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Abstract

This work focuses on dynamic regret of online
convex optimization that compares the perfor-
mance of online learning to a clairvoyant who
knows the sequence of loss functions in advance
and hence selects the minimizer of the loss func-
tion at each step. By assuming that the clairvoy-
ant moves slowly (i.e., the minimizers change
slowly), we present several improved variation-
based upper bounds of the dynamic regret under
the true and noisy gradient feedback, which are
optimal in light of the presented lower bounds.
The key to our analysis is to explore a regular-
ity metric that measures the temporal changes
in the clairvoyant’s minimizers, to which we re-
fer as path variation. Firstly, we present a gen-
eral lower bound in terms of the path variation,
and then show that under full information or gra-
dient feedback we are able to achieve an op-
timal dynamic regret. Secondly, we present a
lower bound with noisy gradient feedback and
then show that we can achieve optimal dynamic
regrets under a stochastic gradient feedback and
two-point bandit feedback. Moreover, for a se-
quence of smooth loss functions that admit a
small variation in the gradients, our dynamic re-
gret under the two-point bandit feedback matches
what is achieved with full information.
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1. Introduction
Online convex optimization (OCO) can be deemed as a re-
peated game between an online player and an adversary, in
which an online player iteratively chooses a decision and
then her decisions incur (possibly different) losses by the
loss functions chosen by the adversary. These loss func-
tions are unknown to the decision maker ahead of time,
and can be adversarial or even depend on the action taken
by the decision maker. To formulate the problem mathe-
matically, let Ω ⊆ Rd denote a convex decision set (i.e.,
the feasible set of the decision vector), wt ∈ Ω denote the
decision vector and ft(·) : Rd → R denote the loss func-
tion at the t-th step, respectively. The goal of the online
learner is to minimize her cumulative loss

∑T
t=1 ft(wt).

The traditional performance metric - the regret of the de-
cision maker, is defined as the difference between the total
cost she has incurred and that of the best fixed decision in
hindsight, i.e.,

T∑
t=1

ft(wt)− min
w∈Ω

T∑
t=1

ft(w). (1)

Recently, there emerges a surge of interest (Besbes et al.,
2013; Hall & Willett, 2013; Jadbabaie et al., 2015) in the
dynamic regret that compares the performance of online
learning to a sequence of optimal solutions. If we denote by
w∗t ∈ Ω an optimal solution of ft(w), the dynamic regret
is defined as
T∑
t=1

(ft(wt)− ft(w∗t )) =

T∑
t=1

(ft(wt)− min
w∈Ω

ft(w)) (2)

i.e., the performance of the online learner is compared to
a clairvoyant who knows the sequence of loss functions in
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advance, and hence selects the minimizer w∗t at each step.
Compared to the traditional regret in (1) (termed as static
regret), the dynamic regret is more aggressive since the per-
formance of the clairvoyant in the dynamic regret model
is always better than that in the static regret model, i.e.,∑T
t=1 ft(w

∗
t ) ≤ minw∈Ω

∑T
t=1 ft(w). It was pointed out

that algorithms that achieve performance close to the best
fixed decision may perform poorly in terms of dynamic re-
gret (Besbes et al., 2013).

Unfortunately, it is impossible to achieve a sublinear dy-
namic regret for any sequences of loss functions (c.f.
Proposition 1). In order to achieve a sublinear dynamic
regret, one has to impose some regularity constraints on
the sequence of loss functions. In this work, we leverage a
notion of variation that measures how fast the clairvoyant
moves, i.e., how fast the minimizers of the sequence of loss
functions change, to which we refer as path variation in
order to differentiate with other variation definitions. For-
mally the path variation is defined as

V pT , max
{w∗

t∈Ω∗
t }Tt=1

T−1∑
t=1

‖w∗t −w∗t+1‖2 (3)

where Ω∗t denotes the set of all minimizers of ft(w) to
account for the potential non-uniqueness. We aim to de-
velop optimal dynamic regrets when the clairvoyant moves
slowly given (noisy) gradient feedback (including bandit
feedback) for non-strongly convex loss functions. The
main results are summarized in Table 1 and the contribu-
tions of this paper are summarized below.

• We present a general lower bound dependent solely
on V pT and show that under true gradient feedback for
smooth functions with vanishing gradients in the fea-
sible domain, one can achieve the optimal dynamic
regret of O(V pT ) comparable to that with full informa-
tion feedback.

• We present a lower bound under a noisy (sub)gradient
feedback dependent on V pT and T , and then show that
online gradient descent (OGD) with an appropriate
step size can achieve the optimal dynamic regret of
O(
√
V pT T ) under both stochastic gradient feedback

and two-point bandit feedback.

• When the loss functions are smooth, we establish an
improved dynamic regret under the two-point bandit
feedback, which could match the bound achieved with
the full information feedback in a certain condition.

We note that a regularity metric similar to the path variation
(possibly measured in different norms) has been explored
in shifting regret analysis (Herbster & Warmuth, 1998) and
drifting regret analysis (Cesa-Bianchi et al., 2012; Buch-
binder et al., 2012). The regret against the shifting ex-
perts was studied in tracking the best expert, where the

best sequence of minimizers are assumed to change for a
constant number of times. In drifting regret analysis, the
constraint is relaxed to that the path variation is small. In
fact, a similar dynamic regret bound to

√
V pT T has been

established for online convex optimization over the sim-
plex (Cesa-Bianchi et al., 2012), where the path variation
is measured in `1 norm. The present work focuses on OCO
in the Euclidean space and considers noisy gradient feed-
back. A more general variation is considered in (Hall &
Willett, 2013), where a sequence of (or a family of) dy-
namic models φ1, . . . , φT are revealed by the environment
for the learner to predict the decision in the next step. Their
variation is defined as V φT =

∑T−1
t=1 ‖w∗t+1−φt(w∗t )‖ for a

sequence of comparators and their dynamic regret scales as
V φT
√
T , which is worse than our bounds when φt(w) = w.

