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Abstract
In learning latent variable models (LVMs), it is
important to effectively capture infrequent pat-
terns and shrink model size without sacrificing
modeling power. Various studies have been done
to “diversify” a LVM, which aim to learn a di-
verse set of latent components in LVMs. Most
existing studies fall into a frequentist-style reg-
ularization framework, where the components
are learned via point estimation. In this pa-
per, we investigate how to “diversify” LVMs in
the paradigm of Bayesian learning, which has
advantages complementary to point estimation,
such as alleviating overfitting via model aver-
aging and quantifying uncertainty. We propose
two approaches that have complementary advan-
tages. One is to define diversity-promoting mu-
tual angular priors which assign larger density to
components with larger mutual angles based on
Bayesian network and von Mises-Fisher distri-
bution and use these priors to affect the poste-
rior via Bayes rule. We develop two efficient ap-
proximate posterior inference algorithms based
on variational inference and Markov chain Monte
Carlo sampling. The other approach is to impose
diversity-promoting regularization directly over
the post-data distribution of components. These
two methods are applied to the Bayesian mixture
of experts model to encourage the “experts” to be
diverse and experimental results demonstrate the
effectiveness and efficiency of our methods.

1. Introduction
Latent variable models (LVMs) (Bishop, 1998; Knott &
Bartholomew, 1999; Blei, 2014) are a major workhorse in
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machine learning (ML) to extract latent patterns underly-
ing data, such as themes behind documents and motifs hid-
den in genome sequences. To properly capture these pat-
terns, LVMs are equipped with a set of components, each
of which is aimed to capture one pattern and is usually
parametrized by a vector. For instance, in topic models
(Blei et al., 2003), each component (referred to as topic)
is in charge of capturing one theme underlying documents
and is represented by a multinomial vector.

While existing LVMs have demonstrated great success,
they are less capable in addressing two new problems
emerged due to the growing volume and complexity of
data. First, it is often the case that the frequency of pat-
terns is distributed in a power-law fashion (Wang et al.,
2014; Xie et al., 2015) where a handful of patterns occur
very frequently whereas most patterns are of low frequency
(Figure 1 shows an example). Existing LVMs lack capabil-
ity to capture infrequent patterns, which is possibly due to
the design of LVMs’ objective function used for training.
For example, a maximum likelihood estimator would re-
ward itself by modeling the frequent patterns well as they
are the major contributors of the likelihood function. On
the other hand, infrequent patterns contribute much less to
the likelihood, thereby it is not very rewarding to model
them well and LVMs tend to ignore them. Infrequent pat-
terns often carry valuable information, thus should not be
ignored. For instance, in a topic modeling based recom-
mendation system, an infrequent topic (pattern) like los-
ing weight is more likely to improve the click-through rate
than a frequent topic like politics. Second, the number of
componentsK strikes a tradeoff between model size (com-
plexity) and modeling power. For a small K, the model is
not expressive enough to sufficiently capture the complex
patterns behind data; for a large K, the model would be
of large size and complexity, incurring high computational
overhead. How to reduce model size while preserving mod-
eling power is a challenging issue.

To cope with the two problems, several studies (Zou &
Adams, 2012; Xie et al., 2015; Xie, 2015) propose a “diver-
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Figure 1. Power-law distribution of topic frequency (measured by
number of documents in each topic) in the Wikipedia dataset.

sification” approach, which encourages the components of
a LVM to be mutually “dissimilar”. First, regarding captur-
ing infrequent patters, as posited in (Xie et al., 2015) “di-
versified” components are expected to be less aggregated
over frequent patterns and part of them would be spared to
cover the infrequent patterns. Second, concerning shrink-
ing model size without compromising modeling power, Xie
(2015) argued that “diversified” components bear less re-
dundancy and are complementary to each other, making
it possible to capture information sufficiently well with a
small set of components, i.e., obtaining LVMs possessing
high representational power and low computational com-
plexity.

The existing studies (Zou & Adams, 2012; Xie et al., 2015;
Xie, 2015) of “diversifying” LVMs mostly focus on point
estimation (Wasserman, 2013) of the model components,
under a frequentist-style regularized optimization frame-
work. In this paper, we study how to promote diversity
under an alternative learning paradigm: Bayesian infer-
ence (Jaakkola & Jordan, 1997; Bishop & Tipping, 2003;
Neal, 2012), where the components are considered as ran-
dom variables of which a posterior distribution shall be
computed from data under certain priors. Compared with
point estimation, Bayesian learning offers complementary
benefits. First, it offers a “model-averaging” (Jaakkola &
Jordan, 1997; Bishop & Tipping, 2003) effect for LVMs
when they are used for decision-making and prediction be-
cause the parameters shall be integrated under a posterior
distribution, thus potentially alleviate overfitting on train-
ing data. Second, it provides a natural way to quantify
uncertainties of model parameters, and downstream deci-
sions and predictions made thereupon (Jaakkola & Jordan,
1997; Bishop & Tipping, 2003; Neal, 2012). Affandi et al.
(2013) investigated the “diversification” of Bayesian LVMs
using the determinantal point process (DPP) (Kulesza &
Taskar, 2012) prior. While Markov chain Monte Carlo
(MCMC) (Affandi et al., 2013) methods have been de-
veloped for approximate posterior inference under the
DPP prior, DPP is not amenable for another mainstream
paradigm of approximate inference techniques – varia-
tional inference (Wainwright & Jordan, 2008) – which is
usually more efficient (Hoffman et al., 2013) than MCMC.
In this paper, we propose alternative diversity-promoting
priors that overcome this limitation.

