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1. Variational Inference for LVMs with Type I
MABN Prior

In this section, we present details on how to derive the vari-
ational lower bound

Eq(a)llog p(D|A)] + Ega)llog p(A)] — Ey(a)[log g(A)]
(D

where the variational distribution ¢(A) is chosen to be

q(Alz =T, a(ar)algr)

= [] vMF(ax|ag, x)Gamma(gk|r, Sk)
k=1

)

Among the three expectation terms, E,(a)[logp(A)] and
E,ca)llog g(A)] are model-independent and we discuss
how to compute them in this section. E,(a)[log p(D[A)]
depends on the specific LVM and a concrete example will
be given in Section 2.

First we introduce some equalities and inequalities used
later on.

Let a ~ vMF(u, k), then
(D) Ela] = A,(k)pu where A, (k) = Ijj’ﬁ(l'zl), and I,(-)
denotes the modified Bessel function of the first kind at
order v.

(M) cov(a) = @IJr (1—22Eh(k) —h? (k) pp”, where
h(k) = I”I:fiég;) andv =p/2 — 1.

Please refer to (Abeywardana, 2015) for the derivation of
E[a] and cov(a).

(IID) E[a”a] = tr(cov(a)) + A2 (k) pu” p.

Proof
Eftr(a’a)] = E[tr(aaT)] = tr(E[aaT])
= tr(cov(a) E[a]E[a]:;) = tr(cov(a)) + tr(E[a]E[a]T)

= tr(cov(a)) + A2(k)p" 1
3)
Let g ~ Gamma(c, ), then
(V) Elg] = 5

(V) Ellog g] = ¢ (a) — log 8

(VD log 35—, exp(ar) < v+ 3242, log(1+exp(zr—7)),
where -y is a variational parameter.

log [exp(z)dz < v + [log(l + exp(z — 7))dz. See
(Bouchard, 2007) for the proof.

(VI) log(1+e7%) < log(1+e~%)— IT*E _1/2—g(8) (22—
_5 _
2

2¢
€2), log(1 + €*) < log(1 + ) + 2% 71/2;5(5) (2 —
€2), where ¢ is a variational parameter and g(¢) = 1/(1 +
exp(—¢)). See (Bouchard, 2007) for the proof.

_ oppt1/2
(VID fyy )= 1dy = [y

of p-dimensional unit sphere. I'(+) is the Gamma function.
(IX) f”)’Hz:l x7ydy = 0, which can be shown according

to the symmetry of unit sphere.

T.\2 9 ox(Pt1)/2
(X)fuy”z:l(x y)idy < [[x||3 RECS

, which is the surface area'

Proof
f\|y||22:1(XTY)2dy o
Iz Jyy, 1 ()" ¥)*dy
||X||2f“y”2:1(el y)“dy @
(according to the symmetry of unit sphere)
<

<12 fyy = 1dy
9 onpiD)/2

= ||X||2F(p7%1)

Given these equalities and inequalities, we can prove

Lemma 1 given in the main paper.

1https ://en.wikipedia.org/wiki/N-sphere
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Proof

log Z;
= log [ exp(r(— L5} &) - &)d&,

<+ [log(1 + exp(r(— Y5 &) - &; —
<+ [llog(1 + =€) — K=
Sl (COWSEDEEIE )

— £7)]da; (apply (VII))

<7+ [log(1 +e7€) 4+ 52 4 L2 (2 )] 2
_ i—1 ~ a(p+1)/2
— R D &3 <app1y (VIILIX.X))
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Given Lemma 1, we can derive a lower bound of

Eqa)[logp(A)]

Eqallogp(A)] _ .
= Eq(a)logp(ar) [T;L, p(ail{a;}520) Ty a(90)]

ar a1—1 —g;an

ability of all variables is

d@i(apply (VD) v 41 VL g, a0

= p({yn}gﬂ ‘{Xn}g:h {Zn}rJIZ:Ia {Bk}fz&) N

p({zntn=1H{xntn=1, {1 ) P{Be bz )P (i =)

®)

To perform variational inference, we employ a mean field
variational distribution

Q :I(Q({Bk}szlv {nk}szlv {Zn}f«y:ﬂ
=TI aBa(m) TN, a(zn)

Ko e
I =ray

i=1

K i-1x .=
- exp(k(—>_4_1 4a;)-a;)
= Eya)llogp(a) [[ ==
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~ K i— ~ ~
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— (log(1 +e74) S5 4 228 (6 — 42)) 28

—log'(a)) + Z(Oﬂ — 1DEqy(g,)[log gi] —
> kAp(R)pg as +Zz o (—rAp(R)? Z; 11"‘] a (311)/2
f(log(l +e El) + &i— % + 1/22*5(51')(522 5 ))271' P