There have been different notions of variation that measure
the point-wise changes in the sequence of loss functions
at any feasible points. For example, Besbes et al. (2013)
considered the functional variation defined as

V fT =

T−1∑
t=1

max
w∈Ω
|ft(w)− ft+1(w)|. (4)

Besbes et al. considered two feedback structures, i.e., the
noisy gradient and the noisy cost, and established sublinear
dynamic regret for both feedback structures. For Lipschitz
continuous loss functions, their results are presented in Ta-
ble 1 1. An annoying fact is that even the sequence of
Lipschitz loss functions change slowly (namely the func-
tional variation is small), Besbes’ dynamic regret is worse
than O(

√
T ), the optimal rate for static regret. In com-

parison, our results match that for static regret when the
clairvoyant moves slowly such that the path variation is a
constant. Another variation that measures point-wise dif-
ference between loss functions is the gradient variation in-
troduced in (Chiang et al., 2012), which is defined as

V gT ,
T∑
t=1

max
w∈Ω
‖∇ft(w)−∇ft−1(w)‖22. (5)

The gradient variation has been explored for bounding the
static regret (Chiang et al., 2012; Rakhlin & Sridharan,
2013; Yang et al., 2014). Recently, Jadbabaie et al. (2015)
used the three variations and developed possibly better dy-
namic regret than using a single variation measure for non-
strongly convex loss functions. They considered the full
information feedback (i.e., the whole loss function is re-
vealed to the learner) and a true gradient feedback for a
sequence of bounded functions. Their results are also pre-
sented in Table 1. In comparison, our results could be po-
tentially better when the clairvoyant moves slowly. Dif-
ferent from (Jadbabaie et al., 2015), we consider the noisy

1For strongly convex loss functions, better bounds were also
established in (Besbes et al., 2013)
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Table 1. Summary of dynamic regret bounds in this paper and comparison with the previous work. N.B. means that no better bounds are
explicitly given. However, the bounds in the degenerate case may apply. N.A. means that not available. ∗ marks the result is restricted
to a family of smooth loss functions with vanishing gradients in the feasible domain. Please note that the bandit feedback in this work
refers to two-point bandit feedback, and that in (Besbes et al., 2013) refers to noisy one-point bandit feedback.

This paper (Besbes et al., 2013) (Jadbabaie et al., 2015)

Loss function Feedback path variation functional variation three variations

Lipschitz Full Information O(V pT ) O(V fT ) O(min(
√
V pT V

g
T , (V

g
T )1/3T 1/3(V fT )1/3))

Lipschitz True Gradient N.B. N.B. O(
√
V gT V

p
T )

Smooth True Gradient O(V pT )∗ N.B. N.B.

Lipschitz Stochastic Grad. O(
√
V pT T ) O((V fT )1/3T 2/3) N.A.

Lipschitz Bandit O(
√
V pT T ) O((V fT )1/5T 4/5) N.A.

Smooth/Linear Bandit O(max{
√
V pT V

g
T , V

p
T }) N.B. N.A.

Lower Bounds Yes Yes No

gradient feedback (including the bandit feedback) and de-
velop both upper bounds and lower bounds.

2. Optimal Dynamic Regret with Noiseless
Information

In this section, we present an optimal dynamic regret
bound dependent solely on V pT and present algorithms with
matched upper bounds.

2.1. Preliminaries and a Lower Bound

Since it is impossible to achieve a sublinear dynamic re-
gret for any sequence of loss functions. We consider the
following family of functions that admit a path variation
constraint:

Vp = {{f1, . . . , fT } : V pT ≤ BT } (6)

where BT is the budget. For a (randomized) policy π
that generates a sequence of solutions w1, . . . ,wT for a
sequence of loss functions f1, . . . , fT under the feedback
structure φ, its dynamic regret is defined as

Rπφ({f1, . . . , fT }) = Eπ

[
T∑
t=1

ft(wt)

]
−

T∑
t=1

ft(w
∗
t )

The worst dynamic regret of π over f ∈ Vp is

Rπφ(Vp, T ) = sup
f∈Vp

Rπφ({f1, . . . , fT })

Note that the dynamic regret remains the same for different
sequences of optimal solutions w∗t , t = 1, . . . , T .

Below, we establish a general lower bound of the dynamic
regret for the following family of policies:

A =

{
π : wt =

{
π1(U), t = 1
πt({φτ (fτ )}t−1

τ=1, U), t ≥ 1

}
(7)

where φt(ft) ∈ Rk denotes any feedback of ft, and U ∈ U
denotes a random variable, π1 : U → Ω, πt : R(t−1)k ×

U→ Ω are measurable functions.

Proposition 1. Let C,C1, C2 be positive constants inde-
pendent of T and V pT , and let π be any policy in A. (i) If
BT ≥ C1T , then there exists a positive constant C2 such
that Rπφ(Vp, T ) ≥ C2T. (ii) For any γ ∈ (0, 1), there ex-
ists a sequence of loss functions f1, . . . , fT and a positive
constant C such that V pT ≤ o(T ) and Rπφ({f1, . . . , ft}) ≥
C(V pT )γ .

Remark: The first part indicates that it is impossible to
achieve a sublinear dynamic regret if there is no constraint
on the sequence of loss functions. Therefore, in the se-
quel, we only consider BT ≤ o(T ). A similar result to the
first part using V fT as the regularity measure has been es-
tablished (Besbes et al., 2013). The second part is novel,
which indicates that it is impossible to achieve a better dy-
namic regret bound of O((V pT )α) with α < 1. If otherwise,
it then contradicts to the lower bound in the second part of
Proposition 1.

Proof. Fix T ≥ 1 and γ ∈ (0, 1). To generate the sequence
of loss functions, we create a sequence of random variables
ε1, . . . , εT , where each εt is sampled independently from
{σ,−σ} with equal probabilities. It is obvious that E[εt] =
0 and E[ε2

t ] = σ2. For each εt, we define a loss function
ft(w) = 1

2 (w − εt)2. Assume σ ∈ (0, 1) whose value will
be specified later. Let the feasible domain be Ω = [−1, 1].

E
[
Rπφ({f1, . . . , ft})

]
= E

[
T∑
t=1

ft(wt)− ft(εt)

]

=

T∑
t=1

E
[
w2
t /2 + ε2

t/2− wtεt
]
≥ Tσ2/2

where E[·] denotes the expectation over the randomness in
the sequence of loss functions f1, . . . , ft and the policy π
and the last inequality is due to that wt is independent of
εt. We also have V pT =

∑T−1
t=1 |εt − εt+1| ≤ 2σT . To
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prove the first part, we let σ be a constant C1/2, then any
sequences of loss functions generated as above constitute a
subset V ′p ⊂ Vp. Then

Rπφ(Vp, T ) ≥ Rπφ(V ′p, T ) ≥ E
[
Rπφ({f1, . . . , ft})

]
≥ C2

1

8
T

To prove the second part, we set σ = T−µ with µ =
(1−γ)/(2−γ) ∈ (0, 1/2). Then there exits a positive con-
stant C such that E

[
Rπφ({f1, . . . , fT })− C(V pT )γ

]
≥ 0,

which implies that there exists a sequence of loss functions
f1, . . . , fT such thatRπφ({f1, . . . , fT }) ≥ C(V pT )γ .