We propose two approaches that have complementary ad-
vantages to perform diversity-promoting Bayesian learning
of LVMs. Following (Xie et al., 2015), we adopt a notion of
diversity that component vectors are more diverse provided
the pairwise angles between them are larger. First, we de-
fine mutual angular Bayesian network (MABN) priors over
the components, which assign higher probability density to
components that have larger mutual angles and use these
priors to affect the posterior via Bayes rule. Specifically,
we build a Bayesian network (Koller & Friedman, 2009)
where nodes represent the directional vectors of the com-
ponents and local probabilities are parameterized by von
Mises-Fisher (Mardia & Jupp, 2009) distributions which
entail an inductive bias towards vectors with larger mutual
angles. The MABN priors are amenable for approximate
posterior inference of model components. In particular,
they facilitate variational inference, which is usually more
efficient than MCMC sampling. Second, in light of that it
is not flexible (or even possible) to define priors to capture
certain diversity-promoting effects such as small variance
of mutual angles, we adopt a posterior regularization ap-
proach (Zhu et al., 2014), in which a diversity-promoting
regularizer is directly imposed over the post-data distri-
butions to encourage diversity and the regularizer can be
flexibly defined to accommodate various desired diversity-
promoting goals. We instantiate the two approaches to
Bayesian mixture of experts model (BMEM) (Waterhouse
et al., 1996) and experiments demonstrate the effectiveness
and efficiency of our approaches.

Related Works Recent works (Zou & Adams, 2012; Xie
et al., 2015; Xie, 2015) have studied the diversification of
components in LVMs under a point estimation framework.
In a multi-class classification problem, Malkin & Bilmes
(2008) proposed to use the determinant of a covariance
matrix to encourage classifiers to be different from each
other. Zou & Adams (2012) leveraged the determinantal
point process (DPP) (Kulesza & Taskar, 2012) to promote
diversity in latent variable models. Xie et al. (2015) pro-
posed a mutual angular regularizer that encourages model
components to be mutually different where the dissimilar-
ity is measured by angles.

Diversity-promoting Bayesian learning of LVMs has been
investigated in (Affandi et al., 2013), which utilizes the
DPP prior to induce bias towards diverse components. Af-
fandi et al. (2013) developed a Gibbs sampling (Gilks,
2005) algorithm. But the determinant in DPP makes vari-
ational inference based algorithms very difficult to derive.

Contributions The major contributions of this work are:

• We propose mutual angular Bayesian network
(MABN) priors which are biased towards components
having large mutual angles, to promote diversity in
Bayesian LVMs.
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• We develop an efficient variational inference method
for posterior inference of model components under the
MABN priors.

• To flexibly accommodate various diversity-promoting
effects, we study a posterior regularization approach
which directly imposes diversity-promoting regular-
ization over the post-data distributions.

• Using Bayesian mixture of experts model as a study
case, we empirically demonstrate the effectiveness
and efficiency of our methods.

The rest of the paper is organized as follows. In Section 2,
we introduce how to promote diversity in Bayesian LVMs.
Section 3 gives experimental results and Section 4 con-
cludes the paper.

2. Methods
In this section, we study the diversity-promoting Bayesian
learning of latent variable models and investigate two
approaches: (1) prior control, which defines diversity-
promoting priors and uses them to affect the posterior via
Bayes rule; (2) posterior regularization, which directly
performs diversity-promoting regularization over post-data
distributions. These two approaches have complementary
advantages which will be discussed in detail below.

2.1. Diversity-Promoting Mutual Angular Prior

The first approach we take is to define priors which have
inductive bias towards components that are more “diverse”
and use them to affect the posterior via Bayes rule. We re-
fer to this approach as prior control. While diversity can
be defined in various ways, following (Xie et al., 2015) we
adopt the notion that a set of component vectors are deemed
to be more diverse if the pairwise angles between them are
larger. We desire the priors to have two traits. First, to fa-
vor diversity, they assign a higher density to components
having larger mutual angles. Second, the priors should fa-
cilitate posterior inference. In Bayesian learning, the easi-
ness of posterior inference relies heavily on the prior (Blei
& Lafferty, 2006; Wang & Blei, 2013).

One possible solution is to turn the mutual angular regular-
izer Ω(A) (Xie et al., 2015) that encourages a set of com-
ponent vectors A = {ai}Ki=1 to have large mutual angles
into a distribution p(A) = 1

Z exp(Ω(A)) based on Gibbs
measure (Kindermann et al., 1980), whereZ is the partition
function guaranteeing p(A) integrates to one. The concern
is that it is not sure whether Z =

∫
A

exp(Ω(A))dA is fi-
nite, i.e., whether p(A) is proper. When an improper prior
is utilized in Bayesian learning, the posterior is also highly
likely to be improper, except in a few special cases (Wasser-
man, 2013). Performing inference on improper posteriors
is problematic.

