Supplementary Materials
ForecastICU: A Prognostic Decision Support System for Timely Prediction of
Intensive Care Unit Admission

1. Proof of Theorem 1

In order to prove the Theorem, we first hold the follow-
ing assumptions on the physiological stream stopping time
and the patients’ hospitalization time (time of admission
to hospital), and hospitalization period (time between ad-
mission to hospital and transfer to ICU or discharge). We
assume that the maximum hospitalization period for any
patient is Ty, the hospitalization time ¢z is random, and
the stopping time 75 is random where the distributions of
hospitalization and stopping times are given by f;, (tg),
fr. (e [Ho) and fr, (, [H1), where supp (fu, (tr)) =

[0, Tx]. supp (fr, (75 |ta)) = [t Ta).

Let B} and B; be the belief processes of a truthful and a
non-truthful belief systems respectively. A truthful belief
system has access to the joint distributions of the physio-
logical data stream (IPg,[P;) and knows the stopping time
Ts, Whereas the non-truthful belief system maintains es-
timates of the joint distribution of the physiological data
stream (Qq, Q1), where d (P,,,Q,,,) > 0 for a probability
metric d. In the following, we show that both B} and B,
are martingales with respect to the filtration ;. Note that
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Since E [B;,1 |Fiy1] = Bj (H1|F;), then the truthful
belief process is martingale. Now we focus on the non-
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Figure 1. Depiction for the belief process as computed by a truth-
ful and a non-truthful belief systems.

truthful belief process B;, which we can write as
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) = B (a1 Fe ) Q (X, [y
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Thus, we have that
By (H1|F:) Q(X¢ |Ha)
E|B F =E
[Biy1 | Fir1] ZiE{O,l} By (H; | F:) Q (X, |Hz)]
By (Hy |F:) Q (X [H1) P(Xy)

o, 2icqony Be (M |F:) Q (X¢ [Hi)
=By (H1|F:)- “4)

Now define the threshold type strategies n* (a threshold on
B}) and 7 (a threshold on B;) as follows:

n* = arg sup JEP[ ({X }Zh(f)’)) 1ir,( ><Ts}}7 5)

n€[0,1]
and
i=arg swp Fo g ({X740) 1mimeny| - ©
n€[0,1]

As shown in Fig. 1, the non-truthfulness of the belief sys-
tem may lead for instance to a delay in the ICU alarm.
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Now we focus on a certain realization of the stopping
time TS Since sup, By = sup, B = 1, and inf; B, =
infy; Bf = 0, then E [B,] < oo and E[B] < 0, i.e. By
and B} are bounded martingales. Thus, by Doob’s mar-
tingale convergence theorem, we know that By — B
and Bf — B2 almost surely, where E [B%] < oo, and
E [Boo] < o0. Itis easy to show that the sequence B} — B,
is also a martingale with respect to the filtration 7, i.e.
E[Bf +1— B, + 1|F] = B} — B;. Now recall that we
want to show that P (|[V* — V(77)| < €) > 1 — 4. To prove
this, it suffices to show that there exists € € [0, 1], such that

P (|n* -7 < e/> > 1 — 4. This is equivalent to show that

the martingale sequence B; — B; converges to a value less
than € € [0,1] with a probability 1 — 4. This is satisfied
if for N*(e, §), there exists an algorithm AP that if used
to estimate (Q, it will prompt a distribution that is within
a Kolmogorov-Smirnov distance of A(e) from the true dis-
tribution P. By Dvoretzky-Kiefer-Wolfowitz inequality, we
know that if the algorithm AP just computes Q as the em-
pirical distribution, then we have that

Pr < sup QL — P | > A(e)) < 2exp (—2NA?(e)) .
te[tH tHJrTS

Thus, we can find N* (e, §) by equating 1 — § with the RHS
in the equation above, and for any N > N*(e, §), we have
that P(|V* - V(7)| <€) >1—4.

2. Pseudo-code of ForecastlCU

Offline Stage:
Input: X X710 T,
1) Data Reconstruction
fori=1toNdo
X (5" = hoptine ({(X(5 (mym)}i2g T0)
end for
2) Relevant Feature Selection
Yref = CFS(Xrel),
3) Parametric density estimation

[um(J)] = = S Y60
Bkt = 3y Tih Y”f (e YT (0, 0)
Real-time Stage:
Input: {X Y2200 v, n, W
fort=1to 7 do
1) Current State Estimation
form=0to 1 do
17, (t) = arg max, Qm({Xk}£=T—t+1 [Hm)
end for
2) Belief Update Algorithm

By(Ha|F) = Qu(Ha{ X }osy,)

B N1Qu({Xr ! [0, 7Y (1)