We note that if γ = 1, we have µ = 0 and therefore BT =
Ω(T ) which reduces to the lower bound in the first part.
Therefore, we restrict γ ∈ (0, 1).

An interesting question is that whether an O(V pT ) dynamic
regret bound is achievable, if not what is the best we can
achieve. In particular, we are interested in scenarios when
the feedback φt(ft) = φt(wt, ft) only gives a (noisy) gra-
dient of ft(w) at wt. Before delving into the noisy gra-
dient feedback, we first show that an O(V pT ) upper bound
is achievable with full information of the loss functions or
with full gradient feedback provided that the loss functions
are smooth and have vanishing gradients. We make the fol-
lowing assumptions throughout the paper without explic-
itly mentioning it in the sequel.

Assumption 1. For {f1, . . . , fT } ∈ Vp, there exists a r >
0 such that supw∗

t∈Ω∗
t
‖w−w∗t ‖2 ≤ r, for any w ∈ Ω and

1 ≤ t ≤ T .

2.2. Online Learning with Full Information

Assume that at each step the full information of the loss
function ft(w) is revealed after the decision wt is submit-
ted, and each loss function ft(w) is G-Lipschitz continu-
ous. Then we can update wt+1 by

wt+1 = min
w∈Ω

ft(w), t ≥ 1

with w1 be any point in Ω. To analyze the dynamic regret,
we denote by w∗0 = w1.
T∑
t=1

ft(wt)−
T∑
t=1

ft(w
∗
t ) =

T∑
t=1

ft(w
∗
t−1)−

T∑
t=1

ft(w
∗
t )

≤
T∑
t=1

G‖w∗t−1 −w∗t ‖2 = G‖w1 −w∗1‖2

+G

T−1∑
t=1

‖w∗t −w∗t+1‖2 ≤ Gr +GV pT = O(max(V pT , 1)).

It is notable that a similar upper bound of O(max(V fT , 1))
with the full information can be achieved (Jadbabaie et al.,
2015).

2.3. Online Learning with Gradient Feedback

Full information may not be available. In practice, only
some partial information of the ft(w) regarding the de-
cision vector wt is available. In this subsection, we as-
sume that only the gradient information ∇ft(wt) is avail-
able after the decision wt is submitted. Below, we will first
present several examples showing thatO(V pT ) is achievable
and generalize the analysis to a broad family.

We consider two loss functions g1(w) = max(w, 0)2 and
g2(w) = (w − α)2 defined in the domain Ω = [−1, 3] and
divide all iterations 1, . . . , T into a number m of batches
with each batch size of ∆T . Assume the adversary se-
lects g1(·) in odd batches and g2(·) in even batches, and
at each step the full gradient feedback is available, i.e.,
φt(wt, ft) = f ′t(wt). The example is similar to that pre-
sented in (Besbes et al., 2013) except that g1(w) is not
strongly convex. Below, we consider two instances of the
above example with different ∆T and α. For the updates,
we adopt the OGD, i.e.,

wt+1 = ΠΩ[wt − ηf ′t(wt)], t = 1, . . . , T − 1

where ΠΩ[·] denotes the projection into the domain Ω.

Instance 1. ∆T = dT/2e and α = 1. Then V pT = 1.

Given the value of ∆T , there are two batches. Let Γ1,Γ2 ⊆
T denote the iteration indices in the first and the second
batch, respectively, and let Γj [1] denote the first iteration
of the j-th batch. We adopt a constant step size η = 1/2
with a starting point w0 = 0. Then wt = 0, t ∈ Γ1. For the
first iteration t ∈ Γ2 we have wt = ΠΩ[0 − ηg′1(0)] = 0.
And for all remaining iterations t ∈ Γ2, we have wt =
ΠΩ[wt−1 − ηg′2(wt−1)] = α. As a result wt = w∗t , t ∈
[T ] except wΓ2[1] = 0 6= w∗Γ2[1], which indicates that the
dynamic regret is fΓ2[1](wΓ2[1])−fΓ2[1](w

∗
Γ2[1]) = g2(0)−

g2(1) = 1.

Instance 2. θ = C/
√
T , ∆T = b1+1/(2θ)c, α = 1+(1−

2θ)∆T , and T > 4C2 (note that θ < 1/2 and 1 ≤ α ≤ 2).
Then

V pT =

m∑
j=1

α ≤ 2m =
2T

∆T
=

2T

b1 +
√
T/(2C)c

≤ 4C
√
T

The example is similar to the above except that the loss
functions change more frequently. We consider OGD with
a constant step size η = 1/2 andw1 = 1. Similar as before,
we use j = 1, . . . ,m to denote the batch index, Γj ⊆ T to
denote the indices in the j-th batch, Γj [1] and Γj [2 :] to
denote the first iteration and remaining iterations in batch
j, respectively. Note that w∗t = 0, t ∈ Γ2j−1 and w∗t =
α, t ∈ Γ2j .

For t ∈ Γ1[2 :] or t = Γ2[1], by induction we can show
that wt = ΠΩ[wt−1 − ηg′1(wt−1)] = 0. Therefore, wt =
w∗t , t ∈ Γ1[2:] and wΓ2[1] = 0. For t ∈ Γ2[2:] or t = Γ3[1],
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following the OGD updatewt = ΠΩ[wt−1−ηg′2(wt−1)] =
ΠΩ[wt−1 − 2η(wt−1 − α)] = α. Therefore, wt = α, t ∈
Γ2[2:] and t = Γ3[1]. Following the same analysis, we have
wt = w∗t for t ∈ Γj [2:], wΓ2j−1[1] = α and wΓ2j [1] = 0.
It means that the difference between the decision vector
wt and the optimal solutions w∗t only happens at the first
iterations of all batches. As a result, the dynamic regret is
m∑
j=1

max(g1(α)− g1(0), g2(0)− g2(α)) =

m∑
j=1

α2 ≤ 2V pT

It is notable the key ingredient to achieve an O(V pT ) dy-
namic regret is to use a constant step size. Next, we gen-
eralize this result to a broad family of loss functions. In
particular, we assume the sequence of loss functions sat-
isfy the following assumption.
Assumption 2. Assume that every loss function ft(·) is
defined over Rd and is convex and smooth, i.e., for any
w,w′ ∈ Rd, we have

‖∇ft(w)−∇ft(w′)‖2 ≤ L‖w −w′‖2,
where L > 0 is the smoothness constant. In addition, we
assume that there exists w∗t ∈ Ω∗t such that∇ft(w∗t ) = 0.

