
Epigraph projections for fast general convex programming

A. Experiment details
In this section we provide the details of the experiments
corresponding to the results presented in Section 5. In each
case we describe the underlying problem, the initial opti-
mization problem, and how this translates into proximal
form for the Epsilon solver (that is, a sum of objective terms
where each term has an efficient proximal operator or epi-
graph projection, plus a set of linear equality constraints),
using the transformations from Section 3. All these exam-
ples are included in the Epsilon distribution, available at
http://epopt.io.

A.1. Lasso

The Lasso problem is

minimize

✓

(1/2)kX✓ � yk22 + �k✓k1, (40)

with input features X 2 Rm⇥n, response variables y 2

Rm, and model parameters ✓ 2 Rn. The regularization pa-
rameter � � 0 controls the tradeoff between data fit and
the `1 regularization term which encourages sparsity in the
model parameters. The Lasso is especially useful in the
high-dimensional case where m < n as the sparsity in-
duced by `1 regularization effectively controls the number
of free parameters in the model, see Tibshirani (1996) for
details. The Lasso problem as written is already in proxi-
mal form with

f1(✓) = (1/2)kX✓ � yk22,

f2(✓) = �k✓k1.
(41)

In our experiments, we generate X 2 R1500⇥5000 from
a standard Normal distribution and set y = X✓0 + ✏
with ✓0 having 1% nonzero standard Normal entries and
✏ ⇠ N (0, 0.052). We set the regularization parameter
� = 0.5kXT yk1.

A.2. Sparse inverse covariance

Sparse inverse covariance estimation models a multivariate
Gaussian distribution over n variables by solving the opti-
mization problem

minimize

⇥
� log |⇥|+ trS⇥+ �k⇥k1 (42)

where S 2 Sn is the sample covariance, ⇥ 2 Sn is the
estimated inverse covariance and the `1 norm k · k1 is
applied elementwise. As with the Lasso, the `1 penalty
promotes sparse structure and is especially useful in the
high-dimensional case with more variables than samples
(m < n), see Friedman et al. (2008) for details. With re-
spect to our framework, given a proximal operator for the
� log | · | term, sparse inverse covariance estimation can

trivially be put in proximal form with

f1(⇥) = � log |⇥|+ trS⇥,

f2(⇥) = �k⇥k1.
(43)

where in the construction of f1, we have exploited the fact
that any proximal operator can easily be combined with
a linear function (see e.g. Parikh & Boyd (2013) for de-
tails). In our experiments, we construct the sample co-
variance from 100 samples drawn from N (0,⇥�1

0) where
⇥0 2 S200 has uniform random entries and is 1% nonzero.

A.3. MNIST (2000 images)

The MNIST dataset (LeCun et al., 1998) consists of hand-
written digits, constructed with the goal of building a clas-
sifier for automatically recognizing each digit ({0, . . . , 9})
in each image. As a linear classifier applied directly to the
raw pixels performs poorly, we generate random Fourier
features (Rahimi & Recht, 2007) and train a classifier us-
ing sparse softmax regression

minimize

⇥
`(X, y;⇥) + �k⇥k1 (44)

where X 2 Rm⇥n are the image features, y 2 {0, . . . , 9}m

are the image labels, � � 0 is the regularization parame-
ter and the softmax loss, parameterized by ⇥ 2 Rn⇥10, is
given by

`(X, y;⇥) =

mX

i=1

log

10X

k=1

exp(xT

i

✓
k

)� xT

i

✓
yi

!
. (45)

Unlike the least squares loss employed in the Lasso, the
softmax loss cannot easily be composed with an arbitrary
linear function and this requires the introduction of an addi-
tional auxiliary variable, Z 2 Rm⇥10. With this additional
variable, the proximal form for this problem is given by

f1(Z) =

mX

i=1

log

10X

k=1

exp(Z
ik

)

!

f2(⇥) = �k⇥k1 �

mX

i=1

xT

i

✓
yi

(46)

with equality constraints

Z = X⇥ (47)

In our experiments, we train the classifier on 2000 images
using 1000 random Fourier features and � = 0.1.

