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A. More Strategies for Efficient Implementations
Enlarging the Confidence region For a positive definite matrix A ∈ Rd×d, we define

‖x‖1,A = ‖A1/2x‖1.

When studying SLB, Dani et al. (2008) propose to enlarge the confidence region from Ct+1 ={
w : ‖w −wt+1‖Zt+1 ≤

√
γt+1

}
to C̃t+1 =

{
w : ‖w −wt+1‖1,Zt+1 ≤

√
dγt+1

}
such that the computational

cost could be reduced. This idea can be direct incorporated to our OL2M. Let Et+1 be the set of extremal points of C̃t+1.
With this modification, (11) becomes

(xt+1, ŵt+1) = argmax
x∈D,w∈C̃t+1

x>w = argmax
x∈D,w∈Et+1

x>w

which means we just need to enumerate over the 2d vertices in Et+1. Following the arguments in Dani et al. (2008), it is
straightforward to show that the regret is only increased by a factor of

√
d.

Lazy Updating Abbasi-yadkori et al. (2011) propose a lazy updating strategy which only needs to solve (11) O(log T )
times. The key idea is to recompute xt whenever det(Zt) increases by a constant factor (1 + c). While the computation
cost is saved dramatically, the regret is only increased by a constant factor

√
1 + c. We provide the lazy updating version

of OL2M in Algorithm 2.

B. Proof of Lemma 1
Let µ(x) = exp(x)

1+exp(x) . It is easy to verify that ∀x ∈ [−R,R],

1

2(1 + exp(R))
≤ µ′(x) =

exp(x)

(1 + exp(x))2
≤ 1

4
(23)

Note that for any −R ≤ a ≤ b ≤ R, we have

µ(b) = µ(a) +

∫ b

a

µ′(x)dx (24)
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Algorithm 2 OL2M with Lazy Updating
1: Input: Regularization Parameter λ, Constant c
2: Z1 = λI , w1 = 0, τ = 1
3: for t = 1, 2, . . . do
4: if det(Zt) > (1 + c) det(Zτ ) then
5:

(xt, ŵt) = argmax
x∈D,w∈Ct

x>w

6: τ = t
7: end if
8: xt = xτ
9: Submit xt and observe yt ∈ {±1}

10: Solve the optimization problem in (8) to find wt+1

11: end for

Combining (23) with (24), we have

1

2(1 + exp(R))
(b− a) ≤ µ(b)− µ(a) ≤ 1

4
(b− a)

Let

x∗ = argmax
x∈D

x>w∗ = argmax
x∈D

exp(x>w∗)

1 + exp(x>w∗)

Since −R ≤ x>t w∗ ≤ x>∗ w∗ ≤ R, we have

1

2(1 + exp(R))

(
x>∗ w∗ − x>t w∗

)
≤ exp(x>∗ w∗)

1 + exp(x>∗ w∗)
− exp(x>t w∗)

1 + exp(x>t w∗)
≤ 1

4

(
x>∗ w∗ − x>t w∗

)
which implies (7).

C. Proof of Lemma 2
We first show that the one-dimensional logistic loss `(x) = log(1 + exp(−x)) is 1

2(1+exp(R)) -strongly convex over domain
[−R,R]. It is easy to verify that ∀x ∈ [−R,R],

`′′(x) =
exp(x)

(1 + exp(x))2
≥ 1

2(1 + exp(R))

implying the strongly convexity of `(·). From the property of strongly convex, for any a, b ∈ [−R,R] we have

`(b) ≥ `(a) + `′(a)(b− a) +
β

2
(b− a)2. (25)

Notice that for any w1,w2 ∈ BR, we have

ytx
>
t w1, ytx

>
t w2 ∈ [−R,R],

since yt ∈ {±1} and ‖xt‖2 ≤ 1. Substituting a = ytx
>
t w1 and b = ytx

>
t w2 into (25), we have

`(ytx
>
t w2) ≥ `(ytx>t w1) +

β

2
(ytx

>
t w2 − ytx>t w1)2 + `′(ytx

>
t w1)(ytx

>
t w2 − ytx>t w1).

We complete the proof by noticing

ft(w1) = `(ytx
>
t w1), ft(w2) = `(ytx

>
t w2), and ∇ft(w1) = `′(ytx

>
t w1)ytxt.
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D. Proof of Lemma 3
Lemma 3 follows from a more general result stated below.

Lemma 7. Let M be a positive definite matrix, and

y = arg min
w∈W

〈w,g〉+
1

2
‖w − x‖2M ,

whereW is a convex set. Then for all w ∈ W , we have

〈x−w,g〉 ≤ ‖x−w‖2M − ‖y −w‖2M
2

+
1

2
‖g‖2M−1 .