The condition ∇ft(w∗t ) = 0 is referred to as the vanishing
gradient condition. The examples considered before indeed
satisfy Assumption 2. Consider the policy of OGD:

π : wt=

{
w1 ∈ Ω t = 1
ΠΩ[wt−1 − η∇ft−1(wt−1)] t > 1

(8)

The following theorem states the dynamic regret bound of
OGD with a constant step size.
Theorem 3. (upper bound) Suppose Assumption 2 hold.
By the policy π in (8) with η = 1/(2L), for any
{f1, . . . , fT } ∈ Vp we have

T∑
t=1

ft(wt)− ft(w∗t ) ≤ 2L
(
r2 + 2rBT

)
.

To prove the theorem, we first give the following lemma
whose proof is included the supplement.
Lemma 4. Let wt = ΠΩ[wt−1 − ηgt−1], t > 1. Then

g>t (wt −w∗t ) ≤
η

2
‖gt‖22 +

r‖w∗t −w∗t+1‖2
η

+
‖wt −w∗t ‖22 − ‖wt+1 −w∗t ‖22 − ‖w∗t −w∗t+1‖22

2η

Proof of Theorem 3. Following Lemma 4 and the convex-
ity of ft(w), we have

ft(wt)− ft(w∗t ) ≤
η

2
‖∇ft(wt)‖22 +

r‖w∗t −w∗t+1‖2
η

(9)

+
‖wt −w∗t ‖22 − ‖wt+1 −w∗t+1‖22 − ‖w∗t+1 −w∗t ‖22

2η

By the smoothness of f(w), for any w ∈ Rd

ft(w)− ft(wt) ≤ 〈∇ft(wt),w −wt〉+
L

2
‖w −wt‖22

Let w = w′t = wt − 1
L∇ft(wt) in the above inequality,

we have ft(w′t) − ft(wt) ≤ −‖∇ft(wt)‖
2
2

2L . By convexity
of ft(w),

ft(w
′
t) ≥ ft(w∗t ) +∇ft(w∗t )>(w′t −w∗t ) = ft(w

∗
t )

which follows the vanishing gradient condition. Then

ft(w
∗
t )− ft(wt) ≤ ft(w′t)− ft(wt) ≤ −

‖∇ft(wt)‖22
2L

Combing the inequality above with (9), we have

ft(wt)− ft(w∗t ) ≤ ηL(ft(wt)− ft(w∗t ))

+
‖wt −w∗t ‖22 − ‖wt+1 −w∗t+1‖22

2η
+
r‖w∗t −w∗t+1‖2

η

By summing over t = 1, . . . , T , we have
T∑
t=1

(ft(wt)− ft(w∗t )) ≤
1

1− ηL

(
r2

2η
+
r

η
V pT

)
We complete the proof by choosing η = 1/[2L].

Remark: Theorem 3 exhibits that OGD can achieve an
O(max(V pT , 1)) dynamic regret for a sequence of loss func-
tions in Vp that satisfy Assumption 2 with only the gradient
feedback, which is comparable to that achieved in the full
information feedback. The instance 1 and 2 in Section 2
has V pT = O(1) and V pT ≈ 4C

√
T , respectively. There-

fore, using OGD with η = C we can obtain an O(1) and
O(
√
T ) dynamic regret.

Finally, it is worth mentioning that the OGD with restarting
proposed in Besbes et al.’ work achieves an O(T 1/3) dy-
namic regret for instance 1 and an O(T 5/6) dynamic regret
for instance 2 due to that the functional variation for the
first instance is bounded by a constant and for the second
instance is bounded by O(

√
T ).

3. Optimal Dynamic Regret with Noisy
Gradient

In this section, we focus on noisy gradient feedback, i.e.,
φt(wt, ft) is only a noisy (sub)gradient of ft(w) at wt.

3.1. A Lower Bound with Noisy Gradient Feedback

Before presenting the upper bounds of the dynamic regret
with noisy gradient feedback, we will first present a lower
bound. For establishing the lower bound, we consider the
following class of policies

π : wt =

{
π1(U), t = 1
πt({φτ (wτ , fτ )}t−1

τ=1, U), t ≥ 1
(10)
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where U, π1, πt are defined similarly as before, and
φt(wt, ft) is a noisy subgradient of ft at wt. In particu-
lar, we assume the noisy gradient is given by φt(wt, ft) ∈
∂ft(wt) + εt with εt satisfying the following condition.

Assumption 5. εt ∈ Rd, t ≥ 1 are iid random vectors
with zero mean and covariance matrix Σ with bounded en-
tries such that tr(Σ) ≤ λ2. Let P (·) denote the cumulative
function of εt. There exists a constant C̃ such that for any
a ∈ Rd,

∫
log
(

dP (y)
dP (y+a)

)
dP (y) ≤ C̃‖a‖22.

When the noise vectors are independent Gaussian random
vectors with zero mean and covariance matrices with en-
tries uniformly bounded by σ2, the above assumption is
satisfied with C̃ = 1/(2σ2) and λ2 = dσ2 (Besbes et al.,
2013).

Theorem 6. (lower bound) For any 1 ≤ BT ≤ T and κ ∈
(1/2, 1), there exist V ′p ⊂ Vp and C(κ) > 0 independent of
T andBT such that for any policy π in (10) under the noisy
gradient feedback that satisfies Assumption 5, we have

Rπφ(V ′p, T ) ≥ C(κ)BκTT
1−κ.

Remark: Note that from the proof presented below when
κ → 1/2, C(κ) → 0. However, the above lower bound
can be used to argue that it is impossible to achieve a bet-
ter dynamic regret thanO(B

1/2
T T 1/2) with the noisy gradi-

ent feedback for any sequence of loss functions. We prove
this by contradiction. In particular, assume there exists
an algorithm under the noisy gradient feedback achieves
better bound than O(B

1/2
T T 1/2) for any sequence of loss

functions. We can consider two lower orders O(BαTT
1−α)

with 1 > α > 1/2 and O(BαTT
β) with α ≤ 1/2, β ≤

1/2 and α + β < 1. First, we assume O(BαTT
1−α)

is achievable. By Theorem 6 we know that there exists
α < κ < 1 (e.g., κ = α+1

2 ) and V ′p such thatRπφ(V ′p, T ) ≥
Ω(BκTT

1−κ) ≥ Ω(BαTT
1−α), which yields a contradic-

tion. To show that the second lower bound is unachievable,
we can construct a BT such that BκTT

1−κ ≥ Ω(BαTT
β),

i.e., BT ≥ Ω(T
β+κ−1
κ−α ), where β + κ− 1 < κ− α.

