6. Appendix A: Convergence Proof

The proofs of Theorem 1, 2 are similar to that in (LacosteJulien et al., 2013). To be self-contained, we provide proofs in the following.

6.1. Proof for Theorem 1

The dual problem (14) has (generalized) Hessian for i-th block of variable $\boldsymbol{\alpha}^{i}$ being upper bounded by

$$
\nabla_{\boldsymbol{\alpha}^{i}}^{2} G(\boldsymbol{\alpha}) \preceq Q_{i} I
$$

where $Q_{i}=\left\|\boldsymbol{x}_{i}\right\|^{2}$. Since the active set includes the most-violating pair (19) that defines the Frank-Wolfe direction $\boldsymbol{\alpha}_{F W}^{t}$ satisfying (18), the update given by solving the active-set subproblem (21) has

$$
\begin{aligned}
& G\left(\boldsymbol{\alpha}^{t+1}\right)-G\left(\boldsymbol{\alpha}^{t}\right) \\
& \leq \gamma\left\langle\nabla_{\boldsymbol{\alpha}^{i}} G\left(\boldsymbol{\alpha}^{t}\right), \boldsymbol{\alpha}_{F W}^{i t}-\boldsymbol{\alpha}^{i t}\right\rangle+\frac{Q_{i} \gamma^{2}}{2}\left\|\boldsymbol{\alpha}_{F W}^{i t}-\boldsymbol{\alpha}^{i t}\right\|^{2} \\
& \leq \gamma\left\langle\nabla_{\boldsymbol{\alpha}^{i}} G\left(\boldsymbol{\alpha}^{t}\right), \boldsymbol{\alpha}_{F W}^{i t}-\boldsymbol{\alpha}^{i t}\right\rangle+\frac{Q_{i} R^{2} \gamma^{2}}{2}
\end{aligned}
$$

for any $\gamma \in[0,1]$, where $\left\|\boldsymbol{\alpha}_{F W}^{t}-\boldsymbol{\alpha}^{i t}\right\|^{2} \leq R^{2}=4 C^{2}$ since both $\boldsymbol{\alpha}_{F W}^{t}, \boldsymbol{\alpha}^{i t}$ lie within the domain (16). Taking expectation w.r.t. i (uniformly sampled from $[N]$), we have

$$
\begin{align*}
& E\left[G\left(\boldsymbol{\alpha}^{t+1}\right)\right]-G\left(\boldsymbol{\alpha}^{t}\right) \\
& \leq \frac{\gamma}{N}\left\langle\nabla_{\boldsymbol{\alpha}} G\left(\boldsymbol{\alpha}^{t}\right), \boldsymbol{\alpha}_{F W}^{t}-\boldsymbol{\alpha}^{t}\right\rangle+\frac{Q R^{2} \gamma^{2}}{2 N} \tag{31}
\end{align*}
$$

where $Q=\sum_{i=1}^{N} Q_{i}$. Then denote $\boldsymbol{\alpha}^{*}$ as an optimal solution, by convexity and the definition of Frank-Wolfe direction we have

$$
\begin{aligned}
\left\langle\nabla_{\boldsymbol{\alpha}} G\left(\boldsymbol{\alpha}^{t}\right), \boldsymbol{\alpha}_{F W}^{t}-\boldsymbol{\alpha}^{t}\right\rangle & \leq\left\langle\nabla_{\boldsymbol{\alpha}} G\left(\boldsymbol{\alpha}^{t}\right), \boldsymbol{\alpha}^{*}-\boldsymbol{\alpha}^{t}\right\rangle \\
& \leq G^{*}-G\left(\boldsymbol{\alpha}^{t}\right)
\end{aligned}
$$

where $G^{*}:=G\left(\boldsymbol{\alpha}^{*}\right)$. Together with (31), we have

$$
\begin{equation*}
\Delta G^{t+1}-\Delta G^{t} \leq \frac{-\gamma}{N} \Delta G^{t}+\frac{Q R^{2} \gamma^{2}}{2 N} \tag{32}
\end{equation*}
$$

for any $\gamma \in[0,1]$, where $\Delta G^{t}:=E\left[G\left(\boldsymbol{\alpha}^{t}\right)\right]-G^{*}$. By choosing $\gamma=\frac{2 N}{t+2 N}$, the recurrence (32) leads to the result

$$
\Delta G^{t} \leq \frac{2\left(Q R^{2}+\Delta G^{0}\right)}{t / N+2}
$$

which can be verified via induction as in the proof of Lemma C. 2 of (Lacoste-Julien et al., 2013).

[^0]
6.2. Proof for Theorem 2

The approximation criteria (24) searches active label from one out of ν partitions of $[K]$. Suppose in the t-th iteration, a subset not containing most-violating label (20) was chosen, we have

$$
\begin{equation*}
G\left(\boldsymbol{\alpha}^{t+1}\right)-G\left(\boldsymbol{\alpha}^{t}\right) \leq 0 \tag{33}
\end{equation*}
$$

and suppose a subset containing most-violating label was chosen, we have

$$
\begin{align*}
& G\left(\boldsymbol{\alpha}^{t+1}\right)-G\left(\boldsymbol{\alpha}^{t}\right) \\
& \leq \gamma\left\langle\nabla_{\boldsymbol{\alpha}^{i}} G\left(\boldsymbol{\alpha}^{t}\right), \boldsymbol{\alpha}_{F W}^{i t}-\boldsymbol{\alpha}^{i t}\right\rangle+\frac{Q_{i} R^{2} \gamma^{2}}{2}+\gamma \epsilon_{d} \tag{34}
\end{align*}
$$

where ϵ_{d} is the error caused by sampling (25). Since (33), (34) happen with probabilities $1-1 / \nu$ and $1 / \nu$ respectively, we have expected descent amount

