t is wu

(i) = (�u
0

,↵uui
)

and xu
t (i) = (1,

P
ti2Ht

(t, ti)) respectively. Our goal is
to learn w = (wu

) and g = (gu). From (14) we can see
that learning in each dimension u is independent of others.
Hence under this framework, wu and gu can be learned
using Algorithm 3 in parallel efficiently.

6. Experiments
We evaluate the performance of Isotonic-Hawkes on both
synthetic and real-world datasets with respect to the
following tasks :

• Convergence: investigate how well Isotonic-Hawkes
can learn the true parameters as the number of training
samples increases.

• Fitting capability: study how well Isotonic-Hawkes can
explain real-world data by comparing it with the classic
Hawkes process.

• Time-sensitive recommendation: demonstrate that
Isotonic Hawkes can improve the predictive performance
in item recommendation and time prediction.

• Diffusion network modeling: evaluate how well
Isotonic-Hawkes can model the information diffusion
from cascades of temporal events.

6.1. Experiments on Synthetic Data
Experimental setup. Table 1 lists the ground-truth setting
with four typical link functions g(·) and the respective
model parameters w. The first three link functions (Linear,
Exp, Sigmoid) are monotonically increasing, while the
last one is strictly decreasing. For the Exp link function,
we explore the performance of learning self-inhibition
by setting ↵ to be negative. Without loss of generality,
we use the unit-rate exponential decaying function as the
triggering kernel. Then, based on the configuration of
each row in Table 1, we simulate one million events using
Ogata’s Thinning algorithm (Ogata, 1981).

Table 1. Model configurations.
Name link function g Weights w
Linear g(x) = x w = (1.2, 0.6)
Exp g(x) = ex w = (0.5,�0.1)

Sigmoid g(x) = 1/(1 + e�4(x�2)
) w = (0.5, 1.2)

Decrease g(x) = 1� 1/(1 + e�4(x�3)
) w = (0.5, 1.2)

Convergence analysis. We first evaluate the convergence
property of our learning algorithm by increasing the
number of samples from 1,000 to 1,000,000. For each
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Figure 4. Comparison between learned link function and the
ground truth on four synthetic datasets.
dataset, we repeat the simulations ten times and report
the averaged results. Figure 3 (a) shows the Root Mean
Squared Error (RMSE) between the values of the learned
function and those given by the ground-truth link function
as a function of training data size. Figure 3 (b) shows
the RMSE of learning the model parameters. The x-axis
is in log scale. Since in all cases, the RMSE decreases
in a consistent way, it demonstrates that Isotonic-Hawkes
is very robust regardless of the latent ground-truth link
functions. Furthermore, for the Exp link function, we
compare the RMSE between our method and the likelihood
based approach, Exp-likelihood (Truccolo et al., 2005),
which has access to the link function and discretizes the
time interval to compute the integral in the likelihood.
Our method works better at estimating w. Finally, the
ability to recover the linear link function verifies that
Isotonic-Hawkes naturally includes the classic Hawkes
process as a special case and is much more expressive to
explain the data.

Visualization of recovered link functions. We also
plot each learned link function against the respective
ground-truth in Figure 4 trained with 1,000,000 events. In
all the cases, the algorithm can achieve the global optimal
to precisely recover the true functions.
6.2. Experiments on Time-sensitive Recommendation
Experimental setup. For the task of time-sensitive
recommendation, we fit a low-rank Isotonic-Hawkes
process with the alternating minimization technique from
(13) to solve the following two related problems proposed
from (Du et al., 2015) : (1) how to recommend the most
relevant item at the right moment; (2) how to accurately
predict the next returning-time of users to existing services.
We evaluate the predictive performance of our model on
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Figure 5. Experiment results on two randomly picked sequences
from last.fm data. (a-b) and (c-d) correspond to two sequences.
two real datasets. last.fm1 consists of the music listening
histories of around 1,000 users over 3,000 different albums.
We use the events of the first three months for training
and those of the next month for testing. There are around
20,000 user-album pairs with more than one million events.
tmall.com2 contains online shopping records. There are
around 100K events between 26, 376 users and 2,563
stores. We use the events of the first four months for
training and those of the last month for testing. The unit
time is an hour.