Proof. We construct two functions over the domain Ω =
[−1/2,+1/2]. They are

f(x) =


1

1+γ δ
1+γ − δγx x ∈ [−1/2, 0]

1
1+γ |x− δ|

1+γ x ∈ [0, 2δ]

− 1+2γ
1+γ δ

1+γ + δγx x ∈ [2δ, 1/2]

, (11)

g(x) =


− 1+2γ

1+γ δ
1+γ − δγx x ∈ [−1/2,−2δ]

1
1+γ |x+ δ|1+γ x ∈ [−2δ, 0]
1

1+γ δ
1+γ + δγx x ∈ [0, 1/2]

(12)

where 0 < δ < 1/2 and γ > 0 will be determined
later. It is easy to verify that both f(·) and g(·) are con-
vex but not strongly convex. It is also easy to see that

the optimal solutions for f(·) and g(·) are x∗f = δ and
x∗g = −δ, respectively. Hence |x∗f − x∗g| = 2δ. For
a given budget BT , we will construct a subset of Vp by
only considering the sequence of these two loss func-
tions. For some ∆T ∈ {1, . . . , T} that, we divide the en-
tire sequence T into m = dT/∆T e batches, denoted by
T1, . . . , Tm, each with size of ∆T (except perhaps Tm), i.e.
Tj = {(j − 1)∆T + 1, . . . ,min(j∆t, T )}, j = 1, . . . ,m.
To generate the sequence of loss functions f1, . . . , fT , at
the beginning of each batch Tj , we randomly choose be-
tween the two functions f(·) and g(·) and the same loss
function will be used throughout the batch. We denote by
V ′p = {{ft(·), t = 1, . . . , T}} the set of a sequence of
randomly sampled loss functions, and by X1, . . . , XT the
sequence of solutions generated by any policy in (10). Let
δ = BT∆T /2T . For any f ∈ V ′p, we have

V pT =

m∑
j=2

|x∗j − x∗j−1| ≤ (dT/∆T e − 1) 2δ ≤ T2δ

∆T
= BT

Therefore, V ′p ⊂ Vp. We denote by Pπf the probability mea-
sure under policy π when f is the sequence of the loss func-
tions, and by Eπf the associated expectation operator. Set

∆T = max
{

( 4γ

4C̃
)1/(2γ+1)( T

BT
)2γ/(2γ+1), 1

}
. Then

C̃Eπf

∑
t∈Tj

(∇f(Xt)−∇g(Xt))
2

 ≤ C̃∑
t∈Tj

4δ2γ

≤ 4C̃∆T δ
2γ ≤ 4C̃

B2γ
T ∆2γ+1

22γT 2γ
≤ max(1,

4C̃B2γ
T

T 2γ4γ
)

≤ max(1,
4C̃

4γ
) ≤ max(1, 4C̃) , β

where we use the condition that BT ≤ T . Using Lemma
A-1 and A-2 from (Besbes et al., 2013), we have

max
{
Pπf {Xt > 0},Pπg {Xt ≤ 0}

}
≥ 1

4eβ
,∀t

Using the above result, we have

Rπφ(V ′p, T ) ≥ E

 m∑
j=1

∑
t∈Tj

ft(Xt)− ft(x∗j )


=

1

2

m∑
j=1

Eπf

∑
t∈Tj

f(Xt)− f(x∗f )


+

1

2

m∑
j=1

Eπg

∑
t∈Tj

g(Xt)− g(x∗g)


≥ 1

2

m∑
j=1

∑
t∈Tj

P{Xt ≤ 0}
(
f(0)− f(x∗f )

)
+

1

2

m∑
j=1

∑
t∈Tj

P{Xt > 0}
(
g(0)− g(x∗g)

)
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=
δ1+γ

2(1 + γ)

m∑
j=1

∑
t∈Tj

(P{Xt ≤ 0}+ P{Xt > 0})

≥ δ1+γT

8(1 + γ)eβ
.

In the above derivations, the first expectation is taking over
all randomness in π and f1, . . . , fT , the second inequality
holds because

E[f(Xt)] = E[f(Xt)|Xt > 0] Pr(Xt > 0)

+ E[f(Xt)|Xt ≤ 0] Pr(Xt ≤ 0) ≥ f(0) Pr(Xt ≤ 0)

E[g(Xt)] = E[g(Xt)|Xt > 0] Pr(Xt > 0)

+ E[g(Xt)|Xt ≤ 0] Pr(Xt ≤ 0) ≥ g(0) Pr(Xt > 0)

where the inequalities are due to f(x) ≥ 0, g(x) ≥ 0 and
f(x) ≥ f(0) when x ≤ 0 and g(x) ≥ g(0) when x ≥ 0.
To proceed, we plug in the value of δ into the lower bound
ofRπφ(V ′p, T )

Rπφ(V ′p, T ) ≥ T

8eβ(1 + γ)

B1+γ
T ∆1+γ

T

21+γT 1+γ

≥ 4γ(1+γ)/(1+2γ)

8eβ(1 + γ)21+γ(4C̃)(1+γ)/(1+2γ)

B
1+γ−(1+γ) 2γ

1+2γ

T

T γ−(1+γ) 2γ
1+2γ

=
4γ(1+γ)/(1+2γ)

8eβ(1 + γ)21+γ(4C̃)(1+γ)/(1+2γ)
B

1+γ
1+2γ

T T 1− 1+γ
1+2γ

Let γ = (1−κ)/(2κ−1), i.e., κ = (1+γ)/(1+2γ). Then

Rπφ(V ′p, T ) ≥ (4γ)κ

(1 + γ)2γ
1

16eβ(4C̃)κ
BκTT

1−κ.

In the next two subsections, we consider two types of noisy
gradient feedback, namely a stochastic subgradient feed-
back that is an unbiased estimation of the true subgradient
and a bandit feedback that gives an unbiased estimation of
the subgradient of a smoothed function instead of the orig-
inal function. We show that under the two noisy gradient
feedback, we are able to achieve an optimal dynamic re-
gret ofO(

√
V pT T ). Furthermore, for smooth loss functions

under the two-point bandit feedback, we establish an even
better upper bound by leveraging the gradient variation in
the form ofO(max(

√
V pT V

g
T , V

p
T )), which when the gradi-

ent variation is small matches the lower bound presented in
Proposition 1.

3.2. Online Learning with Bounded Stochastic
Gradient Feedback

We adopt the policy defined by OGD using the noisy gra-
dient feedback, i.e.,

π : wt =

{
w1 ∈ Ω t = 1
ΠΩ[wt−1 − ηφt−1(wt−1, ft−1)] t > 1

(13)

where φt(wt, ft) ∈ ∂ft(wt) + εt is a noisy subgradient
with εt satisfying Assumption 5. The upper bound of the
dynamic regret of OGD with an appropriate step size is pre-
sented below.

