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Abstract
We revisit the task of learning a Euclidean met-
ric from data. We approach this problem from
first principles and formulate it as a surprisingly
simple optimization problem. Indeed, our formu-
lation even admits a closed form solution. This
solution possesses several very attractive prop-
erties: (i) an innate geometric appeal through
the Riemannian geometry of positive definite
matrices; (ii) ease of interpretability; and (iii)
computational speed several orders of magnitude
faster than the widely used LMNN and ITML
methods. Furthermore, on standard benchmark
datasets, our closed-form solution consistently
attains higher classification accuracy.

1. Introduction
Many machine learning algorithms require computing dis-
tances between input data points, be it for clustering, classi-
fication, or search. Selecting the distance measure is, there-
fore, an important concern; though the answer is task spe-
cific. When supervised or weakly supervised information
is available, selection of the distance function can itself be
cast as a learning problem called “metric learning” (Kulis,
2012; Weinberger & Saul, 2009).

In its most common form, metric learning seeks to learn
a Euclidean metric. An abstract approach is to take input
data in Rn and learn a linear map Φ : Rn → Rm, so that the
Euclidean distance ‖Φ(x)−Φ(y)‖ can be used to measure
the distance between points x,y ∈ Rn. More generally,
the map Φ can also be nonlinear.

The problem of learning linear maps was introduced
in (Xing et al., 2002) as “Mahalanobis metric learning.”
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Since then metric learning has witnessed a sequence of im-
provements both in modeling and algorithms (see related
work). More broadly, the idea of linearly transforming
input features is a bigger theme across machine learning
and statistics; encompassing whitening transforms, linear
dimensionality reduction, Euclidean metric learning, and
more (Kulis, 2012; Cunningham & Ghahramani, 2015).

We revisit the task of learning a Euclidean metric. Like
most Euclidean metric learning methods, we also seek to
learn a Mahalanobis distance1

dA(x,x′) = (x− x′)TA(x− x′), (1)

where x,x′ ∈ Rd are input vectors, and A is a d × d real,
symmetric positive definite (SPD) matrix2. Like other met-
ric learning approaches we also assume weak-supervision,
which is provided through the sets of pairs

S := {(xi,xj) | xi and xj are in the same class}
D := {(xi,xj) | xi and xj are in different classes}.

Unlike other Euclidean metric learning methods, however,
we follow a much simpler yet fresh new approach.

Specifically, we make the following main contributions:

– Formulation. We formulate Euclidean metric learn-
ing from first principles following intuitive geometric
reasoning; we name our setup “Geometric Mean Met-
ric Learning” (GMML) and cast it as an unconstrained
smooth, strictly convex optimization problem.

– Solution & insights. We show that our formulation ad-
mits a closed form solution, which not only also enjoys
connections to the Riemannian geometry of SPD matri-
ces (and thus explains the name GMML) but also has im-
portant empirical consequences.

1This is actually a squared distance. The true metric is
√
dA;

but in accord with metric learning literature we call (1) a distance.
2Do not confuse SPD with positive semi-definite matrices.
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– Validation. We consider multi-class classification using
the learned metrics, and validate GMML by comparing
it against widely used metric learning methods. GMML
runs up to three orders of magnitude faster while consis-
tently delivering equal or higher classification accuracy.

1.1. Related work

We recall below some related work to help place GMML in
perspective. We omit a discussion of nonlinear methods,
and other variations of the basic Euclidean task outlined
above; for these, we refer the reader to both kernelized
metric learning (Davis et al., 2007) and other techniques as
summarized in the recent surveys of Kulis (2012) and Bel-
let et al. (2013).

Probably the earliest work to formulate metric learning
is (Xing et al., 2002), sometimes referred to as MMC. This
method minimizes the sum of distances over similar points
while trying to ensure that dissimilar points are far away
from each other. Using the sets S and D, MMC solves the
optimization problem

min
A�0

∑
(xi,xj)∈S

dA(xi,xj)

such that
∑

(xi,xj)∈D

√
dA(xi,xj) ≥ 1.

