
`1-regularized Neural Networks are Improperly Learnable in Polynomial Time

Yuchen Zhang YUCZHANG@EECS.BERKELEY.EDU
Jason D. Lee JASONDLEE@BERKELEY.EDU
Michael I. Jordan JORDAN@CS.BERKELEY.EDU

Department of EECS, University of California, Berkeley, CA 94720 USA

Abstract
We study the improper learning of multi-layer
neural networks. Suppose that the neural net-
work to be learned has k hidden layers and that
the `1-norm of the incoming weights of any neu-
ron is bounded by L. We present a kernel-based
method, such that with probability at least 1− δ,
it learns a predictor whose generalization error is
at most ε worse than that of the neural network.
The sample complexity and the time complexity
of the presented method are polynomial in the
input dimension and in (1/ε, log(1/δ), F (k, L)),
where F (k, L) is a function depending on (k, L)
and on the activation function, independent of
the number of neurons. The algorithm applies
to both sigmoid-like activation functions and
ReLU-like activation functions. It implies that
any sufficiently sparse neural network is learn-
able in polynomial time.

1. Introduction
Neural networks have been successfully applied in many
areas of artificial intelligence, such as image classification,
face recognition, speech recognition and natural language
processing. Practical successes have been driven by the
rapid growth in the size of data sets and the increasing
availability of large-scale parallel and distributed comput-
ing platforms. Examples of recent work in this area in-
clude (Le, 2013; Krizhevsky et al., 2012; Chen & Manning,
2014; Dahl et al., 2013; Hinton et al., 2012).

The theoretical understanding of learning in neural net-
works has lagged the practical successes. It is known that
any smooth function can be approximated by a network
with just one hidden layer (Barron, 1993), but training such
a network is NP-hard (Blum & Rivest, 1992). In practice,

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

people use optimization algorithms such as stochastic gra-
dient descent (SGD) to train neural networks. Although
strong theoretical results are available for SGD in the set-
ting of convex objective functions, there are few such re-
sults in the nonconvex setting of neural networks. While it
is possible to transform the neural network training prob-
lem to a convex optimization problem involving an infinite
number of variables (Bengio et al., 2005), the infinitude of
variables means that there is no longer a guarantee that the
learning algorithm will terminate in polynomial time.

Several recent papers have risen to the challenge of es-
tablishing polynomial-time learnability results for neural
networks. These papers necessarily (given that the prob-
lem is NP-hard) introduce additional assumptions or relax-
ations. For instance, one may assume that the data is in
fact generated by the neural network. Under this assump-
tion, Arora et al. (2013) study the recovery of denoising
auto-encoders which are represented by multi-layer neural
networks. They assume that the top-layer values of the net-
work are randomly generated and all network weights are
randomly drawn from {−1, 1}. As a consequence, the bot-
tom layer generates a sequence of random observations us-
ing which the algorithm can recover the network weights.
The algorithm has polynomial-time complexity and is ca-
pable of learning random networks that are drawn from
a specific distribution. However, in practice people want
to learn deterministic networks that encode data-dependent
representations.

Sedghi & Anandkumar (2014) study the supervised learn-
ing of neural networks under the assumption that the data
distribution has a score function that is known in advance.
They show that if the input dimension is large enough and
the network is sparse enough, then the first network layer
can be learned by a polynomial-time algorithm. Learning
the deeper layers remains as an open problem. In addition,
their method assumes that the network weights are ran-
domly drawn from a Bernoulli-Gaussian distribution. More
recently, Janzamin et al. (2015) propose another algorithm
based on the score function that removes the restrictions of
Sedghi & Anandkumar (2014). The assumption in this case

`1-regularized Neural Networks are Improperly Learnable in Polynomial Time

is that the network weights satisfy a non-degeneracy con-
dition; moreover, the algorithm is only capable of learning
neural networks with one hidden layer.

