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5. Appendix A: Proof for Theorem 2
Recall that the Augmented Lagrangian L(W1,W2, Y ) is of
the form

〈D,W1〉+ 〈Y,W1 −W2〉+
ρ

2
‖W1 −W2‖2.

Then let X = [W1;W2] be the primal variables and denote

X (Y ) := {X|X = argmin
X
L(X,Y )}

with
X̄t := argmin

X̄∈X (Y t)

‖X̄ −Xt‖,

and let

AX =
[
I −I

] [ W1

W2

]
= W1 −W2 (23)

and

〈C,X〉 =

[
D
O

]T [
W1

W2

]
= 〈D,W1〉 (24)

The Augmented Lagrangian can be re-written as

L(X,Y ) = 〈C,X〉+ 〈Y,AX〉+
ρ

2
‖AX‖2. (25)

The dual function is

d(Y ) = min
X∈Conv(A)×Conv(G)

L(X,Y )

and
d∗ = max

Y
d(Y )

is the optimal dual function value. Then we measure the
sub-optimality of iterates {(Xt, Y t)}Tt=1 given by GDMM
in terms of dual function difference

∆t
d = d∗ − d(Y t)

and the primal function difference for a given dual iterate
Y t:

∆t
p = L(Xt+1, Y t)− d(Y t)

yielded by Xt+1 obtained from AFW steps. Then we have
following lemma.
Lemma 1 (Dual Progress). Each iteration of GDMM (Al-
gorithm 1) has

∆t
d −∆t−1

d ≤ −η(AXt)T (AX̄t). (26)

Proof.

∆t
d −∆t−1

d = (d∗ − d(Y t))− (d∗ − d(Y t−1))

= L(X̄t−1, Y t−1)− L(X̄t, Y t)

≤ L(X̄t, Y t−1)− L(X̄t, Y t)

= 〈Y t−1 − Y t,AX̄t〉
= −η〈AXt,AX̄t〉

where the first inequality follows from the optimality of
X̄t−1 for the function L(X,Y t−1) defined by Y t−1, and
the last equality follows from the dual update in GDMM
(14).

On the other hand, the following lemma gives an expres-
sion on the primal progress that is independent of the algo-
rithm used for minimizing Augmented Lagrangian

Lemma 2 (Primal Progress). Each iteration of GDMM (Al-
gorithm 1) has

∆t
p −∆t−1

p ≤L(Xt+1, Y t)− L(Xt, Y t)

+ η‖AXt −AX̄t‖2 − η〈AXt,AX̄t〉

Proof.

∆t
p −∆t−1

p

=L(Xt+1, Y t)− L(Xt, Y t−1)− (d(Y t)− d(Y t−1))

=L(Xt+1, Y t)− L(Xt, Y t) + L(Xt, Y t)− L(Xt, Y t−1)

+ (d(Y t−1)− d(Y t))

≤L(Xt+1, Y t)− L(Xt, Y t) + η‖AXt‖2 − η〈AXt,AX̄t〉

where the last inequality uses Lemma 1 on d(Y t−1) −
d(Y t) = ∆t

d −∆t−1
d .

By combining results of Lemma 1 and 2, we can obtain a
joint progress of the form

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ L(Xt+1, Y t)− L(Xt, Y t) + η‖AXt −AX̄t‖2

− η‖AX̄t‖2
(27)

Note the only term that can be positive in (27) is the second.
To guarantee descent of the joint progress, we bound the
second term with the primal gap L(Xt, Y t)− d(Y t) given
by the following lemma

Lemma 3.

‖AXt −AX̄t‖2 ≤ 2

ρ
(L(Xt, Y t)− L(X̄t, Y t)) (28)

Proof. Let

L̃(X,Y ) = h(X) + g(AX),

where
g(AX) =

ρ

2
‖AX‖2

and
h(X) = 〈C,X〉+ 〈Y,AX〉+ IX∈C
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, where IX∈C = 0 if X ∈ C and IX∈C = ∞ otherwise,
and

C = {(W1,W2) |W1 ∈ Conv(A),W2 ∈ Conv(G)}.
(29)

Note we have L̃(X̄t, Y t) = L(X̄t, Y t), L̃(Xt, Y t) =
L(Xt, Y t) due to feasible iterates. According to the def-
inition of d(Y ), we know that

0 ∈ ∂X L̃(X̄t, Y ) = ∂h(X̄t) + AT∇g(A(X̄t))

And by the convexity of h(·) and the strong convexity of
g(·), we have

h(Xt)− h(X̄t) ≥ 〈∂h(X̄t), Xt − X̄t〉

and

g(A(Xt))− g(A(X̄t))

≥〈AT (∇g(A(X̄t))), Xt − X̄t〉+
ρ

2
‖A(Xt))−A(X̄t)‖2

The the above two together implies

L(Xt, Y t)− L(X̄t, Y t) ≥ ρ

2
‖A(Xt))−A(X̄t)‖2

which leads to our conclusion.