(2)

Xing et al. (2002) use
√
dA instead of the distance dA be-

cause under dA, problem (2) has a trivial rank-one solution.
To optimize (2) Xing et al. (2002) use a gradient-descent al-
gorithm combined with a projection onto the set of positive
semi-definite matrices. The term

∑
(xi,xj)∈S dA(xi,xj)

is also used in the other metric learning methods like
LMNN (Weinberger & Saul, 2009) and MCML (Glober-
son & Roweis, 2005) as a part of their cost functions.

Information-Theoretic Metric Learning (ITML) (Davis
et al., 2007), aims to satisfy the similarity and dissimilarity
constraints while staying as “close” as possible to a prede-
fined matrix. This closeness is measured using the LogDet
divergenceDld(A,A0) := tr(AA−10 )−log det(AA−10 )−
d; and ITML is formulated as follows:

min
A�0

Dld(A,A0)

such that dA(x,y) ≤ u, (x,y) ∈ S,
dA(x,y) ≥ l, (x,y) ∈ D,

(3)

where u, v ∈ R are threshold parameters, chosen to en-
courage distance between similar points to be small and be-
tween dissimilar points be large. Similar to ITML, Meyer

et al. (2011) propose the formulation

min
A�0

∑
(xi,xj)∈S

max
(

0 , l − dA(xi,xj)
)2

+
∑

(xi,xj)∈D

max
(

0 , dA(xi,xj)− u
)2
,

(4)

for which they use Riemannian techniques to minimize the
cost function. Although (4) does not use any regularizer,
the authors observed good classification performance.

There exist several attempts for achieving high scalabil-
ity with both the dimensionality and the number of con-
straints in the metric learning methods; some examples in-
clude (Shalev-Shwartz et al., 2004; Jain et al., 2009; Wein-
berger & Saul, 2008; Shalit et al., 2012).

However, the focus of our paper is different: we are con-
cerned with the formulation of Euclidean metric learning.
Remarkably, our new formulation admits a closed form so-
lution, which turns out to be 3 orders of magnitude faster
than established competing methods.

2. GMML: formulation and solution
As discussed above, the guiding idea behind Euclidean
metric learning is to ultimately obtain a metric that yields
“small” distances for similar points and “big” ones for dis-
similar ones. Different metric learning methods try to fulfill
this guideline either implicitly or explicitly.

The main idea that we introduce below is in how we choose
to include the impact of the dissimilar points. Like one
of earliest metric learning methods MMC, we propose to
find a matrix A that decreases the sum of distances over all
the similar points, but unlike all previous methods, instead
of treating dissimilar points asymmetrically, we propose to
measure their interpoint distances using A−1, and to add
their contribution to the overall objective. More precisely,
we propose the following novel objective function:∑

(xi,xj)∈S

dA(xi,xj) +
∑

(xi,xj)∈D

dA−1(xi,xj). (5)

In the sequel, we write d̂A ≡ dA−1 for brevity.

2.1. Insights

Let us provide some intuition behind our proposed objec-
tive (5). These insights are motivated by the idea that we
may increase the Mahalanobis distance between dissimilar
points dA(x,y) by decreasing d̂A(x,y). The first idea is
the simple observation that the distance dA(x,y) increases
monotonically in A, whereas the distance d̂A(x,y) de-
creases monotonically in A. This observation follows from
the following well-known result:
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Proposition 1. Let A,B be (strictly) positive definite ma-
trices such that A � B. Then, A−1 ≺ B−1.

The second idea (which essentially reaffirms the first) is
that the gradients of dA and d̂A point in nearly opposite
directions. Therefore, infinitesimally decreasing dA leads
to an increase in d̂A. Indeed, the (Euclidean) gradient of
dA(x,y) is

∂dA
∂A

= uuT ,

where u = x− y; this is a rank-one positive semi-definite
matrix. The gradient of d̂A(x,y) is

∂d̂A
∂A

= −A−1uuTA−1,

which is a rank-one matrix with a negative eigenvalue. It is
easy to see that the inner product of these two gradients is
negative, as desired.

2.2. Optimization problem and its solution

In the following, we further simplify the objective in (5).
Rewriting the Mahalanobis distance using traces, we
turn (5) into the optimization problem

min
A�0

∑
(xi,xj)∈S

tr(A(xi − xj)(xi − xj)
T )

+
∑

(xi,xj)∈D

tr(A−1(xi − xj)(xi − xj)
T ).