Another approach to the problem is via the improper learn-
ing framework. The goal in this case is to find a predic-
tor that is not a neural network, but performs as well as
the best possible neural network in terms of the generaliza-
tion error. Livni et al. (2014) consider changing the acti-
vation function and over-specifying the network to make it
easier to train. They show that polynomial networks (e.g.,
networks whose activation function is quadratic) with suf-
ficient width and depth are as expressive as the sigmoid-
activated neural networks. Although a deep polynomial
network is still hard to train, they propose training in
a superclass—the class of all polynomial functions with
bounded degree. As a consequence, there is an improper
learning algorithm which achieves a generalization error at
most ε worse than that of the best neural network. The
time complexity is polynomial in the input dimension d and
quasi-polynomial in 1/ε. Since the dependence on d has a
large power, the algorithm is not practical unless d is quite
small. Livni et al. (2014) further show, however, that there
is a practical algorithm to directly train the polynomial net-
work if it has one or two hidden layers.

A recent line of work has focused on understanding the en-
ergy landscape of a neural network. After several simpli-
fying assumptions, a neural network can be shown to be a
Gaussian field whose critical points can be analyzed using
the Kac-Rice formula and properties of the Gaussian Or-
thogonal Ensemble (Auffinger et al., 2013; Dauphin et al.,
2014; Choromanska et al., 2014). The conclusion of these
papers is that all critical points with nonnegative eigenval-
ues tend to have objective value near the global minimum.
Thus in such networks if we could find such a point, it
would have small objective value and thus small training er-
ror. This combined with generalization error bounds would
imply finding a neural network with low excess risk. How-
ever, there is no provably efficient algorithm for finding a
critical point with nonnegative eigenvalues.

1.1. Our contribution

In this paper, we propose a practical algorithm called the
recursive kernel method for learning multi-layer neural net-
works, under the framework of improper learning. Our
method is inspired by the work of Shalev-Shwartz et al.
(2011), which shows that for binary classification with the
sigmoidal loss, there is a kernel-based method that achieves
the same generalization error as the best linear classifier.
We extend this method to deeper networks. In particular,
we assume that the neural network to be learned takes d-
dimensional input. It has k hidden layers and the `1-norm
of the incoming weights of any neuron is bounded by L.

Under these assumptions, the algorithm learns a kernel-
based predictor whose generalization error is at most ε
worse than that of the best neural network. The sample
and the time complexity of the algorithm are polynomial
in (d, 1/ε, log(1/δ), F (k, L)), where F (k, L) is a function
depending on (k, L) and on the activation function, inde-
pendent of the input dimension or the number of neurons.
The theoretical result holds for any data distribution.

As concrete examples, we demonstrate that if the activation
function is a quadratic function, then F (k, L) is a polyno-
mial function of L. Thus, the algorithm recovers the the-
oretical guarantee of Livni et al. (2014). We also demon-
strate two activation functions, one that approximates the
sigmoid function and the other that approximates the ReLU
function, under which F (k, L) is finite. Thus, the algo-
rithm also learns neural networks activated by sigmoid-
like or ReLU-like functions. For these latter examples,
the dependence on L is no longer polynomial. This non-
polynomial dependence is in fact inevitable: Under a hard-
ness assumption in cryptographics and assuming sigmoid-
like or ReLU-like activation, we prove that no algorithm
running in poly(L) time can improperly learn the neural
network.

2. Problem Setup
We consider a fully-connected neural networkN that maps
a vector x ∈ Rd to a real numberN (x) via k hidden layers.
Let d(p) represent the number of neurons in the p-th layer.
Let y(p)i represent the output of the i-th neuron in the p-th
layer. We define the zero-th layer to be the input vector so
that d(0) = d and y(0) = x. The transformation performed
by the neural network is defined as follows:

y
(p)
i := σ

(d(p−1)∑
j=1

w
(p−1)
i,j y

(p−1)
j

)
and

N (x) :=

d(k)∑
j=1

w
(k)
1,j y

(k)
j ,

where w(p−1)
i,j is the weight of the edge that connects the

neuron j on the (p − 1)-th layer to the neuron i on the
p-th layer. The activation function σ : R → R is a one-
dimensional nonlinear function. We will discuss the choice
of function σ later in this section.