A.4. Robust SVM

In our experiments we use an `1 variant of the support vec-
tor machine, similar to the formulations in (Lanckriet et al.,
2003; Shivaswamy et al., 2006), but with an `1 uncertainty

Epigraph projections for fast general convex programming

Function Proximal / epigraph operator
Type Atom Definition Method Complexity

El
em

en
tw

is
e
x
,y

2
R

Absolute f(x) = |x| (⌘ kxk1) soft thresholding
sum-of-max

O(n)
O(n)

Square f(x) = x2 (⌘ kxk22) linear equation
cubic equation

O(n)
O(n)

Hinge f(x) = max{x, 0} soft thresholding
sum-of-max

O(n)
O(n)

Deadzone f(x) = max{|x|� ✏, 0}, ✏ � 0

soft thresholding
sum-of-max

O(n)
O(n)

Quantile f(x) = max{↵x, (↵� 1)x}, 0  ↵  1

soft thresholding
sum-of-max

O(n)
O(n)

Logistic f(x) = log(1 + exp(x))
Newton

Primal-dual Newton
O(n) · (# Newton)
O(n) · (# Newton)

Inverse positive f(x) = 1/x, x � 0

cubic equation
Implicit dual Newton

O(n)
O(n) · (# Newton)

Negative log f(x) = � log(x), x � 0

quadratic equation
Implicit dual Newton

O(n)
O(n) · (# Newton)

Exponential f(x) = exp(x)
Newton

Primal-dual Newton
O(n) · (# Newton)
O(n) · (# Newton)

Negative entropy f(x) = x · log(x), x � 0

Projected Newton
Implicit dual Newton

O(n) · (# Newton)
O(n) · (# Newton)2

KL Divergence f(x, y) = x · log(x/y), x, y � 0

Projected Newton
Implicit dual Newton

O(n) · (# Newton)
O(n) · (# Newton)2

Quadratic over linear f(x, y) = x2/y, y � 0

Projected Newton
Implicit dual Newton

O(n) · (# Newton)
O(n) · (# Newton)2

Ve
ct

or
x
2
R

n

`2-norm f(x) = kxk2
group soft thresholding

analytic projection
O(n)
O(n)

Maximum f(x) = maxi xi (kxk1 ⌘ maxi |xi|)
sum-of-max
sum-of-max

O(n)
O(n)

Sum-k-largest f(x) =
Pk

i=1 x[i] (x[i] � x[i+1])
sum-of-clip

bisection
O(n)

O(n) · (# Bisection)

Log-sum-exp f(x) = log

�Pn
i=1 exp(xi)

� Newton
Primal-dual Newton

O(n) · (# Newton)
O(n) · (# Newton)

M
at

rix
X

2
R

n
⇥
n

Negative log det f(X) = � log det(X), X 2 Sn � log on �(X) O(n3
)

Nuclear norm f(X) = k�(X)k1, X 2 Rm⇥n k · k1 on �(X) O(n3
)

Spectral norm f(X) = k�(X)k1, X 2 Rm⇥n k · k1 on �(X) O(n3
)

Table 2. Complete list of proximal and epigraph projection operators implemented for this work. Most proximal operators (except
sum-k-largest) have appeared in some form in previous literature, but epigraph projections are typically novel to this work.

ball instead of an `2 uncertainty ball. In this setting, given
input data (x

i

, y
i

) we wish to train an SVM by minimizing
the standard regularized hinge loss,

minimize

✓

�

2

k✓k22 +

mX

i=1

max{0, 1� y
i

· x̄T

i

✓} (48)

but where x̄
i

lies in some uncertainty set centered at x
i

,
x̄
i

= x
i

+ Pu where kuk1  1. This can be expressed as
the optimization problem

minimize

✓

�

2

k✓k22+

mX

i=1

sup

kuik11
max{0, 1�y

i

·✓T (x̄
i

+Pu
i

)}

(49)

which, using the relation that supkuk11 c
Tu = kck1

where, is equivalent to the optimization problem

minimize

✓

�

2

k✓k22+

mX

i=1

max{0, 1�y
i

·✓Tx
i

+kPT ✓k1}.