Proof. Since y is the optimal solution to the optimization problem, from the first-order optimality condition (Boyd &
Vandenberghe, 2004), we have

〈g +M(y − x),w − y〉 ≥ 0, ∀w ∈ W. (26)

Based on the above inequality, we have

‖x−w‖2M − ‖y −w‖2M
=x>Mx− y>My + 2〈M(y − x),w〉

(26)
≥ x>Mx− y>My + 2〈M(y − x),y〉 − 2〈g,w − y〉
=‖y − x‖2M + 2〈g,y − x + x−w〉
=2〈g,x−w〉+ ‖y − x‖2M + 2〈g,y − x〉

Combining with the following inequality

‖y − x‖2M + 2〈g,y − x〉 ≥ min
w
‖w‖2M + 2〈g,w〉 = −‖g‖2M−1 ,

we have
‖x−w‖2M − ‖y −w‖2M ≥ 2〈g,x−w〉 − ‖g‖2M−1 .

E. Proof of Lemma 4
For each w ∈ Rd, we introduce a discrete probability distribution pw over {±1} such that

pw(i) =
1

1 + exp(−ix>t w)
, i ∈ {±1}.

Then, it is easy to verify that
f̄t(w) = −

∑
i∈{±1}

pw∗(i) log pw(i).

As a result

f̄t(w)− f̄t(w∗)

=
∑

i∈{±1}

pw∗(i) log pw∗(i)−
∑

i∈{±1}

pw∗(i) log pw(i)

=
∑

i∈{±1}

pw∗(i) log
pw∗(i)

pw(i)
= DKL(pw∗‖pw) ≥ 0

where DKL(·‖·) is the Kullback–Leibler divergence between two distributions (Cover & Thomas, 2006).
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F. Proof of Lemma 5
We need the Bernstein’s inequality for martingales (Cesa-Bianchi & Lugosi, 2006), which is provided in Appendix J. Form
our definition of f̄i(·) in (16), it is clear

bi = [∇f̄i(wi)−∇fi(wi)]
>(wi −w∗)

is a martingale difference sequence. Furthermore,

|bi| ≤
∣∣[∇f̄i(wi)]

>(wi −w∗)
∣∣+
∣∣[∇fi(wi)]

>(wi −w∗)
∣∣ ≤ 2|x>i (wi −w∗)| ≤ 2‖wi −w∗‖2 ≤ 4R.

Define the martingale Bt =
∑t
i=1 bi. Define the conditional variance Σ2

t as

Σ2
t =

t∑
i=1

Eyi

[(
[∇f̄i(wi)−∇fi(wi)]

>(wi −w∗)
)2]

≤
t∑
i=1

Eyi

[(
∇fi(wi)

>(wi −w∗)
)2] ≤ t∑

i=1

(
x>i (wi −w∗)

)2
︸ ︷︷ ︸

:=At

,

where the first inequality is due to the fact that E[(ξ − E[ξ])2] ≤ E[ξ2] for any random variable ξ.

In the following, we consider two different scenarios, i.e., At ≤ 4R2

t and At > 4R2

t .

At ≤ 4R2

t In this case, we have

Bt ≤
t∑
i=1

|bi| ≤ 2

t∑
i=1

|x>i (wi −w∗)| ≤ 2

√√√√t

t∑
i=1

(
x>i (wi −w∗)

)2 ≤ 4R. (27)

At >
4R2

t Since At in the upper bound for Σ2
t is a random variable, we cannot apply Bernstein’s inequality directly. To

address this issue, we make use of the peeling process (Bartlett et al., 2005). Note that we have both a lower bound and an
upper bound for At, i.e., 4R2/t < At ≤ 4R2t. Then,

Pr

[
Bt ≥ 2

√
Atτt +

8

3
Rτt

]
= Pr

[
Bt ≥ 2

√
Atτt +

8

3
Rτt,

4R2

t
< At ≤ 4R2t

]
= Pr

[
Bt ≥ 2

√
Atτt +

8

3
Rτt,Σ

2
t ≤ At,

4R2

t
< At ≤ 4R2t

]
≤

m∑
i=1

Pr

[
Bt ≥ 2

√
Atτt +

8

3
Rτt,Σ

2
t ≤ At,

4R22i−1

t
< At ≤

4R22i

t

]

≤
m∑
i=1

Pr

[
Bt ≥

√
2

4R22i

t
τt +

8

3
Rτt,Σ

2
t ≤

4R22i

t

]
≤ me−τt ,

where m = d2 log2 te, and the last step follows the Bernstein’s inequality for martingales. By setting τt = log 2mt2

δ , with
a probability at least 1− δ/[2t2], we have

Bt ≤ 2
√
Atτt +

8

3
Rτt. (28)

Combining (27) and (28), with a probability at least 1− δ/[2t2], we have

Bt ≤ 4R+ 2
√
Atτt +

8

3
Rτt.
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We complete the proof by taking the union bound over t > 0, and using the well-known result

∞∑
t=1

1

t2
=
π2

6
≤ 2.