(6)

We define now the following two important matrices:

S :=
∑

(xi,xj)∈S

(xi − xj)(xi − xj)
T ,

D :=
∑

(xi,xj)∈D

(xi − xj)(xi − xj)
T ,

(7)

which denote the similarity and dissimilarity matrices, re-
spectively. The matrices S and D are scaled second sam-
ple moments of the differences between similar points and
the differences between dissimilar points. In the rest of
this subsection, we assume that S is a SPD matrix, which
is a realistic assumption in many situations. For the cases
where S is just a positive semi-definite matrix, the regular-
ized version can be used; we treat this case in Section 2.3.

Using (7), the minimization problem (6) yields the basic
optimization formulation of GMML, namely

min
A�0

h(A) := tr(AS) + tr(A−1D). (8)

The GMML cost function (8) has several remarkable prop-
erties, which may not be apparent at first sight. Below we
highlight some of these to help build greater intuition, as
well as to help us minimize it.

The first key property of h(A) is that it is both strictly
convex and strictly geodesically convex. Therefore, if
∇h(A) = 0 has a solution, that solution will be the global
minimizer. Before proving this key property of h, let us re-
call some material that is also helpful for the remainder of
the section.

Geodesic convexity is the generalization of ordinary
(linear) convexity to (nonlinear) manifolds and metric
spaces (Papadopoulos, 2005; Rapcsák, 1991). On Rieman-
nian manifolds, geodesics are curves with zero acceleration
that at the same time locally minimize the Riemannian dis-
tance between two points. The set of SPD matrices forms
a Riemannian manifold of nonpositive curvature (Bhatia,
2007, Ch. 6). We denote this manifold by S+. The geodesic
curve joining A to B on the SPD manifold is denoted by

A]tB = A1/2
(
A−1/2BA−1/2

)t
A1/2, t ∈ [0, 1].

This notation for geodesic is customary, and in the liter-
ature, γ(t) is also used. Moreover, the entire set of SPD
matrices is geodesically convex, as there is a geodesic be-
tween every two points in the set. On this set, one defines
geodesically convex functions as follows.

Definition 2. A function f on a geodesically convex subset
of a Riemannian manifold is geodesically convex, if for all
points A and B in this set, it satisfies

f(A]tB) ≤ tf(A) + (1− t)f(B), t ∈ [0, 1].

If for t ∈ (0, 1) the above inequality is strict, the function
is called strictly geodesically convex.

We refer the reader to (Sra & Hosseini, 2015) for more on
geodesic convexity for SPD matrices. We are ready to state
a simple but key convexity result.

Theorem 3. The cost function h in (8) is both strictly con-
vex and strictly geodesically convex on the SPD manifold.

Proof. The first term in (8) is linear, hence convex, while
the second term is strictly convex (Boyd & Vandenberghe,
2004, Ch. 3), viewing SPD matrices as a convex cone (see
Rockafellar, 1970, Thm. 2.6). Thus, strict convexity of
h(A) is obvious. Therefore, we concentrate on proving
its strict geodesic convexity. Using continuity, it suffices to
show midpoint strict convexity, namely

h(A]1/2B) < 1
2h(A) + 1

2h(B).

It is well-known (Bhatia, 2007, Ch. 4) that for two distinct
SPD matrices, we have the operator inequality

A]1/2B ≺ 1
2A + 1

2B. (9)

Since S is SPD, is immediately follows that

tr
(
(A]1/2B)S) < 1

2 tr(AS) + 1
2 tr(BS). (10)
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From the definition of ]t, a brief manipulation shows that

(A]tB)−1 = A−1]tB
−1.

Thus, in particular for the midpoint (with t = 1/2) we have

tr
(
(A]1/2B)−1D) < 1

2 tr(A−1D) + 1
2 tr(B−1D).

(11)
Adding (10) and (11), we obtained the desired result.

Solution via geometric mean. The optimal solution
to (8) will reveal one more reason why we invoke geodesic
convexity. Since the constraint set of (8) is open and the
objective is strictly convex, to find its global minimum, it
is enough to find a point where the gradient ∇h vanishes.
Differentiating with respect to A, this yields

∇h(A) = S −A−1DA−1.