(50)
As discussed in Section 3, this is transformed to proximal
form

f1(✓) =
�

2

k✓k22

f2(z3) =
X

max{z3, 0}

f3(z1, z2) = I{kz1k1  z2}

(51)

Epigraph projections for fast general convex programming

and equality constraints

z1 = PTx

z3 = 1� diag(y)X✓ + 1z2.
(52)

In our experiments, we generated X 2 R2500⇥750 random
uniform [0,1], ✓ 2 R750 also random uniform, and set y =

sign(xT

i

✓ + N (0, 0.1)). To create well-separated points,
we further added x

i

 x
i

+ 0.7y
i

· ✓, and chose P =

diag(N(0, 750)).

Support vector data description Given a set of unla-
beled points, x1, . . . , xm

2 Rn, support vector data de-
scription (Tax & Duin, 2004; Chang et al., 2007) describes
those points with an n-dimensional Euclidean ball by solv-
ing

minimize

⇢,a

mX

i=1

[kx
i

� ak22 � ⇢)]+ + �[⇢]+ (53)

with optimization variables ⇢ 2 R and a 2 Rn. The first
term penalizes points outside a ball centered at a with ra-
dius p⇢ while the second term regularizes the radius with
� � 0 controlling the tradeoff. This problem is transformed
to proximal form with operators

f1(t, ⇢) =
mX

i=1

[t
i

]+ + �[⇢]+

f3(a, s) =

mX

i=1

I(kx
i

� ak22  s
i

)

(54)

and equality constraint

t = s� ⇢. (55)

In our experiments, we generate 5000 random points uni-
formly over the 200-dimensional unit hypersphere and then
choose 100 outliers at random and add noise, ✏ ⇠ N (0, I);
we fit the model with � = 1.

Robust Regression Consider a noisy matrix bounded by
a unit ball over some known perturbation directions A

i

,

A = {

¯A+ c1A1 + . . .+ c
p

A
p

| kpk2  1}. (56)

The maximum error incurred from performing linear re-
gression over the uncertain set can be written as

sup

kck21
k(

¯A+ c1A1 + . . .+ c
p

A
p

)x� bk1

=max

k

����� sup

kck21
c
k

(A
k

x) + (āT
k

x� b
k

)

�����

=max

k

��
kA

k

xk2 + |āT
k

x� b
k

|

�� .

(57)

For robust regression (Boyd & Vandenberghe, 2004, pg.
323), we wish to find a solution x that minimize this worst
possible error,

minimize

x

max

k

��
kA

k

xk2 + |āT
k

x� b
k

|

�� . (58)

With additional variable t, u, v, p, q 2 Rk, this problem is
transformed to proximal form with operators

f1(t) = max

i=1,...,k
(t

i

),

f2(p, u) =

kX

i=1

I(kp
i

k2  u
i

),

f3(q, v) =

kX

i=1

I(|q
i

|  v
i

),

(59)

with equality constraints

t = u+ v,

p
i

= A
i

x,

q
i

= āT
i

x� b
i

, 8i = 1, . . . , k.

