Supplementary Material: Online Stochastic Linear Optimization under One-bit Feedback

Lijun Zhang

ZHANGLJ@LAMDA.NJU.EDU.CN
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
Tianbao Yang
TIANBAO-YANG@UIOWA.EDU
Department of Computer Science, The University of Iowa, Iowa City, IA 52242, USA

Rong Jin

JINRONG.JR@ALIBABA-INC.COM
Alibaba Group, Seattle, USA

Yichi Xiao

XIAOYC@LAMDA.NJU.EDU.CN
Zhi-Hua Zhou
ZHOUZH@LAMDA.NJU.EDU.CN
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

A. More Strategies for Efficient Implementations

Enlarging the Confidence region For a positive definite matrix $A \in \mathbb{R}^{d \times d}$, we define

$$
\|\mathbf{x}\|_{1, A}=\left\|A^{1 / 2} \mathbf{x}\right\|_{1}
$$

When studying SLB, Dani et al. (2008) propose to enlarge the confidence region from $\mathcal{C}_{t+1}=$ $\left\{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{t+1}\right\|_{Z_{t+1}} \leq \sqrt{\gamma_{t+1}}\right\}$ to $\widetilde{\mathcal{C}}_{t+1}=\left\{\mathbf{w}:\left\|\mathbf{w}-\mathbf{w}_{t+1}\right\|_{1, Z_{t+1}} \leq \sqrt{d \gamma_{t+1}}\right\}$ such that the computational cost could be reduced. This idea can be direct incorporated to our $\mathrm{OL}^{2} \mathrm{M}$. Let \mathcal{E}_{t+1} be the set of extremal points of $\widetilde{\mathcal{C}_{t+1}}$. With this modification, (11) becomes

$$
\left(\mathbf{x}_{t+1}, \widehat{\mathbf{w}}_{t+1}\right)=\underset{\mathbf{x} \in \mathcal{D}, \mathbf{w} \in \widetilde{\mathcal{C}}_{t+1}}{\operatorname{argmax}} \mathbf{x}^{\top} \mathbf{w}=\underset{\mathbf{x} \in \mathcal{D}, \mathbf{w} \in \mathcal{E}_{t+1}}{\operatorname{argmax}} \mathbf{x}^{\top} \mathbf{w}
$$

which means we just need to enumerate over the $2 d$ vertices in \mathcal{E}_{t+1}. Following the arguments in Dani et al. (2008), it is straightforward to show that the regret is only increased by a factor of \sqrt{d}.

Lazy Updating Abbasi-yadkori et al. (2011) propose a lazy updating strategy which only needs to solve (11) $O(\log T)$ times. The key idea is to recompute \mathbf{x}_{t} whenever $\operatorname{det}\left(Z_{t}\right)$ increases by a constant factor $(1+c)$. While the computation cost is saved dramatically, the regret is only increased by a constant factor $\sqrt{1+c}$. We provide the lazy updating version of $\mathrm{OL}^{2} \mathrm{M}$ in Algorithm 2.

B. Proof of Lemma 1

Let $\mu(x)=\frac{\exp (x)}{1+\exp (\mathbf{x})}$. It is easy to verify that $\forall x \in[-R, R]$,

$$
\begin{equation*}
\frac{1}{2(1+\exp (R))} \leq \mu^{\prime}(\mathbf{x})=\frac{\exp (x)}{(1+\exp (x))^{2}} \leq \frac{1}{4} \tag{23}
\end{equation*}
$$

Note that for any $-R \leq a \leq b \leq R$, we have

$$
\begin{equation*}
\mu(b)=\mu(a)+\int_{a}^{b} \mu^{\prime}(x) d x \tag{24}
\end{equation*}
$$

```
Algorithm \(2 \mathrm{OL}^{2} \mathrm{M}\) with Lazy Updating
    Input: Regularization Parameter \(\lambda\), Constant \(c\)
    \(Z_{1}=\lambda I, \mathbf{w}_{1}=0, \tau=1\)
    for \(t=1,2, \ldots\) do
        if \(\operatorname{det}\left(Z_{t}\right)>(1+c) \operatorname{det}\left(Z_{\tau}\right)\) then
                                    \(\left(\mathbf{x}_{t}, \widehat{\mathbf{w}}_{t}\right)=\underset{\mathbf{x} \in \mathcal{D}, \mathbf{w} \in \mathcal{C}_{t}}{\operatorname{argmax}} \mathbf{x}^{\top} \mathbf{w}\)
        \(\tau=t\)
        end if
        \(\mathbf{x}_{t}=\mathbf{x}_{\tau}\)
        Submit \(\mathbf{x}_{t}\) and observe \(y_{t} \in\{ \pm 1\}\)
        Solve the optimization problem in (8) to find \(\mathbf{w}_{t+1}\)
    end for
```