Theorem 7. (upper bound) Suppose Assumption 5 hold.
Assume ‖∂ft(w)‖2 ≤ G, for any w ∈ Ω and 1 ≤ t ≤ T .

By the policy π in (13) with η =
√

r2+2rBT
T (G2+λ2) , we have

Rπφ(Vp, T ) ≤
√

(r2 + 2rBT )(G2 + λ2)T .

Proof. Let Et[·] denote the expectation over the random-
ness in φt given the randomness before t. We abuse the
notation w∗T+1 = w∗T . Note that Et

[
‖φt(wt, ft)‖22

]
≤

(G2+λ2). Following Lemma 4 and the convexity of ft(w),
we have

Et [ft(wt)− ft(w∗t )] ≤ Et [〈φt(wt, ft),wt −w∗t 〉]

≤ ‖wt −w∗t ‖22
2η

−
‖wt+1 −w∗t+1‖22

2η
−
‖w∗t −w∗t+1‖22

2η

+
η

2
(G2 + λ2) +

r

η
‖w∗t −w∗t+1‖2

Hence, by summing the above inequalities over t =
1, . . . , T we have

E

[
T∑
t=1

ft(wt)− ft(w∗t )

]
≤ 1

2η

(
r2 + 2rV pT

)
+
η

2
G2
λT

where G2
λ = G2 +λ2. Since the above inequality holds for

any w∗t ∈ Ω∗t , we thus conclude

E

[
T∑
t=1

ft(wt)− ft(w∗t )

]
≤ 1

2η
(r2 + 2rBT ) +

η

2
G2
λT

We complete the proof by choosing η =
√

r2+2rBT
T (G2+λ2) .

Remark: From Theorem 7, we can see that OGD can
achieve an O(

√
max(V pT , 1)T ) dynamic regret with a step

size η = C
√

max(V pT , 1)/T . Compared to OGD with
restarting proposed in (Besbes et al., 2013), our result
could be better when

√
V pT T ≤ O((V fT )1/3T 2/3), i.e.,

V pT ≤ O((V fT )2/3T 1/3).

3.3. Online Learning with Bandit Feedback

In this subsection, we analyze the dynamic regret with ban-
dit feedback by building on previous work. Bandit feed-
back has been analyzed before for the static regret. In
particular, using one-point bandit feedback Flaxman et al.
(2005) showed anO(T 3/4) static regret bound, while Agar-
wal et al. (2010) established an optimal static regret bound
ofO(

√
T ) using two-point bandit feedback. Recently, Chi-

ang et al. (2013) derived a variational static regret bound in
the two-point bandit setting that depends on

√
V gT where

V gT is the gradient variation defined in Section 1. In order
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to have optimal dynamic regret bounds, we also consider
two-point bandit setting and show that the previous algo-
rithms in (Agarwal et al., 2010; Chiang et al., 2013) by ad-
justing the step size can achieve an O(

√
V pT T ) dynamic

regret for general Lipschitz continuous loss functions and
an O(max(

√
V gT V

p
T , V

p
T )) dynamic regret for smooth loss

functions. Below, we present more details. The omitted
proof can be found in the supplement.

Similar to previous work, we assume that ft(w) is G-
Lipschitz continuous and R1B ⊆ Ω ⊆ R2B where B =
{w ∈ Rd : ‖w‖2 ≤ 1} is the unit ball centered at 0. Let
ut ∈ Rd be a random unit vector, ei ∈ Rd be the i-th
canonical vector, w1 = 0. For Lipschitz continuous loss
functions, the update is given by

wt+1 = Π(1−ξ)Ω[wt − ĝt] (14)

where ξ ∈ (0, 1) and ĝt is computed from two-point bandit
feedback

ĝt =
d

2δ
[ft(wt + δut)− ft(wt − δut)]ut

with δ = ξR1. For any wt ∈ (1− ξ)Ω and any unit vector
u, wt + δu ∈ Ω (Flaxman et al., 2005). It can be shown
that ĝt is an unbiased stochastic gradient of the function
f̂t(w) = Eu[ft(w + δu)]. Importantly, ‖ĝt‖2 ≤ Gd. The
following theorem states the dynamic regret bound for the
policy in (14).

Theorem 8. Assume ft(w) is G-Lipschitz continuous. By
the policy in (14) with ξ = 1

T , δ = ξR1, and η =√
r2+2rBT
TG2d2 , we have

E

[
T∑
t=1

1

2
(ft(ŵ

1
t ) + f(ŵ2

t ))

]
−

T∑
t=1

ft(w
∗
t )

≤
√

(r2 + 2rBT )G2d2T +G(3R1 +R2).

where ŵ1
t = wt + δut, ŵ

2
t = wt − δut.

Remark: The dynamic regret averaged over two decisions
with two-point bandit feedback is in the same order of√

max(V pT , 1)T to that in Theorem 7 with stochastic gra-
dient feedback.

Finally, we present an upper bound for smooth loss func-
tions by leveraging the gradient variation, which leads
to an improved dynamic regret bound compared to Lip-
schitz continuous loss functions. The updates are based
on the META algorithm proposed in (Chiang et al., 2013),
which is presented in Algorithm 1. It was proved to
achieve a better static regret of O(

√
V gT ) than O(

√
T ).

Below, we show that the same policy but with a differ-
ent step size can achieve an improved dynamic regret, i.e.,
O(max(

√
V gT max(V pT , 1), V pT )) for a sequence of smooth

loss functions from the following set

Vp,g = {{f1, . . . , fT } : V pT ≤ BT , V
g
T ≤ ST }

Algorithm 1 META algorithm
1: Initialize solution w1 = ŵ1 = 0 and ĝ0 = 0
2: for t = 1, . . . , T do
3: Choose it uniformly from [d]
4: Submit ŵ1

t = ŵt + δeit and ŵ2
t = ŵt − δeit

5: Receive the feedback ft(ŵ
1
t ) and ft(ŵ

2
t ) and let

vt,it = 1
2δ (ft(ŵ

1
t )− f(ŵ2

t ))
6: Compute

gt = d(vt,it − ĝt−1,it)eit , and
ĝt = d(vt,it − ĝt−1,it)eit + ĝt−1

7: Update

wt+1 = Π(1−ξ)Ω[wt − ηgt]
ŵt+1 = Π(1−ξ)Ω[wt+1 − ηĝt]

8: end for

The theorem below states the result.