(60)

In the experiment, we generate the ¯A, A
i

, and b from
uniform distribution, then normalize ¯A and A

i

to a unit
ball. We choose p = 5000 and A,A

i

2 R10⇥200, for
i = 1, . . . , p.

sum-k-largest softmax The softmax loss is a multiclass
loss function defined as

softmax(x, y,⇥) =

exp(xT

⇥

yi)P
k

exp(xT

⇥

k

)

, (61)

where ⇥ 2 Rn⇥c is the weight for each class. The softmax
loss is commonly used in, for example, the regularized lo-
gistic regression, which can be formulated by the softmax
loss plus a regularization term. Here, we consider to mini-
mize the worst k loss incurred from the regression. I.e., we
only minimize

minimize

⇥

kX

i=1

z[i] + �k⇥k22, (62)

where z[i] is the i-largest element of vector z, and z
i

=

� log softmax(x
i

, y
i

,⇥) is the multiclass softmax loss.
With additional variable u

i

2 Rc, 8i = 1, . . . ,m, this
problem is transformed to proximal form with operators

f1(⇥) = �

mX

i=1

xT

i

⇥

yi + �k⇥k22,

f2(z) = sum-k-largest(z),
f3(⇥, z) = I(log-sum-exp(u

i

)  z
i

),

(63)

Epigraph projections for fast general convex programming

Time
Solver Problem Epsilon Solver

liblinear

hinge l1 3.71s 0.49s
hinge l1 sparse 14.26s 4.26s
hinge l2 3.58s 0.16s
hinge l2 sparse 1.82s 0.83s

glmnet

lasso 3.69s 0.84s
lasso sparse 13.58s 0.67s
logreg l1 3.70s 2.31s
logreg l1 sparse 6.69s 1.96s
mv lasso 7.14s 7.40s

Gurobi lp 0.33s 6.02s
qp 1.39s 4.12s

QUIC covsel 0.93s 6.24s

Table 3. Comparison of running times between Epsilon and spe-
cialized solvers.

with equality constraints

u
i

= xT

i

⇥, 8i = 1, . . . ,m. (64)

In the experiment we choose X 2 R400⇥10, k = 5, and
the number of classes to be 120. We generate the data
from normalized uniform distribution, and assign classes
uniformly.

B. Comparison with specialized solvers
In this section, we compare Epsilon to an assortment of
specialized solvers which are available for common prob-
lems. Before doing so, we emphasize that the general
convex programming approach offers many advantages to
specialized algorithms in terms of reuse and extensibility.
In addition, most convex problems do not have dedicated,

mature software packages readily available in common
mathematical programming environments (e.g. Matlab, R,
Python). Furthermore, even when specialized solvers are
available, translating problems to the interface provided by
a particular package requires effort to understand and con-
form to the idiosyncrasies of each implementation. In con-
trast, general convex programming offers a uniform syntax
and interface allowing problems to be easily formulated,
extended and solved.

In terms of running times, Table 3 compares Epsilon to four
dedicated software packages implementing specialized al-
gorithms: liblinear (Fan et al., 2008), glmnet (Friedman
et al., 2010), Gurobi (Optimization et al., 2012) and QUIC
(Hsieh et al., 2013). The default stopping criteria is used for
each solver, corresponding to moderate accuracy for Ep-
silon and high accuracy for the specialized solvers. For the
most part, Epsilon is competitive, although on a few prob-
lems liblinear and glmnet are significantly faster. This is
due to the ability of these specialized algorithms to exploit
sparsity in the solution which arises due to `1 regulariza-
tion (Lasso problems) or a small number of support vectors
in the dual SVM formulation (hinge problems). At present,
Epsilon does not take advantage of such structure and thus
may have a disadvantage on sparse problems.

On the other hand, Table 3 shows that Epsilon is sig-
nificantly faster than Gurobi and QUIC in solving lin-
ear/quadratic programs and sparse inverse covariance esti-
mation, respectively. However, it is important to highlight
that the specialized algorithms solve these problems to high
accuracy (e.g. tolerances of 10�8 or smaller) while Epsilon
targets only moderate accuracy (e.g. 10

�3). For moder-
ate accuracy, the operator splitting approach can be highly
competitive, allowing Epsilon to be significantly faster on
some problems.