F(p+1)
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L (A >; D1 Xy B B+ Y (t(Ay)
AT A x(P+1/2
+A2‘;( )aTan)—Q fzrn ) + K(arlogag — log ()

+ 308 (e — 1) (9(r;) — log(s:)) —

where A; = "8T 4 (1 — 2 p(R) —

ag = + const

h?(k))a;a7.
The other expectation term E,()[log ¢(A)] can be com-
puted as

(6)

K

= Eq(a)llog H VMF (ay|ag, #)Gamma(gy |7, 5)]

= 32 R () a3 + o — 0BT ()
Hre= D) -

log(sk)) — 7%
(N

2. VI for BMEM with Type I MABN

In this section, we discuss how to derive the variational
lower bound for BMEM with type I MABN. The latent

variable are {3, }5_,,{n, }5X_,.{2.}Y_,. The joint prob-

a(P+1)/
F(p+1)

S i— 1 - W(P+1)/2
1/2 g(é) qu(A)[“ YA 3 }QF(Hl )+ K(aq log ag

=T

J= VMF(Bk |Bk k)Gamma(gy |7k, si ) VME(7), |y, , &)
k=1

N
Gamma(hy|ty, ux) 1:[ q(zn|by)
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Accordingly, the variational lower bound is

azBq(g,)[gi] + const

]EQUng({ﬂk}IIc{:h {nk}kK:N {Xn, Yn, Zn}ﬁle)}
—Eqllog Q({:@k}k A e {zadnz)]

= Eqlog p({yn bn=s [{xn 1ty {zn }hir {Be i)
+Eq [logp({zn}n:1 {xn s i i)

+Eq[log p({ By }i1)]) + Eqllog p({my,} 1))
—Eq[log a({By.}=1)] — Eqllog a({my }iy)]
—Eq[log Q({Zn}gzl)]

(10)
where Eqllogp({8;},)] and Eqlogp({m},)] can
be lower bounded in a similar way as that in Eq.(6).
Eqllog a({B4 )] and Eg[log a({n <, )] can be com-
puted in a similar manner as that in Eq.(7). Next we discuss
how to compute the remaining expectation terms.

Compute Eg[log p({z, } 2

First, p({zn}1)

i {xadnl)]
o H{me HE {xn ) is defined as

p({?}ﬁ;ﬂ{nk}k[{:p {Xn}ﬁle)
= [I p(znlxn, {nk}f:l)

K
[T [exp(njxn))*nk
k= 1

(1)

Ezi

St exp(n]xn)
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log p({zn}ﬁfzﬂ{nk}szl, {xn}fyzl) can be lower bounded
as

10&‘;1]%({ ;}n 1|{nk}k 1a{xn}n 1)

=2 kX — log(32 1 exp(n]x,))
n=1 k=1

N K T
:zlkzlznkhknkxn 10g(2 1eXP("7 Xn))

~T K
Znk T Xn — Cn — Zj:l

3
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—

Y
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eXP(anXn — ¢p,))(Using Inequality VI)
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(Using Inequality VII)

((njxn —cn)* = d2))]
(12)
an}k 1s {Xn}n 1)

The expectation of logp({z,
can be lower bounded as

[1ng({z7l}n 1|{nk}k 1a{xn}n V]
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(13)
where

E[ﬁkxnxnﬁk]

= E[tr(f;xnx nnk)]

= E[tr(xnxmwk)]

= tr(x, %, B[, 7))

= tr(x,x,, (E[7,JE[7;,]" + cov(7y,)))

(14)

Compute E[log p({y, } ¥
({yn

1|{/3k}k 1’{Zn} )]
B E {2z} ,) is defined as
({y” ‘{ng}k 17{Zrb}n 1)
H p(ynlzm{,@k}k 1)

1

n=1 H[1+exp( (2yn,_1)ﬂ£xn,)]z"k

(15)

Il
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1ng({yn}71:/:1 ‘{ﬂk}szlv {Zn

by
logp({yn 1|{5k}k 1 {Zn}n 1)
= - n; kZl 2k 10g(1 + exp(—(2y, — 1)Bixn))
> é\/: f: Znk[—log(1 + e®nk) + —(2”"‘1)‘321""‘6“
ff/%f%*((ﬂzxnf —enp)]

(16)

[log(1 + e~ dni)

Eflog p({yn } . lower

bounded by

|{/6k}k 17{Zn}

1)] can be

]E[loj\g[p(éyn}nNzl\{ﬂk}kK:p{Zn}nN Jl

> 3 Y dun[—log(1 +emonk) 4 gt
n=1k=1
1/2—o(enk) [Tk r2 ~T p-
w1 zen(k e ( kj;‘; LR[BrxnX) 8] — €2,)]
(Using Inequality VII)

amn
where E[B-ernxl ¢} 1] can be computed in a similar way to
Eq.(14).