Combining (23) with (24), we have

$$
\frac{1}{2(1+\exp (R))}(b-a) \leq \mu(b)-\mu(a) \leq \frac{1}{4}(b-a)
$$

Let

$$
\mathbf{x}_{*}=\underset{\mathbf{x} \in \mathcal{D}}{\operatorname{argmax}} \mathbf{x}^{\top} \mathbf{w}_{*}=\underset{\mathbf{x} \in \mathcal{D}}{\operatorname{argmax}} \frac{\exp \left(\mathbf{x}^{\top} \mathbf{w}_{*}\right)}{1+\exp \left(\mathbf{x}^{\top} \mathbf{w}_{*}\right)}
$$

Since $-R \leq \mathbf{x}_{t}^{\top} \mathbf{w}_{*} \leq \mathbf{x}_{*}^{\top} \mathbf{w}_{*} \leq R$, we have

$$
\frac{1}{2(1+\exp (R))}\left(\mathbf{x}_{*}^{\top} \mathbf{w}_{*}-\mathbf{x}_{t}^{\top} \mathbf{w}_{*}\right) \leq \frac{\exp \left(\mathbf{x}_{*}^{\top} \mathbf{w}_{*}\right)}{1+\exp \left(\mathbf{x}_{*}^{\top} \mathbf{w}_{*}\right)}-\frac{\exp \left(\mathbf{x}_{t}^{\top} \mathbf{w}_{*}\right)}{1+\exp \left(\mathbf{x}_{t}^{\top} \mathbf{w}_{*}\right)} \leq \frac{1}{4}\left(\mathbf{x}_{*}^{\top} \mathbf{w}_{*}-\mathbf{x}_{t}^{\top} \mathbf{w}_{*}\right)
$$

which implies (7).

C. Proof of Lemma 2

We first show that the one-dimensional logistic $\operatorname{loss} \ell(x)=\log (1+\exp (-x))$ is $\frac{1}{2(1+\exp (R))}$-strongly convex over domain $[-R, R]$. It is easy to verify that $\forall x \in[-R, R]$,

$$
\ell^{\prime \prime}(x)=\frac{\exp (x)}{(1+\exp (x))^{2}} \geq \frac{1}{2(1+\exp (R))}
$$

implying the strongly convexity of $\ell(\cdot)$. From the property of strongly convex, for any $a, b \in[-R, R]$ we have

$$
\begin{equation*}
\ell(b) \geq \ell(a)+\ell^{\prime}(a)(b-a)+\frac{\beta}{2}(b-a)^{2} \tag{25}
\end{equation*}
$$

Notice that for any $\mathbf{w}_{1}, \mathbf{w}_{2} \in \mathcal{B}_{R}$, we have

$$
y_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{1}, y_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{2} \in[-R, R]
$$

since $y_{t} \in\{ \pm 1\}$ and $\left\|\mathbf{x}_{t}\right\|_{2} \leq 1$. Substituting $a=y_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{1}$ and $b=y_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{2}$ into (25), we have

$$
\ell\left(y_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{2}\right) \geq \ell\left(y_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{1}\right)+\frac{\beta}{2}\left(y_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{2}-y_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{1}\right)^{2}+\ell^{\prime}\left(y_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{1}\right)\left(y_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{2}-y_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{1}\right)
$$

We complete the proof by noticing

$$
f_{t}\left(\mathbf{w}_{1}\right)=\ell\left(y_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{1}\right), f_{t}\left(\mathbf{w}_{2}\right)=\ell\left(y_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{2}\right), \text { and } \nabla f_{t}\left(\mathbf{w}_{1}\right)=\ell^{\prime}\left(y_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{1}\right) y_{t} \mathbf{x}_{t} .
$$