We assume that the input vector has bounded `2-norm and
the edge weights have bounded `1 or `2 norms. The as-
sumptions are formalized as follows.

Assumption A. The input vector x satisfies ‖x‖2 ≤ 1. The

`1-regularized Neural Networks are Improperly Learnable in Polynomial Time

neuron edge weights satisfy

d∑
j=1

(w
(0)
i,j)2 ≤ L2 ∀ i ∈ {1, . . . , d}.

d(p)∑
j=1

|w(p)
i,j | ≤ L ∀ (p, i) ∈ {1, . . . , k} × {1, . . . , d(p+1)}.

Let Nk,L,σ be the set of k-layer neural networks with acti-
vation function σ that satisfy the edge weight constraints.

Assumption A implies that for all neurons on the first
hidden layer, the `2-norm of their incoming weights is
bounded by L. For other neurons, the `1-norm of their in-
coming weights is bounded by L. The `1-regularization
imposes sparsity on the neural network. It is observed in
practice that sparse neural networks are capable of learning
meaningful representations. For example, the convolution
neural network has sparse edges. It has been argued that
sparse connectivity is a natural constraint which can lead to
improved performance in practice (Thom & Palm, 2013).

In a prediction task, there is a convex function ` : R×R→
R that measures the loss of the prediction. For a feature-
label pair (x, y) ∈ X × R, its prediction loss is measured
by `(N (x), y). We assume that (x, y) is sampled from an
underlying distributionD. The prediction risk of the neural
network is defined by E[`(N (x), y)]. Our goal is to learn
a predictor f : X → R, which is not necessarily a neural
network, such that

E[`(f(x), y)] ≤ arg min
N∈Nk,L,σ

E[`(N (x), y)] + ε. (1)

In other words, we want to learn a predictor whose gener-
alization loss is at most ε worse than that of the best neural
network in Nk,L,σ .

In practice, both the sigmoid function σ(x) = (1+e−βx)−1

and the ReLU function σ(x) = max(0, x) are widely used
as activation functions for neural networks. We define two
classes of activation functions that includes the sigmoid and
ReLU respectively.

Definition 1 (sigmoid-like activation). A function σ is
called sigmoid-like if it is non-decreasing on (−∞,+∞)
and

lim
x→−∞

xcσ(x) = 0 and lim
x→∞

xc(1− σ(x)) = 0

for some positive constant c.

Definition 2 (ReLU-like activation). A function σ is called
ReLU-like if σ(x)− σ(x− 1) a sigmoid-like function.

Intuitively, a sigmoid-like function is a non-decreasing
function on [0, 1]. When x→ −∞ or x→∞, the function
value approaches 0 or 1 at a polynomial rate (or faster) in

x. A ReLU-like function is a convex function on [0,∞).
When x → ∞, it approaches a linear function with unit
slope.

3. Algorithm and Theoretical Result
In this section, we present a kernel method which learns
a predictor performing as well as the neural network. We
begin by recursively defining a sequence of kernels. Let
K : RN × RN → R be a function defined by

K(x, y) :=
1

2− 〈x, y〉
,

where both ‖x‖2 and ‖y‖2 are assumed to be bounded
by one. The function K is a kernel function because we
can find a mapping ψ : RN → RN such that K(x, y) =
〈ψ(x), ψ(y)〉. The function ψ maps an infinite-dimensional
vector to an infinite-dimensional vector. We use xi to rep-
resent the i-th coordinate of an infinite-dimensional vector
x. The (k1, . . . , kj)-th coordinate of ψ(x), where j ∈ N
and k1, . . . , kj ∈ N, is defined as 2−

j+1
2 xk1 . . . xkj . By

this definition, we have

〈ψ(x), ψ(y)〉 =
∞∑
j=0

2−(j+1)
∑

(k1,...,kj)∈Nj
xk1 . . . xkjyk1 . . . ykj . (2)

The inner term on the right-hand side of Eq. (2) can be
simplified to∑

(k1,...,kj)∈Nj
xk1 . . . xkjyk1 . . . ykj = (〈x, y〉)j . (3)