= MoK ¥ _ g R T )+ i@ (X, ¥, T 75 (0)
By(Ma[Fy) = 3 Yo~y Br(Hal Fr)

3) Sequential Decision Making

if B >

Decision(t) = { 1 i Be(FalFe) =7
H, otherwise

end for

Figure 2. Pseudo-code of ForecastiICU
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3. Features of the Dataset

3.1. Entire feature information

Table 1. Entire feature information

No FEATURE NAME

Time Dependent Continuous Features
1 SyYsTOLIC BLOOD PRESSURE
2 DIASTOLIC BLOOD PRESSURE
3 HEART RATE
4 RESPIRATORY RATE
5 TEMPERATURE
6 02 SATURATION
7 WHITE BLOOD CELL
8 HEMOGLOBIN
9 PLATELET COUNT
10 SobpIumM
11 POTASSIUM
12 CHLORINE
13 CO2 SATURATION
14 BLOOD UREA NITROGEN
15 CREATINE
16 GLUCOSE

Time Dependent Discrete Features

17 02 DEVICE (BINARY)
18 BREATH ASSIST DEVICE (49 CATEGORIES)

3.2. Relevant Features for ICU Admission Prediction

Table 2. Relevant features for ICU admission prediction

Rank | Acronym

Relevant Features

1 RR
HR
BUN
GLU
Breath
DBP
SPO2

NN W

Respiratory Rate
Heart Rate
Blood Urea Nitrogen
Glucose
Oxygen Supply Device (Binary)
Diastolic Blood Pressure
02 Saturation

Based on the correlation feature selection (CFS) algo-
rithm with minimum redundancy and maximum relevance
(mRMR) criterion, we discover 7 relevant temporal fea-
tures among the entire 18 temporal features which are
highly correlated with ICU admission but poorly correlated
with each other. Table 2 explicitly lists 7 relevant fea-
tures and these can be justified by the medical references
(Andrew Egol, 1999) (Bruijns, 2013) (Alexander Olaussen,
2014). Note that all of the relevant features are time depen-

dent features.
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4. Model Justifications

In this paper, we also assume that the joint distribution of
the physiological data streams can be modeled as a Multi-
variate Gaussian process. This assumption is validated by
a Kolmogorov-Smirnov goodness-of-fit test. Fig. 3 illus-
trates the histogram of the systolic blood pressure and heart
rate extracted by the reconstructed dataset of ICU and DIS
patients, respectively. As it can be seen, these can be in-
deed modeled as Gaussian distributions - the fitting error
is less than 10%. Fig. 4 shows that the joint distributions
between the physiological features can indeed be modeled
using a Multivariate Gaussian distribution.

DIS patients DBP distribution

I Fitting Error: 6.49%

ICU patients DBP distribution
[ Fitting Error: 11.46%]
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Figure 3. Histograms of diastolic blood pressures and heart rates
at 10 hours before ICU/DIS events.

Joint distribution of two features (ICU)
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Number of Patients
Number of Patients

Figure 4. Joint distribution of diastolic blood pressure and heart
rates

5. Extension of ForecastICU: Patient Risks
Tracking Systems (PRTS)

ForecastICU can be extended to patients risks tracking sys-
tems (PRTS) which keeps tracking the ICU belief (risks
of ICU admission) until the actual ICU admission or dis-
charge event. This system is useful in real clinical setting
because PRTS helps doctors to focus on the real-time high
risk patients based on the ICU belief provided by the algo-
rithm. In this subsection, we illustrate the performance of
ForecastICU in PRTS setting.

ForcastICU has a consistently higher PPV in comparison to
other benchmarks which is represented in Table 3 and Fig.
5. For instance, given 70% TPR, ForecastICU achieves
80.1% PPV which is 5.2% better than the second best al-
gorithm (Lasso Regularization). Moreover, with 70% PPV,
Forecast ICU achieves 78.0% TPR which is 4.7% better
than the second best algorithm. AUC values are also 1.5%
higher than the second best algorithm and the p-value of
the hypothesis test comparing ForecastICU and the second
best algorithm is < 0.01.

Table 3. Performance comparison of ICU prediction in PRTS set-
ting

Algorithms TPR(%) PPV (%)
ForecastICU 70.3+ 1.75% | 80.1+ 1.23%
Logistic Regression | 70.5+ 1.13% | 73.5+ 2.09%
Lasso Regularization | 70.14+ 1.49% | 74.9£ 1.98%
Random Forest 70.7+ 1.34% | 56.1+ 1.24%
SVMs 70.0+ 1.28% | 44.9+ 1.74%
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Figure 5. Trade-off between TPR and PPV in PRTS setting
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6. Additional Experiment Results
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Figure 6. Trade-off between TPR and the prediction time (fix PPV
30%)
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