D. Proof of Lemma 3

Lemma 3 follows from a more general result stated below.
Lemma 7. Let M be a positive definite matrix, and

$$
\mathbf{y}=\underset{\mathbf{w} \in \mathcal{W}}{\arg \min }\langle\mathbf{w}, \mathbf{g}\rangle+\frac{1}{2}\|\mathbf{w}-\mathbf{x}\|_{M}^{2}
$$

where \mathcal{W} is a convex set. Then for all $\mathbf{w} \in \mathcal{W}$, we have

$$
\langle\mathbf{x}-\mathbf{w}, \mathbf{g}\rangle \leq \frac{\|\mathbf{x}-\mathbf{w}\|_{M}^{2}-\|\mathbf{y}-\mathbf{w}\|_{M}^{2}}{2}+\frac{1}{2}\|\mathbf{g}\|_{M^{-1}}^{2}
$$

Proof. Since \mathbf{y} is the optimal solution to the optimization problem, from the first-order optimality condition (Boyd \& Vandenberghe, 2004), we have

$$
\begin{equation*}
\langle\mathbf{g}+M(\mathbf{y}-\mathbf{x}), \mathbf{w}-\mathbf{y}\rangle \geq 0, \forall \mathbf{w} \in \mathcal{W} \tag{26}
\end{equation*}
$$

Based on the above inequality, we have

$$
\begin{aligned}
&\|\mathbf{x}-\mathbf{w}\|_{M}^{2}-\|\mathbf{y}-\mathbf{w}\|_{M}^{2} \\
&= \mathbf{x}^{\top} M \mathbf{x}-\mathbf{y}^{\top} M \mathbf{y}+2\langle M(\mathbf{y}-\mathbf{x}), \mathbf{w}\rangle \\
& \stackrel{(26)}{\geq} \mathbf{x}^{\top} M \mathbf{x}-\mathbf{y}^{\top} M \mathbf{y}+2\langle M(\mathbf{y}-\mathbf{x}), \mathbf{y}\rangle-2\langle\mathbf{g}, \mathbf{w}-\mathbf{y}\rangle \\
&=\|\mathbf{y}-\mathbf{x}\|_{M}^{2}+2\langle\mathbf{g}, \mathbf{y}-\mathbf{x}+\mathbf{x}-\mathbf{w}\rangle \\
&= 2\langle\mathbf{g}, \mathbf{x}-\mathbf{w}\rangle+\|\mathbf{y}-\mathbf{x}\|_{M}^{2}+2\langle\mathbf{g}, \mathbf{y}-\mathbf{x}\rangle
\end{aligned}
$$

Combining with the following inequality

$$
\|\mathbf{y}-\mathbf{x}\|_{M}^{2}+2\langle\mathbf{g}, \mathbf{y}-\mathbf{x}\rangle \geq \min _{\mathbf{w}}\|\mathbf{w}\|_{M}^{2}+2\langle\mathbf{g}, \mathbf{w}\rangle=-\|\mathbf{g}\|_{M^{-1}}^{2}
$$

we have

$$
\|\mathbf{x}-\mathbf{w}\|_{M}^{2}-\|\mathbf{y}-\mathbf{w}\|_{M}^{2} \geq 2\langle\mathbf{g}, \mathbf{x}-\mathbf{w}\rangle-\|\mathbf{g}\|_{M^{-1}}^{2} .
$$

E. Proof of Lemma 4

For each $\mathbf{w} \in \mathbb{R}^{d}$, we introduce a discrete probability distribution $p_{\mathbf{w}}$ over $\{ \pm 1\}$ such that

$$
p_{\mathbf{w}}(i)=\frac{1}{1+\exp \left(-i \mathbf{x}_{t}^{\top} \mathbf{w}\right)}, i \in\{ \pm 1\}
$$

Then, it is easy to verify that

$$
\bar{f}_{t}(\mathbf{w})=-\sum_{i \in\{ \pm 1\}} p_{\mathbf{w}_{*}}(i) \log p_{\mathbf{w}}(i)
$$