Combining Eqs. (2) and (3) and using the fact that 〈x, y〉 ≤
1, we have

〈ψ(x), ψ(y)〉 =

∞∑
j=0

2−(j+1)(〈x, y〉)j

=
1

2− 〈x, y〉
= K(x, y),

which verifies that K is a kernel function and ψ is the
associated mapping. Since ψ maps from RN to RN and
‖x‖2 ≤ 1 implies ‖ψ(x)‖22 = K(x, x) ≤ 1, we can recur-
sively define a sequence of mappings

ψ(0)(x) = x and ψ(p)(x) = ψ(ψ(p−1)(x)).

Using the relation betweenK and ψ, it is easy to verify that
the associated kernels are

K(0)(x, y) = 〈x, y〉 and

K(p)(x, y) =
1

2−K(p−1)(x, y)
, (4)

which satisfy 〈ψ(p)(x), ψ(p)(y)〉 = K(p)(x, y). Thus, the
kernel function K(k)(x, y) can be easily computed from
the inner product of x and y.

`1-regularized Neural Networks are Improperly Learnable in Polynomial Time

Algorithm 1 Recursive Kernel Method
Input: Feature-label pairs {(xi, yi)}ni=1; Loss function ` :
R × R → R; Number of hidden layers k; Regularization
coefficient B.

Solve the following convex optimization problem:

α̂ = arg min
α∈Rn

1

n

n∑
j=1

`

(
n∑
i=1

αiK
(k)(xi, xj), yi

)

s.t.
n∑

i,j=1

αiαjK
(k)(xi, xj) ≤ B2

where K(k) is defined in Eq. (4).
Output: Predictor f̂n(x) =

∑n
i=1 α̂iK

(k)(xi, x).

3.1. Algorithm

We are now ready to specify the algorithm to learn the
neural network. Suppose that the neural network has k
hidden layers. Let Fk represent the Reproducing Kernel
Hilbert Space (RKHS) induced by the kernel K(k) and let
Fk,B ⊂ Fk be the set of RKHS elements whose norm are
bounded by B. Given training examples {(xi, yi)}ni=1, de-
fine the predictor

f̂n := arg min
f∈Fk,B

1

n

n∑
i=1

`(f(xi), yi).

According to the representer theorem, we can represent f̂n
by

f̂n(x) =

n∑
i=1

αiK
(k)(xi, x) where

n∑
i,j=1

αiαjK
(k)(xi, xj) ≤ B2, (5)

Computing the vector α is a convex optimization problem
in Rn and therefore can be solved in time poly(n, d) using
standard optimization tools. We call this algorithm the re-
cursive kernel method and summarize it in Algorithm 1. It
is an improper learning algorithm since the learned predic-
tor f̂n cannot be represented by a neural network.

3.2. Main Result

Applying classical results from learning theory, we can
upper bound the Rademacher complexity of Fk,B by√

2B2/n (see, e.g. Kakade et al., 2009). Thus, with proba-
bility at least 1− δ, we can upper bound the generalization
loss of predictor f̂n(x) by

E[`(f̂n(x), y)] ≤ arg min
f∈Fk,B

E[`(f(x), y)] + ε,

value of x
-1 0 1

σ
(x
)

0

0.5

1 sigmoid
erf

value of x
-2 0 2

σ
(x
)

0

0.5

1

1.5

2
ReLU
smoothed hinge

(a) sigmoid v.s. erf (b) ReLU v.s. smoothed hinge

Figure 1. Comparing different activation functions. The two func-
tions in (a) are quite similar. The smooth hinge loss in (b) is a
smoothed version of ReLU.

when the sample size n = Ω(B2 log(1/δ)/ε2). See
(Shalev-Shwartz et al., 2011, Theorem 2.2) for the proof of
this claim. In order to establish the bound (1), it suffices to
show that Nk,L,σ ⊂ Fk,B where B is a constant that only
depends on k and L. The following lemma establishes the
claim. We defer the proof to Section 6.1.