G. Proof of Lemma 6
We have

‖xi‖2Z−1
i+1

=
2

β
〈Z−1i+1, Zi+1 − Zi〉 ≤

2

β
log

det(Zi+1)

det(Zi)
,

where the inequality follows from Lemma 12 in Hazan et al. (2007). Thus, we have

t∑
i=1

‖xi‖2Z−1
i+1

≤ 2

β

t∑
i=1

log
det(Zi+1)

det(Zi)
=

2

β
log

det(Zt+1)

det(Z1)
.

H. Proof of Corollary 2
Recall that

Zt+1 = Z1 +
β

2

t∑
i=1

xtx
>
t

and ‖xt‖2 ≤ 1 for all t > 0. From Lemma 10 of Abbasi-yadkori et al. (2011), we have

det(Zt+1) ≤
(
λ+

βt

2d

)d
.

Since det(Z1) = λd, we have

log
det(Zt+1)

det(Z1)
≤ d log

(
1 +

βt

2λd

)
.

I. Proof of Theorem 3
The proof is standard and can be found from Dani et al. (2008) and Abbasi-yadkori et al. (2011). We include it for the sake
of completeness.

Let x∗ = argmaxx∈D x>w∗. Recall that in each round, we have

(xt, ŵt) = argmax
x∈D,w∈Ct

x>w.

We decompose the instantaneous regret at round t as follows

x>∗ w∗ − x>t w∗

≤x>t ŵt − x>t w∗ = x>t (ŵt −wt) + x>t (wt −w∗)

≤ (‖ŵt −wt‖Zt
+ ‖wt −w∗‖Zt

) ‖xt‖Z−1
t
≤ 2
√
γt‖xt‖Z−1

t
.

On the other hand, we always have

x>∗ w∗ − x>t w∗ ≤ ‖x∗ − xt‖2‖w∗‖2 ≤ 2R.
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Thus, the total regret can be upper bounded by

T max
x∈D

x>w∗ −
T∑
t=1

x>t w∗

≤2

T∑
t=1

min
(√

γt‖xt‖Z−1
t
, R
)

≤2
√
γT

T∑
t=1

min
(
‖xt‖Z−1

t
, R
)

=2

√
2

β
γT

T∑
t=1

min

(√
β

2
‖xt‖Z−1

t
,

√
β

2
R

)

≤2 max

(
1,

√
β

2
R

)√
2

β
γT

T∑
t=1

min

(√
β

2
‖xt‖Z−1

t
, 1

)

≤2 max

(
1,

√
β

2
R

)√
2T

β
γT

√√√√ T∑
t=1

min

(
β

2
‖xt‖2Z−1

t

, 1

)
.

To proceed, we need the following results from Lemma 11 in Abbasi-yadkori et al. (2011),

T∑
t=1

min

(
β

2
‖xt‖2Z−1

t
, 1

)
≤ 2

T∑
t=1

log

(
1 +

β

2
‖xt‖2Z−1

t

)
and

det(ZT+1) = det

(
ZT +

β

2
xTx

>
T

)
= det(ZT ) det

(
I +

β

2
Z
−1/2
T xTx

>
TZ
−1/2
T

)
= det(ZT )

(
1 +

β

2
‖xT ‖2Z−1

T

)
= det(Z1)

T∏
t=1

(
1 +

β

2
‖xt‖2Z−1

t

)
.

Combining the above inequations, we have

T max
x∈D

x>w∗ −
T∑
t=1

x>t w∗ ≤ 4 max

(
1,

√
β

2
R

)√
γTT

β
log

det(ZT+1)

det(Z1)
.

J. Bernstein’s Inequality for Martingales
Theorem 4. Let X1, . . . , Xn be a bounded martingale difference sequence with respect to the filtration F = (Fi)1≤i≤n
and with |Xi| ≤ K. Let

Si =

i∑
j=1

Xj

be the associated martingale. Denote the sum of the conditional variances by

Σ2
n =

n∑
t=1

E
[
X2
t |Ft−1

]
.

Then for all constants t, ν > 0,

Pr

[
max

i=1,...,n
Si > t and Σ2

n ≤ ν
]
≤ exp

(
− t2

2(ν +Kt/3)

)
,
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and therefore,

Pr

[
max

i=1,...,n
Si >

√
2νt+

2

3
Kt and Σ2

n ≤ ν
]
≤ e−t.

K. Instantaneous regret of OL2M when D is the unit ball in R100
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Figure 4. Instantaneous regret of OL2M when D is the unit ball in R100.
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Figure 5. Instantaneous regret of OL2M when D is the unit ball in R100.