As a result

$$
\begin{aligned}
& \bar{f}_{t}(\mathbf{w})-\bar{f}_{t}\left(\mathbf{w}_{*}\right) \\
= & \sum_{i \in\{ \pm 1\}} p_{\mathbf{w}_{*}}(i) \log p_{\mathbf{w}_{*}}(i)-\sum_{i \in\{ \pm 1\}} p_{\mathbf{w}_{*}}(i) \log p_{\mathbf{w}}(i) \\
= & \sum_{i \in\{ \pm 1\}} p_{\mathbf{w}_{*}}(i) \log \frac{p_{\mathbf{w}_{*}}(i)}{p_{\mathbf{w}}(i)}=D_{K L}\left(p_{\mathbf{w}_{*}} \| p_{\mathbf{w}}\right) \geq 0
\end{aligned}
$$

where $D_{K L}(\cdot \| \cdot)$ is the Kullback-Leibler divergence between two distributions (Cover \& Thomas, 2006).

F. Proof of Lemma 5

We need the Bernstein's inequality for martingales (Cesa-Bianchi \& Lugosi, 2006), which is provided in Appendix J. Form our definition of $\bar{f}_{i}(\cdot)$ in (16), it is clear

$$
b_{i}=\left[\nabla \bar{f}_{i}\left(\mathbf{w}_{i}\right)-\nabla f_{i}\left(\mathbf{w}_{i}\right)\right]^{\top}\left(\mathbf{w}_{i}-\mathbf{w}_{*}\right)
$$

is a martingale difference sequence. Furthermore,

$$
\left|b_{i}\right| \leq\left|\left[\nabla \bar{f}_{i}\left(\mathbf{w}_{i}\right)\right]^{\top}\left(\mathbf{w}_{i}-\mathbf{w}_{*}\right)\right|+\left|\left[\nabla f_{i}\left(\mathbf{w}_{i}\right)\right]^{\top}\left(\mathbf{w}_{i}-\mathbf{w}_{*}\right)\right| \leq 2\left|\mathbf{x}_{i}^{\top}\left(\mathbf{w}_{i}-\mathbf{w}_{*}\right)\right| \leq 2\left\|\mathbf{w}_{i}-\mathbf{w}_{*}\right\|_{2} \leq 4 R
$$

Define the martingale $B_{t}=\sum_{i=1}^{t} b_{i}$. Define the conditional variance Σ_{t}^{2} as

$$
\begin{aligned}
\Sigma_{t}^{2} & =\sum_{i=1}^{t} \mathrm{E}_{y_{i}}\left[\left(\left[\nabla \bar{f}_{i}\left(\mathbf{w}_{i}\right)-\nabla f_{i}\left(\mathbf{w}_{i}\right)\right]^{\top}\left(\mathbf{w}_{i}-\mathbf{w}_{*}\right)\right)^{2}\right] \\
& \leq \sum_{i=1}^{t} \mathrm{E}_{y_{i}}\left[\left(\nabla f_{i}\left(\mathbf{w}_{i}\right)^{\top}\left(\mathbf{w}_{i}-\mathbf{w}_{*}\right)\right)^{2}\right] \leq \underbrace{\sum_{i=1}^{t}\left(\mathbf{x}_{i}^{\top}\left(\mathbf{w}_{i}-\mathbf{w}_{*}\right)\right)^{2}}_{:=A_{t}}
\end{aligned}
$$

where the first inequality is due to the fact that $\mathrm{E}\left[(\xi-\mathrm{E}[\xi])^{2}\right] \leq \mathrm{E}\left[\xi^{2}\right]$ for any random variable ξ.
In the following, we consider two different scenarios, i.e., $A_{t} \leq \frac{4 R^{2}}{t}$ and $A_{t}>\frac{4 R^{2}}{t}$.
$A_{t} \leq \frac{4 R^{2}}{t} \quad$ In this case, we have

$$
\begin{equation*}
B_{t} \leq \sum_{i=1}^{t}\left|b_{i}\right| \leq 2 \sum_{i=1}^{t}\left|\mathbf{x}_{i}^{\top}\left(\mathbf{w}_{i}-\mathbf{w}_{*}\right)\right| \leq 2 \sqrt{t \sum_{i=1}^{t}\left(\mathbf{x}_{i}^{\top}\left(\mathbf{w}_{i}-\mathbf{w}_{*}\right)\right)^{2}} \leq 4 R \tag{27}
\end{equation*}
$$