Lemma 1. Assume that the function σ(x) has a poly-
nomial expansion σ(x) =

∑∞
j=0 βjx

j . Let H(λ) :=

L ·
√∑∞

j=0 2j+1β2
jλ

2j and defineH(k)(x) be the degree-k
composition of function H , then Nk,L,σ ⊂ Fk,H(k)(L).

Using Lemma 1 and the above analyses, we obtain the main
result of this paper.

Theorem 1. Let Assumption A be true and define
F (k, L) := H(k)(L) where H(k)(L) is specified in
Lemma 1. If F (k, L) is finite, then with probability at least
1− δ, the predictor defined in Algorithm 1 achieves

E[`(f̂n(x), y)] ≤ arg min
N∈Nk,L,σ

E[`(N (x), y)] + ε.

The sample complexity is bounded by
poly(1/ε, log(1/δ), F (k, L)); the time complexity is
bounded by poly(d, 1/ε, log(1/δ), F (k, L)).

3.3. Examples

We study several concrete examples where F (k, L) is fi-
nite. Our first example is the quadratic activation function:

σsq(x) = x2.

This activation function has been studied by Livni et
al. (Livni et al., 2014), who refer to a neural network
activated by this function as a polynomial network. In
Theorem 1, if the quadratic activation function is em-
ployed, we have H(λ) = 2Lλ2. As a consequence,
we have F (1, L) = 2L2 and more generally F (k, L) ≤
(2L)2

k+1−1 by induction. Thus, the sample and the time
complexity of Algorithm 1 is a polynomial function of
(d, 1/ε, log(1/δ), L) for any constant k.

`1-regularized Neural Networks are Improperly Learnable in Polynomial Time

Next, we study sigmoid-like or ReLU-like activation func-
tions. We consider a shifted erf function defined as:

σerf(x) =
1

2
(1 + erf(

√
πx)),

and a smoothed hinge loss function defined as:

σsh(x) =

∫ x

−∞
σerf(t)dt = σerf(x) · x+

e−πx
2

2π
.

In Figure 1, we compare σerf and σsh with the sigmoid
function and the ReLU function. It is seen that σerf is simi-
lar to the sigmoid function and σsh is a smoothed version of
ReLU. It is also easy to verify that σerf is sigmoid-like and
σsh is ReLU-like. The following proposition shows that
if either σerf or σsh is used as the activation function, the
quantity F (k, L) is finite. See Appendix 6.2 for the proof.
Proposition 1. For the σerf function, we have

H(λ) ≤ L ·
√

1

2
+ 4λ2(1 + 3eπλ2e4πλ2) for any λ ≥ 3.

For the σsh function, we have

H(λ) ≤ L·
√
λ2 + 8λ4(1 + 3eπλ2e4πλ2) for any λ ≥ 3.

Thus, Theorem 1 implies that the neural network activated
by σerf or σsh is learnable in polynomial time given any
constant (k, L).

Finally, we demonstrate how the conditions of Assump-
tion A could be modified. Consider a sigmoid-activated
network with k hidden layers which satisfies the following:

d(p)∑
j=1

|w(p)
i,j | ≤ L ∀ (p, i) ∈ {1, . . . , k} × {0, . . . , d(p+1)}.

This means that the `1-norm of all layers is bounded by
L. In addition, we assume that the input vector satisfies
‖x‖∞ ≤ 1. This is in contrast to the condition ‖x‖2 ≤ 1 in
Assumption A. It was shown by (Livni et al., 2014, The-
orem 4) that this sigmoid network can be approximated
by a polynomial network with arbitrarily small approxi-
mation error ε. The associated polynomial network has
O(k log(Lk+L log(1/ε))) hidden layers, whose `1-norms
are bounded by eO(L log(1/ε)). If we normalize the input
vector x ∈ Rd by x ← x/

√
d and multiple all first-layer

weights by
√
d, the output of the network remains invariant

and it satisfies Assumption A. Thus, combining our result
for the polynomial network and the above analysis, the sig-
moid network can be learned in

poly
(
d(Lk+L log(1/ε))O(k)

, log(1/δ)
)

sample and time complexity. This is a quasi-polynomial
dependence on 1/ε for any constant (k, L). Notice that the
dimension d comes into the expression.