Compute E[log ¢(z;)]

Z i 10g di (18)

E[log q(»

In the end, we can get a lower bound of the variational
lower bound, then learn all the parameters by optimizing
the lower bound via coordinate ascent: In each iteration, we
pick up a parameter x and fix all other parameters, which
leads to a sub-problem defined over x. Then we optimize
the sub-problem w.r.t x. For some parameters, the optimal
solution of the sub-problem is in closed form. If not the
case, we optimize = using gradient ascent method. This
process iterates until convergence. We omit the detailed
derivation here since it only involves basic algebra and cal-
culus, which can be done straightforwardly.

3. Additional Details of the
Metropolis-Hastings Algorithm

Parameter Learning The mutual angular Bayesian Net-
work (MABN) prior is parametrized by several determin-
istic parameters including s, pg, o, oa. Among them,
we tune « manually via cross validation and learn the
others via an Expectation Maximization (EM) framework.
Let x denote observed data, z denote all random vari-
ables and 6 denote deterministic parameters {zg, o1, a2}
EM is an algorithm aiming to learn € by maximize log-
likelihood p(x; @) of data. It iteratively performs two steps
until convergence. In the E step, the posterior p(z|x) is
inferred with parameters 6 fixed. In the M step, 0 is
learned by optimizing a lower bound of the log-likelihood
E,(z)x) [log p(x, z; )], where the expectation is computed
w.r.t the posterior p(z|x) inferred in the E step. In our prob-
lem, we use the Metropolis-Hastings (MH) algorithm to in-
fer the posterior p(x; 0) at the E step, and learn parameters
{pg, 1,2} at the M step. The parameters % and o in
proposal distributions are set manually.

Truncated Sampler for Magnitude Variable g The
magnitude variable g is required to be positive, but the
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proposal distribution ¢(g(*+1)|g*) is Gaussian, which can
generate non-positive values. To address this problem, we
adopt a truncated sampler (Wilkinson, 2015) which repeat-
edly draws samples from the proposal until a positive value
is obtained. Under such a truncated sampling scheme, the
MH acceptance ratio needs to be modified accordingly.
Please refer to (Wilkinson, 2015) for details.

4. Algorithm for Posterior Regularization of
BMEM

In this section, we present the algorithmic details of poste-
rior regularization of BMEM. Recall the problem is

IEq(B,H,z) [1ng({yi}£i1> Z‘B> H)ﬂ-(Bv H)]
_Eq(B,H,z) [IOg g(B, H7 Z)]
FMOQ{E, 5, [Br] izt)
A Q({Eq (s, ]}
(19)

where B = {8, }iL,. H = {n};_, and z = {z}[7,
are latent variables and the post-data distribution over them
is defined as ¢(B,H,z) = ¢(B)q(H)q(z). For com-
putational tractability, we define ¢(B) and ¢(H) to be:
a(B) =TT, a(By)a(gr) and q(H) = [T, q(y)a(hs)
where ¢(3},), ¢(7;,) are von-Mises Fisher distributions and
q(gr), q(hy) are gamma distributions, and define ¢(z)
to be multinomial distributions: ¢(z) = vazl q(zil@;)
where ¢; is a multinomial vector. The priors over B and
H are specified to be: 7(B) = Hszlp(Bk)p(gk) and
m(H) = [T;_, p(fx)p(hi) where p(By), p(7y,) are von-
Mises Fisher distributions and p(gy ), p(h) are gamma dis-
tributions.

SUP¢(B,H.z)

The objective in Eq.(19) can be further written as

IEq(B,H,z) [logp({yi}ﬁvzl, z|B, H)7(B, H)] B
_Eq(B,H,z) [lOg Q(Bv Ha Z)] + AlQ({Eq(Bk) [ﬁk]}?:l)
FAQ{Ey i) M) Hozr)

= Ey,) log p({yi} /L1 |2, B)] + Eq(a,)[log p(z[H))]
+Eqm) [log m(H)] + Eq(m) [log 7(B)] — Eq(s) [log ¢(B)]

~Eqm) [log ¢(H)] — Ey[log g(2)] + MQ({E, 5, Bkl it

+A2Q({Eq(n,) [ 1)

(20)
Among these expectation terms,
EqB,2llogp({y},]z,B)] can be computed via
Eq.(15-17), Eymz)[logp(z|H)] can be computed

via Eq.(11-14). Eqen[logm(H)], Eqm)[log 7(B)],
E,B)[log ¢(B)], Eqm)[log ¢(H)] can be computed in a
way similar to Eq.(7). Eg,)[logq(z)] can be computed
via Eq.(18). Given all these expectations, we can get
an analytical expression of the objective in Eq.(19) and
learn the parameters by optimizing this objective. Re-
garding how to optimize the mutual angular regularizers

Q{E 5, [BrIHI)) and QU{Eq,) A1), please

refer to (Xie et al., 2015) for details.
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