Then to guarantee significant descent of (27) relative to the
current sub-optimality, we need to lower bound the magni-
tude of first term L(Xt+1, Y t) − L(Xt, Y t) and last term
−η‖AX̄t‖2. Note by Danskins theorem, we have

∇d(Y t) = AX̄t

and we have the following lower bound on ‖AX̄t‖ by the
concavity of d(Y )

d∗ − d(Y t) ≤ 〈AX̄t, Y t∗ − Y t〉
≤ ‖AX̄t‖‖Y t∗ − Y t‖
≤ ‖AX̄t‖RY

where Y t∗ is the maximizer of d(Y ) that is closest to Y t

and RY is an upper bound on the distance (in `2 norm) of
dual iterates {Y t}Tt=0 to its projection to the set of maxi-
mizer of d(Y ). Therefore, the progress (27) can be lower
bounded as

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤L(Xt+1, Y t)− L(Xt, Y t)

+
2η

ρ
(L(Xt, Y t)− L(X̄t, Y t))− η

R2
Y

∆t2
d

(30)

The remaining thing to do is show that one good step
of Away-Step Frank-Wolfe iterate suffices to give descent
amount L(Xt+1, Y t)−L(Xt, Y t) lower bounded by some

constant multiple of the primal sub-optimalityL(Xt, Y t)−
L(X̄t, Y t). Then by selecting GDMM step size η small
enough, the RHS of (30) leads to a positive descent amount.
Note this can be achieved by leveraging recent result from
(Lacoste-Julien & Jaggi, 2015), who shows a linear-type
convergence of AFW, even for non-strongly convex func-
tion of form (25). We thus provide the following lemma.

Lemma 4. The AFW (Algorithm 2) performed on X =
(W1,W2) gives descent amount

L(Xt+1, Y t)− L(Xt, Y t)

≤ − κ

1 + κ
(L(Xt, Y t)− L(X̄t, Y t))

(31)

where κ := µf/(8C
A
f ), µf is the generalized geometric

strong convexity constant for function L(.) in domain C,
and CAf is the corresponding smoothnesss constant.

Proof. Note the AL (25) is of the form

F (X) = L(X,Y ) = 〈C,X〉+ f(AX) (32)

where f(AX) = ρ
2‖AX +Y/ρ‖2 + const. is a ρ-strongly

convex function w.r.t. to AX , and we are minimizing
the function subject to a polyhedral domain C (defined at
(29)). Therefore, by Theorem 10 of (Lacoste-Julien &
Jaggi, 2015), we have the generalized geometrical strong
convexity constant µf for function L(.) in domain C that
has

µf ≥ µ(PWidth(C)) (33)

where PWidth(C) > 0 is the pyramidal width of polyhe-
dron C and µ is the generalized strong convexity constant
of function (32) defined in Lemma 9 of (Lacoste-Julien &
Jaggi, 2015). By definition of the geometric strong convex-
ity constant, we have

F (X)− F ∗ ≤ g2
X

2µf
(34)

from (28) in (Lacoste-Julien & Jaggi, 2015), where gX =
〈∇F (X),vFW (X)− vA(X)〉 for any FW atom vFW (X)
and away atom vA(X) at point X . Note, since the convex
polyhedron C is separable w.r.t. W1, W2, we have

vFW (X) =

[
v

(1)
FW

v
(2)
FW

]
(35)

and

vA(X) =

[
v

(1)
A

v
(2)
A

]
(36)

Then consider the progress given by a non-drop (”good”)
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step at iterate s of the AFW. We have

F (Xs+1)− F (Xs) ≤ −γ
2
gs +

CAf
2
γ2

≤ − g2
s

16CAf

≤ −µf (F (Xs)− F ∗)
8CAf

(37)

assuming γ∗ = gs/(2C) < 1, where gs =
〈−∇F,vFW (Xs) − vA(Xs)〉, CAf is the curvature con-
stant of F (X) on domain C (eq. (26) in (Lacoste-Julien &
Jaggi, 2015)). The first inequality follows from the fact that
AFW chooses the smaller one between 〈∇F,dFW 〉 and
〈∇F,dA〉 as the descent direction. The second inequal-
ity is given by minimizing RHS w.r.t. γ ∈ [0, 1]. And the
third inequality is from (34). In case γ∗ = gs/(2C) > 1,
we have γ = 1 and

F (Xs+1)− F (Xs) ≤ −γ
2
gs +

CAf
2
γ2

≤ −gs/4 ≤ −(F (Xs)− F ∗)/4

≤ −µf (F (Xs)− F ∗)
8CAf

(38)
which leads to the same result.

Then let κ = µf/(8C
A
f ). We have

F (Xt+1)− F (Xt) ≤ F (Xs+1)− F (Xs)

≤ −κ(F (Xs)− F ∗)
≤ −κ(F (Xt+1)− F ∗)

where the first inequality is due to F (Xt) ≥ F (Xs) (since
AFW is an descent algorithm). Through rearrangement we
have

F (Xt+1)− F ∗ ≤ 1

1 + κ
(F (Xt)− F ∗)

which then leads to the conclusion.

Now we provide proof of the main theorem 2 as follows.

Proof. By lemma 4 and (30), we have

∆t
d −∆t−1

d + ∆t
p −∆t−1

p

≤ −κ
1 + κ

(
L(Xt, Y t)− L(X̄t, Y t)

)
+

2η

ρ
(L(Xt, Y t)− L(X̄t, Y t))− η

R2
Y

∆t
d.

(39)

Then by choosing η < κρ
2(1+κ) , we have guaranteed descent

on ∆p + ∆d for each GDMM iteration. By choosing η ≤

κρ
4(1+κ) , we have

(∆t
d + ∆t

p)− (∆t−1
d + ∆t−1

p )

≤ −κ
2(1 + κ)

(
L(Xt, Y t)− L(X̄t, Y t)

)
− η

R2
Y

∆t
d

2

≤ −κ
2(1 + κ)

∆t
p −

κρ

4(1 + κ)R2
Y

∆t
d

2

≤ −κ
2(1 + κ)(∆0

p + ∆0
d)

∆t
p

2 − κρ

4(1 + κ)R2
Y

∆t
d

2

≤−
(

κ

4(1 + κ)
min(

1

∆0
p + ∆0

d

,
ρ

2R2
Y

)

)
(∆t

p + ∆t
d)

2

where the third inequality is by non-increasing of {∆t
p +

∆t
d}∞t=1. Then recursion of the form ∆t − ∆t−1 ≤ c∆t2

leads to the conclusion.