4. Hardness Result
In Section 3.3, we see that the dependence of the time com-
plexity on L is at least exponential for σerf and σsh, but it
is polynomial for the quadratic activation. It is thus natural
to wonder if there is a sigmoid-like or ReLU-like activa-
tion function that makes the time complexity a polynomial
function of L. In this section, we prove that this is impos-
sible given standard hardness assumptions.

Our proof relies on the hardness of standard (nonagnostic)
PAC learning of intersection of halfspaces given in Klivans
and Sherstov (Klivans et al., 2006). More precisely, let

H ={x→ sign(wTx− b− 1/2) : x ∈ {−1, 1}d,
b ∈ N, w ∈ Nd, |b|+ ‖w‖1 ≤ poly(d)}

be the family of halfspace indicator functions mapping
X = {−1, 1}d to {−1, 1}, and let HT be the set of func-
tions taking the form:

h(x) =

{
1 if h1(x) = · · · = hT (x) = 1,
−1 otherwise.

where h1, . . . , hT ∈ H.

Thus, HT is the set of functions that indicates the intersec-
tion of T halfspaces. For any distribution on X , an algo-
rithm A takes a sequence of (x, h∗(x)) as input where x
is a sample from X and h∗ ∈ HT . The algorithm learns a
function ĥ such that with probability at least 1− δ, one has

P (ĥ(x) 6= h∗(x)) ≤ ε. (6)

If there is such an algorithm A whose sample complex-
ity and time complexity scale as poly(d), then we say that
HT is efficiently learnable. Klivans and Sherstov (Klivans
et al., 2006) show thatHT is not efficiently learnable under
a certain cryptographic assumption.

Theorem 2 (Klivans and Sherstov (Klivans et al., 2006)).
If T = dρ for some constant ρ > 0, then under a certain
cryptographic assumption, HT is not efficiently learnable.

We use this hardness result to prove the hardness of
learning neural networks. In particular, we construct a
neural network N such that if there is a learning algo-
rithm computing a predictor f̂ such that E[`(f̂(x), y)] ≤
E[`(N (x), y)] + ε, then the error bound (6) is satisfied.
Thus, the hardness of learning intersection of halfspaces
implies the hardness of learning neural networks. See Sec-
tion 6.3 for the proof.

Theorem 3. Assume the cryptographic assumption of The-
orem 2. Let σ be a sigmoid-like or ReLU-like function and
let `(f(x), y) = max(0, 1− yf(x)) be the hinge loss. For
fixed (δ, ε), there is no algorithm running in poly(L) time

`1-regularized Neural Networks are Improperly Learnable in Polynomial Time

that learns a predictor f̂ satisfying

E[`(f̂(x), y)] ≤ arg min
N∈N1,L,σ

E[`(N (x), y)] + ε

with probability at least 1− δ. (7)

The hardness of learning sigmoid-activated and ReLU-
activated neural networks has been proved by Livni et
al. (Livni et al., 2014) when ` is the zero-one loss. The-
orem 3 presents a more general result, showing that any
activation function that is sigmoid-like or ReLU-like leads
to the computational hardness, even if the loss function ` is
convex.

5. Experiments
In this section, we compare the proposed algorithm with
several baseline algorithms on the MNIST digit recogni-
tion task. Since the basic MNIST digits are relatively easy
to classify, we introduce three variations which make the
problem more challenging.

We use the MNIST handwritten digits dataset and three
variations of it. See Figure 2 for the description of these
datasets and several exemplary images. All the images are
of size 28× 28. For all datasets, we use 10,000 images for
training, 2,000 images for validation and 50,000 images for
testing. This partitioning is recommended by the source of
the data (Win).