$A_{t}>\frac{4 R^{2}}{t}$ Since A_{t} in the upper bound for Σ_{t}^{2} is a random variable, we cannot apply Bernstein's inequality directly. To address this issue, we make use of the peeling process (Bartlett et al., 2005). Note that we have both a lower bound and an upper bound for A_{t}, i.e., $4 R^{2} / t<A_{t} \leq 4 R^{2} t$. Then,

$$
\begin{aligned}
& \operatorname{Pr}\left[B_{t} \geq 2 \sqrt{A_{t} \tau_{t}}+\frac{8}{3} R \tau_{t}\right] \\
= & \operatorname{Pr}\left[B_{t} \geq 2 \sqrt{A_{t} \tau_{t}}+\frac{8}{3} R \tau_{t}, \frac{4 R^{2}}{t}<A_{t} \leq 4 R^{2} t\right] \\
= & \operatorname{Pr}\left[B_{t} \geq 2 \sqrt{A_{t} \tau_{t}}+\frac{8}{3} R \tau_{t}, \Sigma_{t}^{2} \leq A_{t}, \frac{4 R^{2}}{t}<A_{t} \leq 4 R^{2} t\right] \\
\leq & \sum_{i=1}^{m} \operatorname{Pr}\left[B_{t} \geq 2 \sqrt{A_{t} \tau_{t}}+\frac{8}{3} R \tau_{t}, \Sigma_{t}^{2} \leq A_{t}, \frac{4 R^{2} 2^{i-1}}{t}<A_{t} \leq \frac{4 R^{2} 2^{i}}{t}\right] \\
\leq & \sum_{i=1}^{m} \operatorname{Pr}\left[B_{t} \geq \sqrt{2 \frac{4 R^{2} 2^{i}}{t} \tau_{t}}+\frac{8}{3} R \tau_{t}, \Sigma_{t}^{2} \leq \frac{4 R^{2} 2^{i}}{t}\right] \leq m e^{-\tau_{t}}
\end{aligned}
$$

where $m=\left\lceil 2 \log _{2} t\right\rceil$, and the last step follows the Bernstein's inequality for martingales. By setting $\tau_{t}=\log \frac{2 m t^{2}}{\delta}$, with a probability at least $1-\delta /\left[2 t^{2}\right]$, we have

$$
\begin{equation*}
B_{t} \leq 2 \sqrt{A_{t} \tau_{t}}+\frac{8}{3} R \tau_{t} \tag{28}
\end{equation*}
$$

Combining (27) and (28), with a probability at least $1-\delta /\left[2 t^{2}\right]$, we have

$$
B_{t} \leq 4 R+2 \sqrt{A_{t} \tau_{t}}+\frac{8}{3} R \tau_{t}
$$

We complete the proof by taking the union bound over $t>0$, and using the well-known result

$$
\sum_{t=1}^{\infty} \frac{1}{t^{2}}=\frac{\pi^{2}}{6} \leq 2
$$

G. Proof of Lemma 6

We have

$$
\left\|\mathbf{x}_{i}\right\|_{Z_{i+1}^{-1}}^{2}=\frac{2}{\beta}\left\langle Z_{i+1}^{-1}, Z_{i+1}-Z_{i}\right\rangle \leq \frac{2}{\beta} \log \frac{\operatorname{det}\left(Z_{i+1}\right)}{\operatorname{det}\left(Z_{i}\right)}
$$

where the inequality follows from Lemma 12 in Hazan et al. (2007). Thus, we have

$$
\sum_{i=1}^{t}\left\|\mathbf{x}_{i}\right\|_{Z_{i+1}^{-1}}^{2} \leq \frac{2}{\beta} \sum_{i=1}^{t} \log \frac{\operatorname{det}\left(Z_{i+1}\right)}{\operatorname{det}\left(Z_{i}\right)}=\frac{2}{\beta} \log \frac{\operatorname{det}\left(Z_{t+1}\right)}{\operatorname{det}\left(Z_{1}\right)}
$$

