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A. More Strategies for Efficient Implementations

Enlarging the Confidence region For a positive definite matrix A € R?¥9, we define
[, = (| A"2x];.

When studying SLB, Dani et al. (2008) propose to enlarge the confidence region from Cip1 =

{willw—wiillzips < VAs1) 0 Cor = {w:|w—wiril1,2z0 < V/dvs1) such that the computational
cost could be reduced. This idea can be direct incorporated to our OL?M. Let &£ 1 be the set of extremal points of Cy ;.
With this modification, (11) becomes
(X¢41,Wip1) = argmax X' w = argmax X w
x€D,weCyy1 xeD,we€iq1
which means we just need to enumerate over the 2d vertices in &.11. Following the arguments in Dani et al. (2008), it is
straightforward to show that the regret is only increased by a factor of /d.

Lazy Updating Abbasi-yadkori et al. (2011) propose a lazy updating strategy which only needs to solve (11) O(logT')
times. The key idea is to recompute x; whenever det(Z;) increases by a constant factor (1 + ¢). While the computation
cost is saved dramatically, the regret is only increased by a constant factor v/1 + c. We provide the lazy updating version
of OL2M in Algorithm 2.

B. Proof of Lemma 1

Let p(z) = 1?;5’&2(). It is easy to verify that Vo € [—R, R],

1 exp(z)
<y (x)= —
2(1+exp(R)) — w(x) (1 + exp(x))?

Note that for any —R < a < b < R, we have

< (23)

1
4

b
u(b) = () + / o ()dx (24)
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Algorithm 2 OL?M with Lazy Updating
1: Input: Regularization Parameter )\, Constant ¢
2: le)\I,Wl:O,T:l
3: fort=1,2,...do

4: ifdet(Z;) > (1 + ¢) det(Z,) then
5:
(x4, W;) = argmax X' w
x€ED,weCy
6: T=t
7:  endif
8: X; = X,
9:  Submit x; and observe y; € {£1}

10:  Solve the optimization problem in (8) to find w4
11: end for

Combining (23) with (24), we have

1
b—a) < u(b) — < —(b—
S g 0 @ < 00— ) < 0= 0
Let
T exp(x'w,)
X, = argmaxX W, = argmax ————————
<D xeD 1+ exp(xTwy)
Since —R < x; w, < x]w, < R, we have
1 Tw, W, 1
- - (XIW* — x;rw*) < exp(x, ‘: ) — exp(Xy V.: ) <=z (XIW* — x;rw*)
2(1 + exp(R)) 1+exp(x;w,) 1+exp(x/ws) ~ 4

which implies (7).

C. Proof of Lemma 2

We first show that the one-dimensional logistic loss ¢(xz) = log(1 +exp(—x)) is m—strongly convex over domain
[-R, R]. It is easy to verify that Vo € [-R, R],

exp(z) - 1
(1+exp(x))? ~ 2(1 4+ exp(R))

"(z) =

implying the strongly convexity of £(-). From the property of strongly convex, for any a,b € [—R, R| we have

B

£(b) > L(a) + ' (a)(b—a) + E(b—a)z. (25)

Notice that for any wy, wo € By, we have
ytx;rwh th;rW2 S [_R7 R]7
since y; € {1} and |x;||2 < 1. Substituting a = y;x, w; and b = y;x, w5 into (25), we have
s
Uysx] w2) > Llyex{ wi) + §(thtTW2 = yex{ w1)? € (yex) W) (yex{ wo — yex[ wa).
We complete the proof by noticing

fr(wi) = Lyex) wi), fi(wa) = L(yx, W), and V fy(w1) = €' (yyx] w1)yx;.
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D. Proof of Lemma 3

Lemma 3 follows from a more general result stated below.

Lemma 7. Let M be a positive definite matrix, and

. 1 )
y = argmin{w, g) + §||W —x||35
wew

where W is a convex set. Then for all w € W, we have

x—w|? —lly—-w|3 1
o w.g) < WY Z Wl L gye

Proof. Since y is the optimal solution to the optimization problem, from the first-order optimality condition (Boyd &
Vandenberghe, 2004), we have
(g+ My —x),w—y) >0, Yw € W. (26)

Based on the above inequality, we have

Ix — w3 — ly — wliis
=x'Mx—y" My +2(M(y — %), w)
20 T
>x Mx—y My+2(M(y —x),y) —2(g,w —y)
=y — XHM +2(g,y —x+x—W)
=2(g,x — w) + [ly — x[|3; + 2(g,y — %)

Combining with the following inequality
ly = xI3; + 2(g,y — x) > min |w|[3, + 2(g, W) = —lgll3;

we have
Ix — w3 — lly — wll3, > 2(g,x —w) — |lgll3-:-

E. Proof of Lemma 4

For each w € R?, we introduce a discrete probability distribution py, over {£1} such that

1
w ) = s € {£1}.
pw(i) 1+ exp(—ix/ w) e
Then, it is easy to verify that
— > pw. (i) logpw(i).
ie{+1}
As a result
fe(w) = fi(w.)
= > pw.(D)1ogpw. (i) = Y pw.(i)logpuwl(i)
ie{£1} ie{£1}
pw*
= Z pw* (()) DKL(pw* pw) >0
ie{+1} Pw

where Dy, (|-) is the Kullback—Leibler divergence between two distributions (Cover & Thomas, 2006).
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F. Proof of Lemma 5

We need the Bernstein’s inequality for martingales (Cesa-Bianchi & Lugosi, 2006), which is provided in Appendix J. Form
our definition of f;(-) in (16), it is clear

= [Vfi(wi) = Vfi(wi)] T (w; — W)
is a martingale difference sequence. Furthermore,
b:| < [V fi(wi)] T (wi — w)| + [[Vfi(wa)] T (wi — wa)| < 20x] (Wi — wy)| < 2[w; — w2 < 4R.