1a 2a 3a …...
Ka

Figure 2. A Bayesian Network Representation of the Mutual An-
gular Prior

Here we define mutual angular Bayesian network (MABN)
priors possessing the aforementioned two traits, based on
Bayesian network (Koller & Friedman, 2009) and von
Mises-Fisher (Mardia & Jupp, 2009) distribution. For tech-
nical convenience, we decompose each real-valued compo-
nent vector a into a = gã, where g = ‖a‖2 is the magni-
tude and ã is the direction (‖ã‖2 = 1). Let Ã = {ãi}Ki=1

denote the directional vectors. Note that the angle between
two vectors is invariant to their magnitudes, thereby, the
mutual angles of component vectors in A are the same as
angles of directional vectors in Ã. We first construct a prior
which prefers vectors in Ã to possess large angles. The ba-
sic idea is to use a Bayesian network (BN) to characterize
the dependency among directional vectors and design local
probabilities to entail inductive bias towards large mutual
angles. In the Bayesian network (BN) shown in Figure 2,
each node i represents a directional vector ãi and its par-
ents pa(ãi) are nodes 1, · · · , i− 1. We define local proba-
bility at node i to encourage ãi to have large mutual angles
with ã1, · · · , ãi−1. Since these directional vectors lie on a
sphere, we use the von Mises-Fisher (vMF) distribution to
model them. The probability density function of the vMF
distribution is f(x) = Cp(κ) exp(κµ>x), where the ran-
dom variable x ∈ Rp lies on a p − 1 dimensional sphere
(‖x‖2 = 1), µ is the mean direction with ‖µ‖2 = 1, κ > 0
is the concentration parameter and Cp(κ) is the normaliza-
tion constant. The local probability p(ãi|pa(ãi)) at node i
is defined as a von Mises-Fisher (vMF) distribution whose
density is

p(ãi|pa(ãi)) = Cp(κ) exp

(
κ(−

∑i−1
j=1 ãj

‖
∑i−1
j=1 ãj‖2

)>ãi

)
(1)

with mean direction −
∑i−1
j=1 ãj/||

∑i−1
j=1 ãj ||2. Now we

explain why this local probability favors large mutual an-
gles. Since ãi and ãj are unit-length vectors, ã>j ãi is
the cosine of the angle between ãi and ãj . If ãi has
larger angles with {ãj}i−1

j=1, then the average negative co-
sine similarity (−

∑i−1
j=1 ãj)

>ãi would be larger, accord-
ingly p(ãi|pa(ãi)) would be larger. This statement is true
for all i > 1. As a result, p(Ã) = p(ã1)

∏K
i=2 p(ãi|pa(ãi))

would be larger if the directional vectors have larger mu-
tual angles. For the magnitudes {gi}Ki=1 of the components,
which have nothing to do with the mutual angles, we sam-
ple gi for each component independently from a gamma
distribution with shape parameter α1 and rate parameter
α2. The generative process of A is summarized as follows:
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• Draw ã1 ∼ vMF(µ0, κ)

• For i = 2, · · · ,K, draw ãi ∼ vMF(−
∑i−1
j=1 ãj

‖
∑i−1
j=1 ãj‖2

, κ)

• For i = 1, · · · ,K, draw gi ∼ Gamma(α1, α2)

• For i = 1, · · · ,K, ai = ãigi

The probability distribution over A can be written as

p(A) = Cp(κ) exp(κµ>0 ã1)
∏K
i=2 Cp(κ)

exp(κ(−
∑i−1
j=1 ãj

‖
∑i−1
j=1 ãj‖2

)>ãi)
∏K
i=1

α
α1
2 g

α1−1
i e−giα2

Γ(α1)

(2)

According to the factorization theorem (Koller & Fried-
man, 2009) of Bayesian network, it is easy to verify∫
A
p(A)dA = 1, thus p(A) is a proper prior.

When inferring the posterior of model components using a
variational inference method, we need to compute the ex-
pectation of 1/‖

∑i−1
j=1 ãj ||2 appearing in the local prob-

ability p(ãi|pa(ãi)), which is extremely difficult. To ad-
dress this issue, we define an alternative local probability
that achieves similar modeling effect as p(ãi|pa(ãi)), but
greatly facilitates variational inference. We re-parametrize
the local probability p̂(ãi|pa(ãi)) defined in Eq.(1) using
Gibbs measure:

p̂(ãi|pa(ãi)) ∝ exp(κ(−
∑i−1
j=1 ãj)

>ãi)

∝ exp(κ‖
∑i−1
j=1 ãj‖2(−

∑i−1
j=1 ãj

‖
∑i−1
j=1 ãj‖2

)>ãi)

= Cp(κ‖
∑i−1
j=1 ãj‖2) exp(κ‖

∑i−1
j=1 ãj‖2(−

∑i−1
j=1 ãj

‖
∑i−1
j=1 ãj‖2

)>ãi)

= Cp(κ‖
∑i−1
j=1 ãj‖2) exp(κ(−

∑i−1
j=1 ãj)