H. Proof of Corollary 2

Recall that

$$
Z_{t+1}=Z_{1}+\frac{\beta}{2} \sum_{i=1}^{t} \mathbf{x}_{t} \mathbf{x}_{t}^{\top}
$$

and $\left\|\mathbf{x}_{t}\right\|_{2} \leq 1$ for all $t>0$. From Lemma 10 of Abbasi-yadkori et al. (2011), we have

$$
\operatorname{det}\left(Z_{t+1}\right) \leq\left(\lambda+\frac{\beta t}{2 d}\right)^{d}
$$

Since $\operatorname{det}\left(Z_{1}\right)=\lambda^{d}$, we have

$$
\log \frac{\operatorname{det}\left(Z_{t+1}\right)}{\operatorname{det}\left(Z_{1}\right)} \leq d \log \left(1+\frac{\beta t}{2 \lambda d}\right)
$$

I. Proof of Theorem 3

The proof is standard and can be found from Dani et al. (2008) and Abbasi-yadkori et al. (2011). We include it for the sake of completeness.
Let $\mathbf{x}_{*}=\operatorname{argmax}_{\mathbf{x} \in \mathcal{D}} \mathbf{x}^{\top} \mathbf{w}_{*}$. Recall that in each round, we have

$$
\left(\mathbf{x}_{t}, \widehat{\mathbf{w}}_{t}\right)=\underset{\mathbf{x} \in \mathcal{D}, \mathbf{w} \in \mathcal{C}_{t}}{\operatorname{argmax}} \mathbf{x}^{\top} \mathbf{w}
$$

We decompose the instantaneous regret at round t as follows

$$
\begin{aligned}
& \mathbf{x}_{*}^{\top} \mathbf{w}_{*}-\mathbf{x}_{t}^{\top} \mathbf{w}_{*} \\
\leq & \mathbf{x}_{t}^{\top} \widehat{\mathbf{w}}_{t}-\mathbf{x}_{t}^{\top} \mathbf{w}_{*}=\mathbf{x}_{t}^{\top}\left(\widehat{\mathbf{w}}_{t}-\mathbf{w}_{t}\right)+\mathbf{x}_{t}^{\top}\left(\mathbf{w}_{t}-\mathbf{w}_{*}\right) \\
\leq & \left(\left\|\widehat{\mathbf{w}}_{t}-\mathbf{w}_{t}\right\|_{Z_{t}}+\left\|\mathbf{w}_{t}-\mathbf{w}_{*}\right\|_{Z_{t}}\right)\left\|\mathbf{x}_{t}\right\|_{Z_{t}^{-1}} \leq 2 \sqrt{\gamma_{t}}\left\|\mathbf{x}_{t}\right\|_{Z_{t}^{-1}}
\end{aligned}
$$

On the other hand, we always have

$$
\mathbf{x}_{*}^{\top} \mathbf{w}_{*}-\mathbf{x}_{t}^{\top} \mathbf{w}_{*} \leq\left\|\mathbf{x}_{*}-\mathbf{x}_{t}\right\|_{2}\left\|\mathbf{w}_{*}\right\|_{2} \leq 2 R .
$$

Thus, the total regret can be upper bounded by

$$
\begin{aligned}
& T \max _{\mathbf{x} \in \mathcal{D}} \mathbf{x}^{\top} \mathbf{w}_{*}-\sum_{t=1}^{T} \mathbf{x}_{t}^{\top} \mathbf{w}_{*} \\
\leq & 2 \sum_{t=1}^{T} \min \left(\sqrt{\gamma_{t}}\left\|\mathbf{x}_{t}\right\|_{Z_{t}^{-1}}, R\right) \\
\leq & 2 \sqrt{\gamma_{T}} \sum_{t=1}^{T} \min \left(\left\|\mathbf{x}_{t}\right\|_{Z_{t}^{-1}}, R\right) \\
= & 2 \sqrt{\frac{2}{\beta} \gamma_{T}} \sum_{t=1}^{T} \min \left(\sqrt{\frac{\beta}{2}}\left\|\mathbf{x}_{t}\right\|_{Z_{t}^{-1}}, \sqrt{\frac{\beta}{2}} R\right) \\
\leq & 2 \max \left(1, \sqrt{\frac{\beta}{2}} R\right) \sqrt{\frac{2}{\beta} \gamma_{T}} \sum_{t=1}^{T} \min \left(\sqrt{\frac{\beta}{2}}\left\|\mathbf{x}_{t}\right\|_{Z_{t}^{-1}, 1}\right) \\
\leq & 2 \max \left(1, \sqrt{\frac{\beta}{2}} R\right) \sqrt{\frac{2 T}{\beta} \gamma_{T}} \sqrt{\sum_{t=1}^{T} \min \left(\frac{\beta}{2}\left\|\mathbf{x}_{t}\right\|_{Z_{t}^{-1}}^{2}, 1\right) .}
\end{aligned}
$$