Theorem 9. Assume {f1, . . . , fT } ∈ Vp,g and ft(w) is L-
smooth for any t ≥ 1. By the policy in Algorithm 1 with ξ =

1
T , δ = ξR1 and η = min

(√
(2rBT+r2)

8ST d4
, 1

4Ld3/2
√

lnT

)
,

we have

E

[
T∑
t=1

1

2
(ft(ŵ

1
t ) + f(ŵ2

t ))

]
−

T∑
t=1

ft(w
∗
t )

≤ O
(

max
{
d2
√
ST max(BT , 1), d3/2 max(BT , 1)

})
.

where ŵ1
t = wt + δut, ŵ

2
t = wt − δut.

Remark: When the gradient variation is small such that
the upper bound is dominated by O(V pT ), it matches the
lower bound established in Proposition 1. Finally, we note
that a similar upper bound can be achieved for linear loss
functions by extending the static regret analysis in (Chiang
et al., 2013) to the dynamic regret similarly to the proof of
Theorem 9.

4. Conclusions
In this paper, we have considered dynamic regret for on-
line learning under true and noisy gradient feedback. We
have developed several lower and upper bounds of the dy-
namic regret based on the path variation that measures the
temporal changes in the optimal solutions. In light of the
presented lower bounds, the achieved upper bounds are op-
timal for non-strongly convex loss functions when the clair-
voyant moves slowly. An interesting question that remains
open is that what is the optimal dynamic regret bound for
strongly convex loss functions in terms of the path varia-
tion.
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A. Proof of Lemma 4
Let w′t = wt − ηgt. Thus wt+1 = ΠΩ[w′t].
1

2
‖wt+1 −w∗t ‖22 ≤

1

2
‖w′t −w∗t ‖22 =

1

2
‖wt − ηgt −w∗t ‖22

=
1

2
‖wt −w∗t ‖22 − ηg>t (wt −w∗t ) +

1

2
η2‖gt‖22

Then

g>t (wt −w∗t ) ≤
1

2
‖wt −w∗t ‖22 −

1

2
‖wt+1 −w∗t ‖22

+
1

2
η2‖gt‖22

=
1

2η
‖wt −w∗t ‖22 −

1

2η
‖wt+1 −w∗t+1 + w∗t+1 −w∗t ‖22

+
1

2
η‖gt‖22

=
1

2η
‖wt −w∗t ‖22 −

1

2η
‖wt+1 −w∗t+1‖22

− 1

2η
‖w∗t+1 −w∗t ‖22 +

1

η
(w∗t+1 −wt+1)>(w∗t −w∗t+1)

+
1

2
η‖gt‖22

≤ 1

2η
‖wt −w∗t ‖22 −

1

2η
‖wt+1 −w∗t+1‖22

− 1

2η
‖w∗t+1 −w∗t ‖22 +

1

η
r‖w∗t −w∗t+1‖2 +

1

2
η‖gt‖22

B. Proof of Theorem 8
Define f̂t(w) as

f̂t(w) = Eu[ft(w + δu)]

where u is a random unit vector. We first give the following
lemma.

Lemma 10. Let ŵ∗t = (1− ξ)w∗t .
T∑
t=1

1

2
(ft(ŵ

1
t ) + ft(ŵ

2
t ))−

T∑
t=1

ft(w
∗
t )

≤
T∑
t=1

f̂t(wt)−
T∑
t=1

f̂t(ŵ
∗
t ) + 3TGδ + TGR2ξ

Note that the updating rule is OGD with a noisy gra-
dient applied to a sequence of functions f̂t(w), t =
1, . . . , T . Following (Agarwal et al., 2010), ĝt is bounded
by ‖ĝt‖2 ≤ Gd. Then following the proof of Theorem 6,
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we have,
T∑
t=1

f̂t(wt)−
T∑
t=1

f̂t(ŵ
∗
t ) ≤

‖w1 − ŵ∗1‖22
2η

+

T∑
t=1

1

η
‖wt+1 − ŵ∗t+1‖2‖ŵ∗t − ŵ∗t+1‖2 +

η

2
G2d2T

Since wt, ŵ
∗
t ∈ (1− ξ)Ω, we have

‖wt − ŵ∗t ‖2 ≤ r
due to Assumption 1. In addition,

‖ŵ∗t − ŵ∗t+1‖2 = ‖(1− ξ)w∗t − (1− ξ)w∗t+1‖2
≤ (1− ξ)‖w∗t −w∗t+1‖2 ≤ ‖w∗t −w∗t+1‖2

Then
T∑
t=1

f̂t(wt)−
T∑
t=1

f̂t(ŵ
∗
t ) ≤

1

2η
(r2 + 2rV pT ) +

η

2
G2d2T

≤ 1

2η
(r2 + 2rBT ) +

η

2
G2d2T

By plugging the value of η, we have
T∑
t=1

f̂t(wt)−
T∑
t=1

f̂t(ŵ
∗
t ) ≤

√
(r2 + 2rBT )G2d2T

Then combining the above inequality with Lemma 13, we
have

T∑
t=1

1

2
(ft(ŵ

1
t ) + ft(ŵ

2
t ))−

T∑
t=1

ft(w
∗
t )

≤
√

(r2 + 2rBT )G2d2T + 3TGδ + TGR2ξ

≤
√

(r2 + 2rBT )G2d2T +G(3R1 +R2).

B.1. Proof of Lemma ??

The proof is almost identical to that of Lemma 2 in (Agar-
wal et al., 2010). By the Lipschitz property of ft(w), we
have

ft(ŵ
1
t ) = ft(wt + δut) ≤ ft(wt) +Gδ‖ut‖2

ft(ŵ
2
t ) = ft(wt − δut) ≤ ft(wt) +Gδ‖ut‖2

Since ‖ut‖2 = 1, thus
1

2
(ft(ŵ

1
t ) + ft(ŵ

2
t )) ≤ ft(wt) +Gδ

By the Lipschitz property and Ω ⊂ R2B, we have for any
w ∈ Ω

ft((1− ξ)w) ≤ ft(w) +GR2ξ

Further for any w ∈ (1− ξ)Ω,

|ft(w)− f̂t(w)| = |ft(w)− Etft(w + δu)|
≤ Et|ft(w)− ft(w + δu)| ≤ Gδ

Then

ft(wt) ≤ f̂t(wt)+Gδ, and f̂t((1−ξ)w∗t ) ≤ ft((1−ξ)w∗t )+Gδ
Combining the above inequalities, we get

1

2
(ft(ŵ

1
t ) + ft(ŵ

2
t )) + f̂t((1− ξ)w∗t )

≤ ft(wt) +Gδ + ft((1− ξ)w∗t ) +Gδ

≤ ft(wt) + ft(w
∗
t ) +GR2ξ + 2Gδ

≤ f̂t(wt) + ft(w
∗
t ) +GR2ξ + 3Gδ

As a result,
T∑
t=1

1

2
(ft(ŵ

1
t ) + ft(ŵ

2
t ))−

T∑
t=1

ft(w
∗
t )

≤
T∑
t=1

f̂t(wt)−
T∑
t=1

f̂t((1− ξ)w∗t ) + 3TGδ + TGR2ξ

C. Proof of Theorem 9
The proof follows similarly to the analysis in (Chiang et al.,
2013). We present a series of Lemmas with some of the
Lemmas’ proof omitted due to that they are identical to that
in (Chiang et al., 2013). To simply the presentation, we
denote by O(1) any constant independent of T .