>ãi)
(3)

which is another vMF distribution with mean direc-
tion −

∑i−1
j=1 ãj/‖

∑i−1
j=1 ãj‖2 and concentration parame-

ter κ‖
∑i−1
j=1 ãj‖2. This reparameterized local probability

is proportional to (−
∑i−1
j=1 ãj)

>ãi, which measures the
negative cosine similarity between ãi and its parent vec-
tors. Thereby, p̂(ãi|pa(ãi)) still encourages large mutual
angles between vectors as p(ãi|pa(ãi)) does. The dif-
ference between p̂(ãi|pa(ãi)) and p(ãi|pa(ãi)) is that in
p̂(ãi|pa(ãi)) the term ‖

∑i−1
j=1 ãj‖2 is moved from the de-

nominator to the normalizer, thus we can avoid comput-
ing the expectation of 1/‖

∑i−1
j=1 ãj‖2. Though it incurs a

new problem that we need to compute the expectation of
logCp(κ‖

∑i−1
j=1 ãj‖2), which is also hard due to the com-

plex form of the Cp(·) function, we managed to resolve
this problem as detailed in Section 2.1.1. We refer to the
MABN prior defined in Eq.(2) as type I MABN and that
with local probability defined in Eq.(3) as type II MABN.

2.1.1. APPROXIMATE INFERENCE ALGORITHMS

We develop algorithms to infer the posteriors of compo-
nents under the MABN priors. Since exact posteriors are
intractable, we resort to approximate inference techniques.

Two main paradigms of approximate inference methods
are: (1) variational inference (VI) (Wainwright & Jordan,
2008); (2) Markov chain Monte Carlo (MCMC) sampling
(Gilks, 2005). These two approaches possess benefits that
are mutually complementary. MCMC can achieve a bet-
ter approximation of the posterior than VI since it gener-
ates samples from the exact posterior while VI seeks an
approximation. However, VI can be computationally more
efficient (Hoffman et al., 2013).

Variational Inference The basic idea of VI (Wainwright
& Jordan, 2008) is to use a “simpler” variational distribu-
tion q(A) to approximate the true posterior by minimizing
the Kullback-Leibler divergence between these two distri-
butions, which is equivalent to maximizing the following
variational lower bound w.r.t q(A):

Eq(A)[log p(D|A)] + Eq(A)[log p(A)]− Eq(A)[log q(A)]
(4)

where p(A) is the MABN prior and p(D|A) is data likeli-
hood. Here we choose q(A) to be a mean field variational
distribution q(A) =

∏K
k=1 q(ãk)q(gk), where q(ãk) =

vMF(ãk|âk, κ̂) and q(gk) = Gamma(gk|rk, sk). Given
the variational distribution, we first compute the analyti-
cal expression of the variational lower bound, in which we
particularly discuss how to compute Eq(A)[log p(A)]. If
choosing p(A) to be type I MABN prior (Eq.(2)), we need

to compute E[(−
∑i−1
j=1 ãj

‖
∑i−1
j=1 ãj‖2

)>ãi] which is very difficult

to deal with due to the presence of 1/‖
∑i−1
j=1 ãj‖2. In-

stead we choose type II MABN prior for the convenience
of deriving the variational lower bound. Under type II
MABN, we need to compute Eq(A)[logZi] for all i, where
Zi = 1/Cp(κ‖

∑i−1
j=1 ãj‖2) is the partition function of

p(ãi|pa(ãi)). The analytical form of this expectation is dif-
ficult to derive as well due to the complexity of the Cp(x)

function: Cp(x) = xp/2−1

(2π)p/2Ip/2−1(x)
where Ip/2−1(x) is the

modified Bessel function of the first kind at order p/2− 1.
To address this issue, we derive an upper bound of logZi
and compute the expectation of the upper bound, which
is relatively easy to do. Consequently, we obtain a fur-
ther lower bound of the variational lower bound and learn
the variational and model parameters w.r.t the new lower
bound. Now we proceed to derive the upper bound of
logZi, which equals to log

∫
exp(κ(−

∑i−1
j=1 ãj) · ãi)dãi.

Applying the inequality log
∫

exp(x)dx ≤ γ +
∫

log(1 +
exp(x− γ))dx (Bouchard, 2007), where γ is a variational
parameter, we have

logZi ≤ γ +
∫

log(1 + exp(κ(−
∑i−1
j=1 ãj) · ãi − γ)dãi

(5)
Then applying the inequality log(1+e−x) ≤ log(1+e−ξ)−
x−ξ

2 − 1/2−g(ξ)
2ξ (x2 − ξ2) (Bouchard, 2007), where ξ is

another variational parameter and g(ξ) = 1/(1+exp(−ξ)),
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we have

logZi ≤ γ +
∫

[log(1 + e−ξ)−
κ(
i−1∑
j=1

ãj)·ãi+γ−ξ

2

− 1/2−g(ξ)
2ξ ((κ(

i−1∑
j=1

ãj) · ãi + γ)2 − ξ2)]dãi

(6)

Finally applying the following integrals on a high-
dimensional sphere: (1)

∫
‖y‖2=1

1dy = 2π(p+1)/2

Γ( p+1
2 )

,

(2)
∫
‖y‖2=1

x>ydy = 0, (3)
∫
‖y‖2=1

(x>y)2dy ≤
‖x‖22 2π(p+1)/2

Γ( p+1
2 )