Setting this gradient to zero results in the equation

∇h(A) = 0 =⇒ ASA = D. (12)

Equation (12) is a Riccati equation whose unique solution
is nothing but the midpoint of the geodesic joining S−1 to
D (see e.g., Bhatia (2007, 1.2.13)). Indeed,

A = S−1]1/2 D = S−1/2(S1/2DS1/2)1/2S−1/2.

Observe by construction this solution is SPD, therefore, the
constraint of optimization is satisfied.

It is this fact that the solution to GMML is given by the
midpoint of the geodesic joining the inverse of the second
moment matrix of similar points to the second moment ma-
trix of dissimilar points, which gives GMML its name: the
midpoint of this geodesic is known as the matrix geometric
mean and is a very important object in the study of SPD
matrices (Bhatia, 2007, Ch. 6).

2.3. Regularized version

We have seen that the solution of our method is the geo-
metric mean between S−1 and D. However, in practice
the matrix S might sometimes be non-invertible or near-
singular. To address this concern, we propose to add a reg-
ularizing term to the objective function. This regularizer
term can also be used to incorporate prior knowledge about
the distance function. In particular, we propose to use

min
A�0

λDsld(A,A0) + tr(AS) + tr(A−1D), (13)

where A0 is the “prior” (SPD matrix) and Dsld(A,A0)
is the symmetrized LogDet divergence: Dld(A,A0) +
Dld(A0,A), which is equal to

Dsld(A,A0) := tr(AA−10 ) + tr(A−1A0)− 2d, (14)

where d is the dimensionality of the data. Interestingly, us-
ing (14) and following the argument as above, we see that
the minimization problem in (13) with this regularizer also
has a closed form solution. After straightforward computa-
tions, we obtain the following solution

Areg = (S + λA−10 )−1]1/2 (D + λA0), (15)

the regularized geometric mean of suitably modified S and
D matrices. Observe that as the regularization parameter
λ ≥ 0 increases, Areg becomes more similar to A0.

2.4. Extension to weighted geometric mean

The geodesic viewpoint is also key to deciding how one
may assign different “weights” to the matrices S and D
when computing the GMML solution. This viewpoint is
important because merely scaling the cost in (8) to change
the balance between S and D is not meaningful as it only
scales the resulting solution A by a constant.

Given the geometric nature of the GMML’s solution, we re-
place the linear cost in (8) by a nonlinear one guided by
Riemannian geometry of the SPD manifold. The key in-
sight into obtaining a weighted version of GMML comes
from a crucial geometric observation. The minimum of (8)
is also the minimum to the following optimization problem:

min
A�0

δ2R(A,S−1) + δ2R(A,D), (16)

where δR denotes the Riemannian distance

δR(X,Y ) := ‖log(Y −1/2XY −1/2)‖F for X,Y � 0,

on SPD matrices and ‖·‖F denotes the Frobenius norm.

Once we identify the solution of (8) with that of (16), the
generalization to the weighted case becomes transparent.
We introduce a parameter that characterizes the degree of
balance between the cost terms of similarity and dissimi-
larity data. The weighted GMML formulation is then

min
A�0

ht(A) := (1−t) δ2R(A,S−1)+t δ2R(A,D), (17)

where t is a parameter that determines the balance. Un-
like (8), which we observed to be strictly convex as well
as strictly geodesically convex, problem (17) is not (Eu-
clidean) convex. Fortunately, it is still geodesically convex,
because δR itself is geodesically convex. The proof of the
geodesic convexity of δR is more involved than that of The-
orem 3, and we refer the reader to (Bhatia, 2007, Ch. 6) for
complete details.

It can be shown, see e.g., (Bhatia, 2007, Ch. 6) that the
unique solution to (17) is the weighted geometric mean

A = S−1]t D, (18)
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γ(t)

S−1

D
+A

Figure 1. The solution of GMML is located in the geodesic be-
tween matrices S−1 and D on the manifold of SPD matrices.