Lemma 11.
T∑
i=1

1

2
(ft(ŵ

1
t ) + ft(ŵ

2
t ))−

T∑
t=1

ft(w
∗
t )

≤
T∑
t=1

ft(wt)−
T∑
t=1

ft((1− ξ)w∗t ) +O(1)

The proof of this lemma is presented later.

Lemma 12. Let ŵ∗t = (1− ξ)w∗t .
T∑
t=1

ft(wt)−
T∑
t=1

ft(ŵ
∗
t ) ≤

T∑
t=1

∇ft(wt)
>(wt − ŵ∗t )

The lemma above follows the convexity of ft(w).

Lemma 13. Let ŵ∗t = (1− ξ)w∗t .

E

[
T∑
t=1

∇ft(wt)
>(wt − ŵ∗t )

]

≤ E

[
T∑
t=1

g>t (wt − ŵ∗t )

]
+O(1)

The proof of the above lemma follows the same to the proof
of Lemma 5 in (Chiang et al., 2013).
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Lemma 14. Define

St = ηt‖gt − gt−1‖22

At =
1

2η
‖wt − ŵ∗t ‖22 −

1

2η
‖wt+1 − ŵ∗t ‖22

Ct =
1

2
‖wt+1 − ŵt‖22 +

1

2η
‖wt − ŵt‖22

Then
T∑
t=1

g>t (wt − ŵ∗t ) ≤
T∑
t=1

St +

T∑
t=1

At −
T∑
t=1

Ct

The above lemma is a result of the Lemma 4 in (Chiang
et al., 2013). Combining the above lemmas, we have

Theorem 15.

E

[
T∑
i=1

1

2
(ft(ŵ

1
t ) + ft(ŵ

2
t ))−

T∑
t=1

ft(w
∗
t )

]

≤ E

[
T∑
t=1

St +

T∑
t=1

At −
T∑
t=1

Ct

]
+O(1)

To proceed we bound the three summation terms in the
R.H.S..

Lemma 16.
T∑
t=1

Ct ≥
1

4η
E

[
T∑
t=1

‖ŵt − ŵt+1‖22

]
−O(1)

This is the same to the Lemma 11 in (Chiang et al., 2013).

Lemma 17.
T∑
t=1

At ≤
‖w1 − ŵ∗1‖22

2η

+
1

η

T∑
t=1

‖wt+1 − ŵ∗t+1‖2‖ŵ∗t − ŵ∗t+1‖2

≤ 1

2η
(r2 + 2rV pT )

The proof follows similarly to that of Lemma 1.

Lemma 18.
T∑
t=1

St ≤ 4ηd4V gT +4ηd3L2 lnTE

[
T∑
t=1

‖ŵt − ŵt+1‖22

]
+O(1)

where L is the smoothness parameter.

The lemma follows the Lemma 12 in (Chiang et al., 2013).
Combining Lemma ??, ?? and Lemma ??, we have

E

[
T∑
t=1

St +

T∑
t=1

At −
T∑
t=1

Ct

]
≤ 4ηd4V gT +

1

2η
(r2 + 2rV pT )

+ 4ηd3L2 lnTE

[
T∑
t=1

‖ŵt − ŵt+1‖22

]

− 1

4η
E

[
T∑
t=1

‖ŵt − ŵt+1‖22

]
+O(1)

Since η ≤ 1
4d3/2L

√
lnT

, then

E

[
T∑
t=1

St +

T∑
t=1

At −
T∑
t=1

Ct

]

≤ 4ηd4V gT +
1

2η
(r2 + 2rV pT ) +O(1)

≤ 4ηd4ST +
1

2η
(r2 + 2rBT ) +O(1)

Then by the value of η, we have

E

[
T∑
t=1

St +

T∑
t=1

At −
T∑
t=1

Ct

]

≤ 4ηd4ST +
1

2η
(r2 + 2rBT ) +O(1)

≤ max
{

2
√

2
√
d4ST (r2 + 2rBT ), 4d3/2L

√
lnT (r2 + 2rBT )

}
+O(1)

Therefore,

E

[
T∑
i=1

1

2
(ft(ŵ

1
t ) + ft(ŵ

t
1))−

T∑
t=1

ft(w
∗
t )

]
≤ O

(
max(d2

√
ST max(1, BT ), d3/2 max(1, BT ))

)
C.1. Proof of Lemma ??

From the Lipschitz property,

ft(ŵ
1
t )− ft(wt) ≤ G‖ŵ1

t −wt‖2 ≤ Gδ
ft(ŵ

2
t )− ft(wt) ≤ G‖ŵ2

t −wt‖2 ≤ Gδ
Then

T∑
i=1

1

2
(ft(ŵ

1
t ) + ft(ŵ

t
1))−

T∑
t=1

ft(wt) ≤ GδT

To proceed,

ft((1− ξ)w∗t ) ≤ ξft(0) + (1− ξ)ft(w∗t )
= ft(w

∗
t ) + ξ(ft(0)− ft(w∗t )) ≤ ft(w∗t ) + ξG‖w∗t ‖2

= ft(w
∗
t ) + ξGR2
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Then
T∑
t=1

ft((1− ξ)w∗t )−
T∑
t=1

ft(w
∗
t ) ≤ ξGR2T

Thus
T∑
i=1

1

2
(ft(ŵ

1
t ) + ft(ŵ

t
1))−

T∑
t=1

ft(w
∗
t )

≤
T∑
t=1

ft(wt)−
T∑
t=1

ft((1− ξ)w∗t ) +GδT + ξGR2T

≤
T∑
t=1

ft(wt)−
T∑
t=1

ft((1− ξ)w∗t ) +O(1)