, we get

logZi ≤ − 1/2−g(ξ)
2ξ κ2‖

i−1∑
j=1

ãj‖22 2π(p+1)/2

Γ( p+1
2 )

+ γ

+[log(1 + e−ξ) + ξ−γ
2 + 1/2−g(ξ)

2ξ (ξ2 − γ2)] 2π(p+1)/2

Γ( p+1
2 )

(7)
The expectation of this upper bound is much easier to com-
pute. Specifically, we need to tackle Eq(A)[‖

∑i−1
j=1 ãj‖22],

which can be computed as

Eq(A)[‖
∑i−1
j=1 ãj‖22]

= Eq(A)[
∑i−1
j=1 ã

>
j ãj +

∑i−1
j=1

∑i−1
k 6=j ã

>
j ãk]

=
i−1∑
j=1

tr(Eq(ãj)[ãj ã>j ]) +
i−1∑
j=1

i−1∑
k 6=j

Eq(ãj)[ãj ]>Eq(ãk)[ãk]

=
i−1∑
j=1

tr(cov(ãj)) +
i−1∑
j=1

i−1∑
k=1

Eq(ãj)[ãj ]>Eq(ãk)[ãk]

(8)
where Eq(ãj)[ãj ] = Ap(κ̂)âj , cov(ãj) = h(κ̂)

κ̂ I + (1 −
2ν+1

κ̂ h(κ̂) − h2(κ̂))âj â
>
j , h(κ̂) = Iν+1(κ̂)

Iν(κ̂) , Ap(κ̂) =
Ip/2(κ̂)

Ip/2−1(κ̂) and ν = p/2− 1.

MCMC Sampling One potential drawback of the varia-
tional inference approach is that large approximation error
can be incurred if the variational distribution is far from
the true posterior. In this section, we study an alternative
approximation inference method — Markov chain Monte
Carlo (MCMC) (Gilks, 2005), which draws samples from
the exact posterior distribution and uses the samples to rep-
resent the posterior. Specifically we choose the Metropolis-
Hastings (MH) algorithm (Gilks, 2005) which generates
samples from an adaptive proposal distribution, computes
acceptance probabilities based on the unnormalized true
posterior and uses the acceptance probabilities to decide
whether a sample should be accepted or rejected. MH even-
tually converges to a stationary distribution where the gen-
erated samples represent the true posterior. The downside
of MCMC is that it could take a long time to converge,
which is usually computationally less efficient than varia-
tional inference (Hoffman et al., 2013). For the directional
variables {ãi}Ki=1 and magnitude variables {gi}Ki=1, we de-
fine the proposal distributions to be von Mises-Fisher and

normal distribution

q(ã
(t+1)
i |ã(t)

i ) = Cp(κ̂) exp(κ̂ã
(t+1)
i · ã(t)

i )

q(g
(t+1)
i |g(t)

i ) = 1
σ
√

2π
exp{− (g

(t+1)
i −g(t)i )2

2σ2 }
(9)

Under the MH algorithm, the MABN prior facilitates better
efficiency compared with the DPP prior. In each iteration,
the MABN prior needs to be evaluated, whose complex-
ity is quadratic in the number of components K whereas
evaluating the DPP has a cubic complexity in K.

2.2. Diversity-Promoting Posterior Regularization

In practice, one may desire to achieve more than one
diversity-promoting effects in LVMs. For example, the
mutual angular regularizer (Xie et al., 2015) aims to en-
courage the pairwise angles between components to have
not only large mean, but also small variance such that the
components are uniformly “different” from each other and
evenly spread out to different directions in the space. It
would be extremely difficult, if ever possible, to define a
proper prior that can accommodate all desired effects. For
instance, the MABN priors defined above can encourage
the mutual angles to have large mean, but are unable to
promote small variance. To overcome such inflexibility of
the prior control method, we resort to a posterior regular-
ization approach (Zhu et al., 2014). Instead of designing
a Bayesian prior to encode the diversification desideratum
and indirectly influencing the posterior, posterior regular-
ization directly imposes a control over the post-data distri-
butions to achieve certain goals. Giving prior π(A) and
data likelihood p(D|A), computing the posterior p(A|D)
is equivalent to solving the following optimization problem
(Zhu et al., 2014)

supq(A) Eq(A)[log p(D|A)π(A)]− Eq(A)[log q(A)]

(10)
where q(A) is any valid probability distribution. The basic
idea of posterior regularization is to impose a certain regu-
larizerR(q(A)) over q(A) to incorporate prior knowledge
and structural bias (Zhu et al., 2014) and solve the follow-
ing regularized problem

supq(A) Eq(A)[log p(D|A)π(A)]− Eq(A)[log q(A)]

+λR(q(A))
(11)

where λ is a tradeoff parameter. Through properly de-
signingR(q(A)), many diversity-promoting effects can be
flexibly incorporated. Here we present a specific example
while noting that many other choices are applicable. Gain-
ing insight from (Xie et al., 2015), we defineR(q(A)) as

Ω({Eq(ai)[ai]}Ki=1) = 1
K(K−1)