Algorithm 1 Geometric Mean Metric Learning
Input: S: set of similar pairs, D: set of dissimilar pairs,
t: step length of geodesic, λ: regularization parameter,
A0: prior knowledge
Compute the similarity and dissimilarity matrices:

S =
∑

(xi,xj)∈S

(xi − xj)(xi − xj)
T

D =
∑

(xi,xj)∈D

(xi − xj)(xi − xj)
T

Return the distance matrix:

A = (S + λA−10 )−1]t (D + λA0)

that is, a point on the geodesic from S−1 and D. Figure 1
illustrates this fact about the solution of GMML.

The regularized form of the previous solution is given by

Areg = (S + λA−10 )−1]t (D + λA0),

for t ∈ [0, 1]. In the cases where t = 1/2, it is equal to (15).
This solution is our final and complete proposed solution
to the linear metric learning problem. The summary of our
GMML algorithm for metric learning is presented in Algo-
rithm 1. Empirically, we have observed that the generalized
solution (with free t) can significantly outperform the ordi-
nary solution.

There are several approaches for fast computation of
Riemannian geodesics for SPD matrices, for instance,
Cholesky-Schur and scaled Newton methods (Iannazzo,
2011). We use Cholesky-Schur method in our paper to ex-
pedite the computation of Riemannian geodesics.

3. Results
In this section, we compare the performance of the pro-
posed method GMML (Algorithm 1) to some well-known
metric learning algorithms:

• ITML (Davis et al., 2007);

• LMNN (Weinberger & Saul, 2009); and

• FlatGeo with batch flat geometry (Meyer et al., 2011).

We exploit the commonly used criterion for comparing
the performance of different methods, that is, the rate of
the classification error for a k-NN classifier on different
datasets. We choose k = 5, and estimate a full-rank matrix
A in all methods.

3.1. Experiment 1

Assume c to be the number of classes, it is common in prac-
tice to generate 40c(c − 1) number of constraints by ran-
domly choosing 40c(c − 1) pairs of points in a dataset. In
our first experiment, shown in Figure 2, we use this number
of constraints in our method in addition to ITML and Flat-
Geo methods. The LMNN method does not have this num-
ber of constraints parameter and we used a new version of
its toolbox that uses Bayesian optimization for optimizing
the model hyper-parameters. We use the default parameters
used in ITML and FlatGeo, except we also use a minimum
iterations of 104 for the FlatGeo method, because we ob-
served that sometimes FlatGeo stops prematurely leading
to a very poor performance. ITML has a regularization pa-
rameter that is set by using cross-validation.

Figure 2 reports the results for the smaller datasets. The
datasets are obtained from the well-known UCI reposi-
tory (Asuncion & Newman, 2007). In the plot, the baseline
of using Euclidean distance for classification is shown in
yellow. It can be seen that GMML outperforms the other
three metric learning methods.

The figure reports 40 runs of a two-fold splitting of the data.
In each run, the data is randomly divided into two equal
sets. The regularization parameter λ is set to zero for most
of the datasets. We only add a small value of λ when the
similarity matrix S becomes singular. For example, since
the similarity matrix of the Segment data is near singular,
we use the regularized version of our method with λ = 0.1
and A0 equals to the identity matrix.

We use five-fold cross-validation for choosing the best pa-
rameter t. We tested 18 different values for t in a two-step
method. In the first step the best t is chosen among the
values {0.1, 0.3, 0.5, 0.7, 0.9}. Then in the second step, 12
values of t are tested within an interval of length 0.02 in the
window around the previously selected point.
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Figure 2. Classification error rates of k-nearest neighbor classifier via different learned metrics for different small datasets. Numbers
below each correspond to the dimensionality of feature space in the data (d), number of classes (c) and number of total data (n).

Figure 3 shows the effect of the parameter t on the average
accuracy of k-NN classifier for five datasets. These datasets
are also appeared in Figure 2. It is obvious that in some
datasets, going from the ordinary version to the extended
version can make the GMML’s performance substantially
better. Observe that each curve has a convex-like shape
with some wiggling. That is why we choose the above ap-
proach for finding the best t, and we can verify its precision
by comparing Figures 2 and 3.
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Figure 3. Classification error rates of k-nearest neighbor classifier
along with GMML for different values of the parameter t. We
analyze five datasets here, which is also appeared in Figure 2.