Better data fitting capability. Since the true temporal
dynamics governing the temporal point patterns are
unknown, we first investigate whether our new model can
better explain the data compared with the classic Hawkes
process. According to the Time Changing Theorem
(Daley & Vere-Jones, 2007), given a sequence T =

{ti}ni=1

and a point process with intensity �(t), the set of
samples {

R ti
ti�1

�(t)dt}ni=1

should conform to a unit-rate
exponential distribution if T is truly sampled from the
process. As a consequence, we compare the theoretical
quantiles from the unit-rate exponential distribution with
the empirical quantiles of different models. The closer
the slope of QQ-plot goes to one, the better a model
matches the point patterns. (Du et al., 2015) has shown
that Hawkes process fits the data better compared to other
simple processes.

In Figure 5 (a) and (c), we show that Isotonic-Hawkes
achieves much better fitting capability. Furthermore, (b)
and (d) visualize the learned link functions. In Figure 5(b),
the function captures the phenomenon that the user’s

1
http://www.dtic.upf.edu/

˜

ocelma/

MusicRecommendationDataset/lastfm-1K.html

2
http://ijcai-15.org/index.php/

repeat-buyers-prediction-competition

http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
http://ijcai-15.org/index.php/repeat-buyers-prediction-competition
http://ijcai-15.org/index.php/repeat-buyers-prediction-competition
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interests tend to saturate in the long-run despite that he
may be excited about the item initially. Intuitively, we
can also see this from (a), where Hawkes process has
larger sample quantiles than the theoretical one, which
means

R ti
ti�1

�(t)dt is larger than the value it should be.
Hence using a saturating function in (b) helps adjusting the
Hawkes intensity �(t) and make it smaller. In contrast,
(d) presents the opposite trend where the user was not
quite interested in the given item initially, but later became
addicted to it. Since the Hawkes sample quantile is smaller
than the theoretical one in (c), link function helps changing
�(t) to be larger. Hence learning the link function is
important.

Recommendation improvements. We evaluate the
predictive performance on the two tasks following (Du
et al., 2015) : (1) Rank prediction. At each testing
moment, we record the predicted rank of the target item
based on the respective intensity function. We report
the average rank over all test events. Smaller value
indicates better performance. (2) Arrival-time prediction.
We predict the arrival time of the next testing event
and report the mean absolute error (MAE) between the
predicted time and the true value. In addition, besides
Hawkes process, we also compare with the commonly
used Poisson process, which is a relaxation of the Hawkes
model by assuming that each user-item pair has constant
base intensity independent of the history, as well as the
state-of-the-art Tensor factorization method (Chi & Kolda,
2012) which applies Poisson factorization to fit the number
of events in each discretized time slot and has better
performance than methods based squared loss (Wang et al.,
2015). We use the parameters averaged over all time
intervals to make predictions. The latent rank of the
low-rank Isotonic-Hawkes process and the tensor method
are tuned to give the best performance.

We summarize the results in Figure 6. First, Hawkes
outperforms the Poisson process, which means that
considering the effects of history is helpful. Second,
Isotonic-Hawkes outperforms Hawkes process for a
significant margin thanks to the better data fitting capability
shown in Figure 5. For time prediction, since the
MAE’s unit is hour, we can see that the error difference
between Isotonic-Hawkes and Hawkes is about three days.
The online shopping services can benefit a lot from this
improvement and make better demand predictions.

6.3. Experiments on Modeling Diffusion Networks
Finally, we apply the multi-dimension Isotonic-Hawkes
process with the model estimation procedure in (14) to
recover the latent information diffusion network reflected
by the nonzero patterns of the mutual excitation matrix over
the real Network dataset from (Farajtabar et al., 2014). This
dataset comprises of all tweets posted by 2,241 users in
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Figure 6. Time-sensitive recommendation results.
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Figure 7. Prediction results on the Network dataset.
eight month. The network has 4,901 edges. We split data
into a training set (covering 85% of the total events) and
a test set (covering the remaining 15%) according to time.
Being similar to the time-sensitive recommendation task,
we report the average rank of all testing events and MAE
for the arrival time prediction with an increasing proportion
of training events. Figure 7 verifies that Isotonic-Hawkes
outperforms Hawkes process consistently.

7. Conclusion
We have proposed a novel nonlinear Hawkes process,
the Isotonic-Hawkes process, with a flexible nonlinear
link function. Along with the model, we have developed
a computationally and statistically efficient algorithm
to learn the link function and model parameters jointly,
and rigorously show that under mild assumptions
of the monotonicity, our algorithm is guaranteed to
converge to the global optimal solution. Furthermore,
our model is very general and can be extended to many
different forms, including monotonically decreasing
link functions, low-rank Isotonic-Hawkes processes
model and multi-dimensional Isotonic-Hawkes processes.
Experiments on both synthetic and real world datasets
empirically verify the theoretical guarantees and
demonstrate the superior predictive performance compared
to other baselines.
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