K∑
i=1

K∑
j 6=i

θij − γ 1
K(K−1)

K∑
i=1

K∑
j 6=i

(θij − 1
K(K−1)

K∑
p=1

K∑
q 6=p

θpq)
2

(12)
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Figure 3. Bayesian Mixture of Experts with Mutual Angular Prior

where θij = arccos( |E[ai]·E[aj ]|
‖E[ai]‖2‖E[aj ]‖2 ) is the non-obtuse an-

gle measuring the dissimilarity between E[ai] and E[aj ],
and the regularizer is defined as the mean of pairwise an-
gles minus their variance. The intuition behind this regu-
larizer is: if the mean of angles is larger (indicating these
vectors are more different from each other on the whole)
and the variance of the angles is smaller (indicating these
vectors evenly spread out to different directions), then these
vectors are more diverse. Note that it is very difficult to de-
sign priors to simultaneously achieve these two effects.

While posterior regularization is more flexible, it lacks
some strengths possessed by the prior control method.
First, prior control is a more natural way of incorporating
prior knowledge, with solid theoretical foundation. Sec-
ond, prior control can facilitate sampling based algorithms
that are not applicable in posterior regularization. In sum,
the two approaches have complementary advantages and
should be chosen according to specific problem context.

2.3. “Diversifying” Bayesian Mixture of Experts Model

In this section, we apply the two approaches developed
above to “diversify” the Bayesian mixture of experts model
(BMEM) (Waterhouse et al., 1996).

2.3.1. BMEM WITH MUTUAL ANGULAR PRIOR

Mixture of experts model (MEM) (Jordan & Jacobs, 1994)
has been widely used for machine learning tasks where the
distribution of input data is so complicated that a single
model (“expert”) cannot be effective for all the data. MEM
assumes that the input data is inherently belonging to mul-
tiple latent groups and one single “expert” is allocated to
each group to handle the data therein. Here we consider a
classification task whose goal is to learn binary linear clas-
sifiers given the training data D = {(xi, yi)}Ni=1 where x
is input feature vector and yi ∈ {1, 0} is class label. We
assume there are K latent experts where each expert is a
classifier with coefficient vector β. Given a test sample x,
it first goes through a gate function that decides which ex-
pert is best suitable to classify this sample and the decision
is made in a probabilistic way. A discrete variable z is uti-

lized to indicate the selected expert and the probability that
z = k (assigning sample x to expert k) is exp(η>k x)∑K

j=1 exp(η>j x)

where ηk is a coefficient vector characterizing the selection
of expert k. Given the selected expert, the sample is clas-
sified using the coefficient vector β corresponding to that
expert. As described in Figure 3, the generative process of
{(xi, yi)}Ni=1 is as follows

• For i = 1, · · · , N

– Draw zi ∼ Multi(ζ), ζk =
exp(η>k xi)∑K
j=1 exp(η>j xi)

– Draw yi ∼ Bernoulli( 1
1+exp(−β>zixi)

)

As of now, the model parameters B = {βk}Kk=1 and
H = {ηk}Kk=1 are deterministic variables. Next we place
a prior over them to enable Bayesian learning (Waterhouse
et al., 1996) and desire this prior to be able to promote di-
versity among the experts to retain the advantages of “di-
versifying” LVMs as stated before. The mutual angular
Bayesian network prior can be applied to achieve this goal

p(B) = Cp(κ) exp(κµ>0 β̃1)
∏K
i=2 Cp(κ)

exp(κ(−
∑i−1
j=1 β̃j

||
∑i−1
j=1 β̃j ||2

)>β̃i)
∏K
i=1

α
α1
2 g

α1−1
i e−giα2

Γ(α1)

(13)

p(H) = Cp(κ) exp(κξ>0 η̃1)
∏K
i=2 Cp(κ)

exp(κ(−
∑i−1
j=1 η̃j

||
∑i−1
j=1 η̃j ||2

)>η̃i)
∏K
i=1

ω
ω1
2 h

ω1−1
i e−hiω2

Γ(ω1)

(14)

where βk = gkβ̃k and ηk = hkη̃k.

2.3.2. BMEM WITH MUTUAL ANGULAR POSTERIOR
REGULARIZATION

As an alternative approach, the diversity in BMEM can
be imposed by placing the mutual angular regularizer
(Eq.(12)) over the post-data posteriors (Zhu et al., 2014).
Here we instantiate the general diversity-promoting poste-
rior regularization defined in Eq.(11) to BMEM, by spec-
ifying the following parametrization. The latent variables
in BMEM include B, H and z = {zi}Ni=1 and the post-
data distribution over them is defined as q(B,H, z) =
q(B)q(H)q(z). For computational tractability, we define
q(B) and q(H) to be: q(B) =

∏K
k=1 q(β̃k)q(gk) and

q(H) =
∏K
k=1 q(η̃k)q(hk) where q(β̃k), q(η̃k) are von

Mises-Fisher distributions and q(gk), q(hk) are gamma dis-
tributions, and define q(z) to be multinomial distributions:
q(z) =

∏N
i=1 q(zi|φi) where φi is a multinomial vector.