To proceed, we need the following results from Lemma 11 in Abbasi-yadkori et al. (2011),

$$
\sum_{t=1}^{T} \min \left(\frac{\beta}{2}\left\|\mathbf{x}_{t}\right\|_{Z_{t}^{-1}}^{2}, 1\right) \leq 2 \sum_{t=1}^{T} \log \left(1+\frac{\beta}{2}\left\|\mathbf{x}_{t}\right\|_{Z_{t}^{-1}}^{2}\right)
$$

and

$$
\begin{aligned}
& \operatorname{det}\left(Z_{T+1}\right)=\operatorname{det}\left(Z_{T}+\frac{\beta}{2} \mathbf{x}_{T} \mathbf{x}_{T}^{\top}\right) \\
= & \operatorname{det}\left(Z_{T}\right) \operatorname{det}\left(I+\frac{\beta}{2} Z_{T}^{-1 / 2} \mathbf{x}_{T} \mathbf{x}_{T}^{\top} Z_{T}^{-1 / 2}\right) \\
= & \operatorname{det}\left(Z_{T}\right)\left(1+\frac{\beta}{2}\left\|\mathbf{x}_{T}\right\|_{Z_{T}^{-1}}^{2}\right)=\operatorname{det}\left(Z_{1}\right) \prod_{t=1}^{T}\left(1+\frac{\beta}{2}\left\|\mathbf{x}_{t}\right\|_{Z_{t}^{-1}}^{2}\right)
\end{aligned}
$$

Combining the above inequations, we have

$$
T \max _{\mathbf{x} \in \mathcal{D}} \mathbf{x}^{\top} \mathbf{w}_{*}-\sum_{t=1}^{T} \mathbf{x}_{t}^{\top} \mathbf{w}_{*} \leq 4 \max \left(1, \sqrt{\frac{\beta}{2}} R\right) \sqrt{\frac{\gamma_{T} T}{\beta} \log \frac{\operatorname{det}\left(Z_{T+1}\right)}{\operatorname{det}\left(Z_{1}\right)}}
$$

J. Bernstein's Inequality for Martingales

Theorem 4. Let X_{1}, \ldots, X_{n} be a bounded martingale difference sequence with respect to the filtration $\mathcal{F}=\left(\mathcal{F}_{i}\right)_{1 \leq i \leq n}$ and with $\left|X_{i}\right| \leq K$. Let

$$
S_{i}=\sum_{j=1}^{i} X_{j}
$$

be the associated martingale. Denote the sum of the conditional variances by

$$
\Sigma_{n}^{2}=\sum_{t=1}^{n} \mathrm{E}\left[X_{t}^{2} \mid \mathcal{F}_{t-1}\right]
$$

Then for all constants $t, \nu>0$,

$$
\operatorname{Pr}\left[\max _{i=1, \ldots, n} S_{i}>t \text { and } \Sigma_{n}^{2} \leq \nu\right] \leq \exp \left(-\frac{t^{2}}{2(\nu+K t / 3)}\right)
$$

and therefore,

$$
\operatorname{Pr}\left[\max _{i=1, \ldots, n} S_{i}>\sqrt{2 \nu t}+\frac{2}{3} K t \text { and } \Sigma_{n}^{2} \leq \nu\right] \leq e^{-t} .
$$

K. Instantaneous regret of $\mathrm{OL}^{2} \mathbf{M}$ when \mathcal{D} is the unit ball in \mathbb{R}^{100}

(a) $c=0.001$

(b) $c=0.02$

Figure 4. Instantaneous regret of $\mathrm{OL}^{2} \mathrm{M}$ when \mathcal{D} is the unit ball in \mathbb{R}^{100}.

Figure 5. Instantaneous regret of $\mathrm{OL}^{2} \mathrm{M}$ when \mathcal{D} is the unit ball in \mathbb{R}^{100}.