Define the martingale B; = Zle b;. Define the conditional variance %7 as
2
$2 = Z B, [ (IVFi(wi) = V fi(wa)] T (wi — w.)) }

<ZE [ vV f; WZ) (w; —W*))z} < Z (X;r(wi —W*))Q,

=Ay
where the first inequality is due to the fact that E[(¢ — E[¢])?] < E[¢?] for any random variable £.

. . . . . 2
In the following, we consider two different scenarios, i.e., A; < % and 4, > &

2 .
Ay < = In this case, we have

t

t
Z §22|x i — W) <2 IfZ(xiT(wi—w*))2 < 4R. 27

= i=1

Ay > % Since A; in the upper bound for ¥ is a random variable, we cannot apply Bernstein’s inequality directly. To
address this issue, we make use of the peeling process (Bartlett et al., 2005). Note that we have both a lower bound and an
upper bound for Ay, i.e., 4R?/t < A; < 4R?t. Then,

Pr Bt Z 2\/ At’rt + §R’Tt

=Pr Bt > 2\/ At’Tt + R’Tt, R < At < 4R2 :|

R2

=Pr Bt22\/At’Tt+§R’Tt,E%<At, <At<4R2:|

S 8 4R?2'~! 4R?2’
SZPI‘ |:Bt22\/AtTt+3RTt72§SAt;t <A < , :l

22% 4 22i
Btz \/2 ‘Z%t Tt+ RTt,E2 ]%t

where m = [2log, t], and the last step follows the Bernstein’s inequality for martingales. By setting 7z = log <"~ 2”“ , with
a probability at least 1 — §/[2¢%], we have

< Pr

M1

< me ",

i=1

8
Bt S 2\/ AtTt+ gRTt. (28)
Combining (27) and (28), with a probability at least 1 — §/[2¢%], we have

8
Bt S 4R + 2\/ AtTt + gRTt.
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We complete the proof by taking the union bound over ¢ > 0, and using the well-known result

2

=1
age

G. Proof of Lemma 6
We have
2 det(ZiJrl )

Z7Y Ziv — 7)) < S log ———2 L
< i+1 +1 >— ﬁ og det(Zl)

2 _
|‘Xi||Zz‘:r11 - B
where the inequality follows from Lemma 12 in Hazan et al. (2007). Thus, we have
t

t
2 det(Z, 1) 2 det(Zt+1)
2o < 25 log —— 2 = Z g —— 2L
; HXZHZH—l - ﬂ ; 08 det(ZZ) B 08 det(Zl)

H. Proof of Corollary 2
Recall that

t
B
Zt+1 :Z1+52thj

and ||x¢||2 < 1 for all ¢ > 0. From Lemma 10 of Abbasi-yadkori et al. (2011), we have

det(Zt+1) <)\ + g;)

Since det(Z;) = A%, we have

det(Zt+1) Bt
) < A
log det(Zy) < dlog 1+2/\d

L. Proof of Theorem 3

The proof is standard and can be found from Dani et al. (2008) and Abbasi-yadkori et al. (2011). We include it for the sake
of completeness.

Let x, = argmax, cp x "w,. Recall that in each round, we have

(x¢,W;) = argmax x'w.

xED,weCy

We decompose the instantaneous regret at round ¢ as follows

X*Tw* — xtTW*

<X Wy — %X W, = x] (W, —wy) + %/ (W, — w,,)

S(we = wellz, + Iwe = wellz,) [1xell g1 < 2v/llxell -1
On the other hand, we always have

X)W — %} Wy < |Jxs — x¢[2]|w]l2 < 2R.
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Thus, the total regret can be upper bounded by

T
TmaxxTW* — E xfTw*
x€D e} )

<23 min (vAtlxill 7, R)
- T
<2y 3 min (|l )
7 . B s

=2/ i <\/; el ﬁR)

come (2] B S B
<2max (17 \/ER> \/ﬂ imin <6||Xt||2 1,1).

2 15} p 2 Zy

To proceed, we need the following results from Lemma 11 in Abbasi-yadkori et al. (2011),

d 8 d B
> i (Sl 1) <23 o (1 Sl )
t=1

t=1

and
_ B T
det(Zr41) =det | Zp + EXTXT
_ B -1/2. _T,-1/2
—det(ZT) det | I + §ZT XTXTZT
= det(zr) (1+ 5 el 1) = det(z) [T (1+ 5l
=de T B) X7 Z;l = de 1 n B) Xt Zt_l .
Combining the above inequations, we have

T
6 ’)/TT det(ZT 1)
Tglea%xTw* — ijw* < 4 max (1, \/;R 5 log det(Z:r) )

t=1

J. Bernstein’s Inequality for Martingales

Theorem 4. Let Xy, ..., X, be a bounded martingale difference sequence with respect to the filtration F = (F;)1<i<n
and with | X;| < K. Let

i
Si=>_ X;
j=1
be the associated martingale. Denote the sum of the conditional variances by
n
S2 =Y E[X7|Fi].

t=1

Then for all constants t, v > 0,

2
) 2 < < _
Pr i_Hll,ia.).{,nSZ>tandEnl/:| exp< 2(1/+Kt/3)>’
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and therefore,

2
Pr| max S; > v2vt+ gKt and Y2 < v| <e7t

n =
i=1,..

K. Instantaneous regret of OL>M when D is the unit ball in R'*°
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Figure 4. Instantaneous regret of OL>M when D is the unit ball in R,
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Instantaneous Regret
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Figure 5. Instantaneous regret of OL>M when D is the unit ball in R