The priors over B and H are specified to be: π(B) =∏K
k=1 p(β̃k)p(gk) and π(H) =

∏K
k=1 p(η̃k)p(hk) where

p(β̃k), p(η̃k) are vMF distributions and p(gk), p(hk) are
gamma distributions. Under such parametrization, we
solve the following diversity-promoting posterior regular-



Diversity-Promoting Bayesian Learning of Latent Variable Models

ization problem

supq(B,H,z) Eq(B,H,z)[log p({yi}Ni=1, z|B,H)π(B,H)]

−Eq(B,H,z)[log q(B,H, z)]

+λ1Ω({Eq(β̃k)[β̃k]}Kk=1)

+λ2Ω({Eq(η̃k)[η̃k]}Kk=1)
(15)

Note that other parametrizations are also valid, such as
placing Gaussian priors over B and H and setting q(B),
q(H) to be Gaussian.

3. Experiments
Using Bayesian mixture of experts model as an instance,
we conducted experiments to verify the effectiveness and
efficiency of the two proposed approaches.

Datasets We used two binary-classification datasets. The
first one is the Adult-9 (Platt et al., 1999) dataset, which
has ∼33K training instances and ∼16K testing instances.
The feature dimension is 123. The other dataset is SUN-
Building compiled from the SUN (Xiao et al., 2010)
dataset, which contains ∼6K building images and 7K non-
building images randomly sampled from other categories,
where 70% of images are used for training and the rest for
testing. We use SIFT (Lowe, 1999) based bag-of-words to
represent the images with a dimensionality of 1000.

Experimental Settings To understand the effects of di-
versification in Bayesian learning, we compare the fol-
lowing methods: (1) mixture of experts model (MEM)
with L2 regularization (MEM-L2) where the L2 regularizer
is imposed over “experts” independently; (2) MEM with
mutual angular regularization (Xie et al., 2015) (MEM-
MAR) where the “experts” are encouraged to be diverse;
(3) Bayesian MEM with a Gaussian prior (BMEM-G)
where the “experts” are independently drawn from a Gaus-
sian prior; (4) BMEM with mutual angular Bayesian net-
work priors (type I or II) where the MABN favors diverse
“experts” (BMEM-MABN-I, BMEM-MABN-II); BMEM-
MABN-I is inferred with MCMC sampling and BMEM-
MABN-II is inferred with variational inference; (5) BMEM
with posterior regularization (BMEM-PR).

The key parameters involved in the above methods are: (1)
the regularization parameter λ in MEM-L2, MEM-MAR,
BMEM-PR; (2) the concentration parameter κ in the mu-
tual angular priors in BMEM-MABN-(I,II); (3) the con-
centration parameter κ̂ in the variational distribution in
BMEM-MABN-II. All parameters were tuned using 5-fold
cross validation. Besides internal comparison, we also
compared with 5 baseline methods, which are among the
most widely used classification approaches that achieve the
state of the art performance. They are: (1) kernel support
vector machine (KSVM) (Burges, 1998); (2) random for-
est (RF) (Breiman, 2001); (3) deep neural network (DNN)
(Hinton & Salakhutdinov, 2006); (4) Infinite SVM (ISVM)

K 5 10 20 30
MEM-L2 82.6 83.8 84.3 84.7

MEM-MAR 85.3 86.4 86.6 87.1
BMEM-G 83.4 84.2 84.9 84.9

BMEM-MABN-I 87.1 88.3 88.6 88.9
BMEM-MABN-II 86.4 87.8 88.1 88.4

BMEM-PR 86.2 87.9 88.7 88.1

Table 1. Classification accuracy (%) on Adult-9 dataset

K 5 10 20 30
MEM-L2 76.2 78.8 79.4 79.7

MEM-MAR 81.3 82.1 82.7 82.3
BMEM-G 76.5 78.6 80.2 80.4

BMEM-MABN-I 82.1 83.6 85.3 85.2
BMEM-MABN-II 80.9 82.8 84.9 84.1

BMEM-PR 81.7 84.1 83.8 84.9

Table 2. Classification accuracy (%) on SUN-Building dataset

(Zhu et al., 2011); (5) BMEM with DPP prior (BMEM-
DPP) (Kulesza & Taskar, 2012), in which a Metropolis-
Hastings sampling algorithm was adopted1. The kernels
in KSVM and BMEM-DPP are both radial basis function
kernel. Parameters of the baselines were tuned using 5-fold
cross validation.

Results Table 1 and 2 show the classification accuracy
under different number of “experts” on the Adult-9 and
SUN-Building dataset respectively. From these two ta-
bles, we observe that: (1) diversification can greatly im-
prove the performance of Bayesian MEM, which can be
seen from the comparison between diversified BMEM
methods and their non-diversified counterparts, such as
BMEM-MABN-(I,II) versus BMEM-G, and BMEM-PR
versus BMEM-G. (2) Bayesian learning achieves better
performance than point estimation, which is manifested
by comparing BMEM-G with MEM-L2, and BMEM-
MABN-(I,II)/BMEM-PR with MEM-MAR. (3) BMEM-
MAR-I works better than BMEM-MABN-II and BMEM-
PR. The reason we conjecture is that BMEM-MAR-I in-
ferred with MCMC draws samples from the exact poste-
rior while BMEM-MABN-II and BMEM-PR inferred with
variational inference seek an approximation of the poste-
rior.