3.2. Experiment 2

To evaluate the performance of our method on larger
datasets, we conduct a second set of experiments. The
results can be summarized in Figure 4. The datasets in
this experiment are Isolet, Letters (Asuncion & Newman,
2007), MNIST3 (LeCun et al., 1998) and USPS (Le Cun
et al., 1990).

Figure 4 reports the average classification error over 5 runs
of random splitting of the data. We use three-fold cross-
validation for adjusting the parameter t. Since the simi-
larity matrices of the MNIST data were not invertible, we
use the regularized version of our method with regulariza-
tion parameter λ = 0.1. The prior matrix A0 is set to the
identity matrix.

On two of the large datasets, Letters and USPS, our method
achieves the same performance as the best competing
method that is LMNN. For one of the datasets our method
significantly outperforms LMNN, and in one dataset it is
significantly outdone by LMMN. We also observed that by
using more data pairs for generating the similarity and dis-
similarity matrices, the performance of our method on Iso-
let and MNIST datasets improves. We tested 1000c(c− 1)
for these two datasets, with which we achieve about 1 per-
cent better accuracy for Isolet leading to slightly better per-
formance than FlatGeo approach. For MNIST data, we
achieved about 0.5 percent better accuracy.

3We used a smaller version of the MNIST dataset available in
www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Figure 4. Classification error rates of k-nearest neighbor classifier
via different learned metrics for large datasets.

Table 1. Running time (in seconds) of metric learning methods

DATA SET GMML LMNN ITML FLATGEO

SEGMENT 0.0054 77.595 0.511 63.074
LETTERS 0.0137 401.90 7.053 13543
USPS 0.1166 811.2 16.393 17424
ISOLET 1.4021 3331.9 1667.5 24855
MNIST 1.6795 1396.4 1739.4 26640

The average running times of the methods on all large data
sets and one small dataset are shown in Table 1. The run-
ning time of different methods is reported for only one run
of each algorithm for fixed values of hyper-parameters; that
means, the reported run times do not include the time re-
quired to select the hyper-parameters. All methods were
implemented on MATLAB R2014a (64-bit), and the simu-
lations were run on a personal laptop with an Intel Core
i5 (2.5Ghz) processor under the OS X Yosemite operating
system.

It can be seen that our method is several order of magni-
tudes faster than other methods. In addition to obtaining
good classification accuracy using the proposed method,
the computational complexity of our method is another nice
property making it an interesting candidate for large-scale
metric learning.

4. Conclusion and future work
We revisited the task of learning a Euclidean metric from
weakly supervised data given as pairs of similar and dis-
similar points. Building on geometric intuition, we ap-
proached the task of learning a symmetric positive definite
matrix by formulating it as a smooth, strictly convex op-
timization problem (thus, ensuring a unique solution). Re-
markably, our formulation was shown to have a closed form
solution. We also viewed our formulation as an optimiza-
tion problem on the Riemannian manifold of SPD matri-

ces, a viewpoint that proved crucial to obtaining a weighted
generalization of the basic formulation. We also presented
a regularized version of our problem. In all cases, the solu-
tion could be obtained as a closed form “matrix geometric
mean”, thus explaining our choice of nomenclature.

We experimented with several datasets, both large and
small, in which we compared the classification accuracy
of a k-NN classifier using metric learned via various com-
peting methods. In addition to good classification accuracy
and global optimality, our proposed method for solving the
metric learning problem has other nice properties like being
fast and being scalable with regard to both the dimension-
ality d and the number of training samples n.

Given the importance of metric learning to a vast number of
applications, we believe that the new understanding offered
by our formulation, its great simplicity, and its tremendous
speedup over widely used methods make it attractive.

4.1. Future work

Several avenues of future work are worth pursuing. We list
some most promising directions below:

• To view our metric learning methods as a dimension-
ality reduction method; here the connections in (Cun-
ningham & Ghahramani, 2015) may be helpful.

• Extensions of our simple geometric framework to
learn nonlinear and local metrics.

• Applying the idea of using concurrently the Maha-
lanobis distance dA with its counterpart d̂A on the
other machine learning problems.
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