$$
\begin{align*}
& E\left[G\left(\boldsymbol{\alpha}^{t+1}\right)-G^{*}\right]-\left(G\left(\boldsymbol{\alpha}^{t}\right)-G^{*}\right) \\
& \leq \frac{\gamma}{N \nu}\left\langle\nabla_{\boldsymbol{\alpha}} G\left(\boldsymbol{\alpha}^{t}\right), \boldsymbol{\alpha}_{F W}^{t}-\boldsymbol{\alpha}^{t}\right\rangle+\frac{Q R^{2} \gamma^{2}}{2 N \nu}+\frac{\gamma \epsilon_{d}}{\nu} \tag{35}\\
& \leq \frac{-\gamma}{N \nu}\left(G\left(\boldsymbol{\alpha}^{t}\right)-G^{*}\right)+\frac{Q R^{2} \gamma^{2}}{2 N \nu}+\frac{\gamma \epsilon_{d}}{\nu}
\end{align*}
$$

following the same reasoning of (31) and (32). For

$$
\epsilon_{d} \leq \frac{Q R^{2} \gamma}{2 N}
$$

we have

$$
\begin{align*}
& E\left[G\left(\boldsymbol{\alpha}^{t+1}\right)-G^{*}\right]-\left(G\left(\boldsymbol{\alpha}^{t}\right)-G^{*}\right) \\
& \leq \frac{-\gamma}{N \nu}\left(G\left(\boldsymbol{\alpha}^{t}\right)-G^{*}\right)+\frac{Q R^{2} \gamma^{2}}{N \nu} . \tag{36}
\end{align*}
$$

Therefore, by choosing $\gamma=\frac{2}{t /(N \nu)+2}$, we have

$$
\Delta G^{t} \leq \frac{4\left(Q R^{2}+\Delta G^{0}\right)}{t /(N \nu)+2}
$$

for t satisfying

$$
0 \leq t \leq \nu Q R^{2} / \epsilon_{d}
$$

7. Appendix B: Additional Statistics

Table 4. Default parameter setting used in SLEEC's code. One might need to refer to their webpage ${ }^{6}$ for explanation of parameters.

num_learners	num_clusters	SVP_neigh
5	5	50
out_Dim	w_thresh	sp_thresh
75	0.75	0.5
cost	NNtest	normalize
0.1	20	1

Table 5. Statistics for heldout and test data set

Data Sets	Train Size	Heldout Size	Test Size.
LSHTC-wiki	2355436	5000	5000
EUR-Lex	15643	1738	1933
bibtex	5991	665	739
RCV1-regions	20835	2314	5000
LSHTC	83805	5000	5000
aloi.bin	90000	10000	8000
Dmoz	310562	34506	38340
ImageNet	1125264	10000	126140
sector	7793	865	961

8. Appendix C: Bounds for Approximation (25)

Let $\sigma_{k i}^{2}$ be the variance of $\bar{C}_{k}\left(\mathcal{D}_{i}\right)$. We have

$$
\begin{equation*}
\sigma_{k i}^{2} \leq \hat{\sigma}_{k i}^{2}=\frac{1}{\tilde{d}_{i}}\left\|\boldsymbol{x}_{i}\right\|_{1}\left\|\boldsymbol{x}_{i}\right\|_{\infty} R_{w}^{2} \leq \frac{d_{i}}{\tilde{d}_{i}}\left\|\boldsymbol{x}_{i}\right\|_{\infty}^{2} R_{w}^{2} \tag{37}
\end{equation*}
$$

, where R_{w}^{2} is an upper bound on $\sum_{j: \boldsymbol{x}_{i j} \neq 0}\left(\boldsymbol{w}_{k j}^{t}\right)^{2}$.
For $\epsilon=O\left(\left\|\boldsymbol{x}_{i}\right\|_{1} R_{w}\right)$, Bernstein-Type inequality gives

$$
\begin{equation*}
\operatorname{Pr}\left[\left|\bar{C}_{k}\left(\mathcal{D}_{i}\right)-\left\langle\boldsymbol{w}_{k}^{t}, \boldsymbol{x}_{i}\right\rangle\right|>\epsilon\right] \leq e^{-\frac{\epsilon^{2}}{2 \hat{\sigma}_{k i}^{2}}} \tag{38}
\end{equation*}
$$

Suppose we want to approximate $\left\langle\boldsymbol{w}_{k}^{t}, \boldsymbol{x}_{i}\right\rangle$ within ϵ_{d} for all $k \in[K]$ with failure probability at most δ. Combining (37), (38) and using union bound, we only need

$$
\begin{equation*}
\frac{d_{i}}{\tilde{d}_{i}} \lesssim \frac{\epsilon_{d}^{2}}{\log \left(\frac{K}{\delta}\right)\left\|\boldsymbol{x}_{i}\right\|_{\infty}^{2} R_{w}^{2}} \tag{39}
\end{equation*}
$$

Also, look at the dual objective function in (14), initially we have $G(\boldsymbol{\alpha})=G(\mathbf{0})=0$. Since our method is dualdescent, we have $G\left(\boldsymbol{\alpha}^{t}\right) \leq 0$, thus

$$
\begin{equation*}
\frac{1}{2} \sum_{k=1}^{K}\left\|\boldsymbol{w}_{k}^{t}\right\|_{2}^{2} \leq-\sum_{i=1}^{N} \boldsymbol{e}_{i}^{T} \boldsymbol{\alpha}^{i} \leq C N \tag{40}
\end{equation*}
$$

where the last inequality follows from (16).

[^0]: ${ }^{4}$ http://research.microsoft.com/enus/um/people/manik/code/SLEEC/download.html