Recall that the goals of promoting diversity in LVMs
are to reduce model size without sacrificing modeling
power and effectively capture infrequent patterns. Here
we empirically verify whether these two goals can be
achieved. Regarding the first goal, we compare diversified
BMEM methods BMEM-MABN-(I,II)/BMEM-PR with
non-diversified counterpart BMEM-G and check whether

1Variational inference and Gibbs sampling (Affandi et al.,
2013) are both not applicable.
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Category ID C18 C17 C12 C14 C22 C34 C23 C32 C16
Num. of Docs 5281 4125 1194 741 611 483 262 208 192

BMEM-G Accuracy (%) 87.3 88.5 75.7 70.1 71.6 64.2 55.9 57.4 51.3
BMEM-MABN-I Accuracy (%) 88.1 86.9 74.7 72.2 70.5 67.3 68.9 70.1 65.5

Relative Improvement (%) 1.0 -1.8 -1.3 2.9 -1.6 4.6 18.9 18.1 21.7

Table 3. Accuracy on 9 subcategories of the CCAT category in the RCV1.Binary dataset

Adult-9 SUN-Building
KSVM 85.2 84.2

RF 87.7 85.1
DNN 87.1 84.8
ISVM 85.8 82.3

BMEM-DPP 86.5 84.5
BMEM-MABN-I 88.9 85.3
BMEM-MABN-II 88.4 84.9

BMEM-PR 88.7 84.9

Table 4. Classification accuracy (%) on two datasets

Adult-9 SUN-Building
BMEM-DPP 8.2 11.7

BMEM-MABN-I 7.5 10.5
BMEM-MABN-II 2.9 4.1

BMEM-PR 3.3 4.9

Table 5. Training time (hours) of different methods with K = 30

diversified methods with a small number of components K
which entails low computational complexity can achieve
performance as good as non-diversified methods with large
K. It can be observed that BMEM-MABN-(I,II)/BMEM-
PR with a small K can achieve accuracy that is compara-
ble to or even better than BMEM-G with a large K. For
example, on the Adult-9 dataset (Table 1), with 5 experts
BMEM-MABN-I is able to achieve an accuracy of 87.1%,
which cannot be achieved by BMEM-G with even 30 ex-
perts. This corroborates the effectiveness of diversification
in reducing model size (hence computational complexity)
without compromising performance.

To verify the second goal – capturing infrequent patterns,
from the RCV1 (Lewis et al., 2004) dataset we pick up a
subset of documents (for binary classification) such that
the popularity of categories (patterns) is in power-law dis-
tribution. Specifically, we choose documents from 9 sub-
categories (the 1st row of Table 3) of the CCAT category
as the positive instances, and randomly sample 15K doc-
uments from non-CCAT categories as negative instances.
The 2nd row shows the number of documents in each
of the 9 categories. The distribution of document fre-
quency is in a power-law fashion, where frequent cate-
gories (such as C18 and C17) have a lot of documents
while infrequent categories (such as C32 and C16) have

a small amount of documents. The 3rd and 4th row show
the accuracy achieved by BMEM-G and BMEM-MABN-I
on each category. The 5th row shows the relative improve-
ment of BMEM-MABN-I over BMEM-G, which is defined
as Abmem mabn−Abmem g

Abmem g
, where Abmem mabn and Abmem g

denote the accuracy achieved by BMEM-MABN-I and
BMEM-G respectively. While achieving accuracy compa-
rable to BMEM-G over the frequent categories, BMEM-
MABN-I obtains much better performance on infrequent
categories. For example, the relative improvements on in-
frequent categories C32 and C16 are 18.1% and 21.7%.
This demonstrates that BMEM-MABN-I can effectively
capture the infrequent patterns.

Table 4 presents the comparison with the state of the
art classification methods. As one can see, our method
achieves the best performances on both datasets. In par-
ticular, BMEM-MAR-(I,II) work better than BMEM-DPP,
demonstrating the proposed mutual angular priors possess
ability that is better than or comparable to the DPP prior in
inducing diversity.

Table 5 compares the time (hours) taken by each method
to achieve convergence, with K set to 30. BMEM-MABN-
II inferred with variational inference (VI) is more efficient
than BMEM-MABN-I inferred with MCMC sampling, due
to the higher efficiency of VI than MCMC. BMEM-PR is
solved with an optimization algorithm which is more ef-
ficient than the sampling algorithm in BMEM-MABN-I.
BMEM-MABN-II and BMEM-PR are more efficient than
BMEM-DPP where the DPP prior inhibits the adoption of
VI.

4. Conclusions
We study how to promote diversity in Bayesian latent vari-
able models, for the purpose of better capturing infrequent
patterns and reducing model size without compromising
modeling power. We define mutual angular Bayesian net-
work (MABN) priors entailing bias towards components
with larger mutual angles and investigate a posterior regu-
larization approach which directly applies regularizers over
the post-data distributions to promote diversity. Approxi-
mate algorithms are developed for posterior inference un-
der the MABN priors. With Bayesian mixture of experts
model as a study case, empirical experiments demonstrate
the effectiveness and efficiency of our methods.
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