For the recursive kernel method, we train one-vs-all SVM
classifiers with Algorithm 1. The hyper-parameters are
given by k ∈ {1, 4} and B = 100. All images are pre-
processed by the following steps: deskewing, centering and
normalization. The deskewing step computes the principal
axis of the shape that is closest to the vertical, and shifts the
lines so as to make it vertical. It is a common preprocess-
ing step for the kernel method (LeCun et al., 1998). The
centering and normalization steps center the feature vector
and scale it to have the unit `2-norm.

We compare with the following baseline models: multi-
class logistic regression, multi-layer perceptron and con-
volution neural networks. The multi-layer perceptron is a
fully connected neural network with a single hidden layer
which contains 500 hidden neurons. It covers the networks
that can be learned by the method of Janzamin et al. (Jan-
zamin et al., 2015). The convolution neural networks im-
plement the LeNet5 architecture (LeCun et al., 1998). All
baseline models are trained via stochastic gradient descent.

The classification error rates are summarized in Table 1.
As the table shows, the recursive kernel method is consis-
tently more accurate than logistic regression and the multi-
layer perceptron. On the Basic and the Rotation datasets,
the proposed algorithm is comparable with LeNet5. On the
other two datasets, LeNet5 wins over other methods by a

relatively large margin. It is worth noting that when we
choose a greater k, the performance of the proposed algo-
rithm gets better. Recall that a greater k learns a deeper
neural network, thus the empirical observation is intuitive.

Although the recursive kernel method doesn’t outperform
the LeNet5 model, the experiment demonstrates that it does
learn better predictors than fully connected neural networks
such as the multi-layer perceptron. The LeNet5 architec-
ture encodes prior knowledge about digit recogniition via
the convolution and pooling operations; thus its perfor-
mance is better than the generic architectures.

6. Proofs
In this section, we present proofs to the technical results in
this paper.

6.1. Proof of Lemma 1

Consider an arbitrary neural network N ∈ Nk,L,σ . Let

g
(p)
i :=

∑d(p)

j=1 w
(p)
ji y

(p)
j represent the input of the neuron

i at layer p + 1. Note that g(p)i is a function of the input
vector x. By this definition, it suffices to show that g(k)1 ∈
Fk,H(k)(L).

We claim that g(p)i ∈ Fp,H(p)(L) for any p ∈ {0, 1, . . . , k}
and prove the claim by induction. For p = 0, we have

g
(0)
i (x) =

d∑
j=1

w
(0)
i,j xj = 〈w(0)

i , ψ(0)(x)〉.

Thus, g(0)i belongs to the RKHS induced by the kernel
K(0). Furthermore, we have ‖g(0)i ‖F0

= ‖w(0)
i ‖2 ≤ L =

H(0)(L), which implies g(0)i ∈ F0,H(0)(L).

For p > 0, we assume that the claim holds for p−1 and we
will prove it for p. The definition of g(p)i implies

g
(p)
i (x) =

d(p)∑
j=1

w
(p)
ji σ

(
g
(p−1)
j (x)

)
.

Using the inductive hypothesis, we have
g
(p−1)
j ∈ Fp−1,H(p−1)(L), which implies that

g
(p−1)
j (x) = 〈vj , ψ(p−1)(x)〉 for some vj ∈ RN, and
‖vj‖2 ≤ H(p−1)(L). This implies

g
(p)
i (x) =

d(p)∑
j=1

w
(p)
i,j σ(〈vj , ψ(p−1)(x)〉). (8)

Let x(p−1) be a shorthand notation of ψ(p−1)(x). We de-
fine vector uj ∈ RN as follow: the (k1, . . . , kt)-th coordi-
nate of uj , where t ∈ N and k1, . . . , kt ∈ N+, is equal to

`1-regularized Neural Networks are Improperly Learnable in Polynomial Time

(a) Basic (b) Rotation

(c) Background (d) Background + Rotation

Figure 2. The MNIST dataset and its variations. (a) the basic MNIST dataset; (b) the digits were rotated by an angle generated uniformly
between 0 and 2π. (c) a black and white image was used as the background for the digit image; (d) the background perturbation and the
rotation perturbation are combined.

Basic Rotation Background Background+Rotation
Logistic Regression 9.53% 46.01% 28.05% 66.93%

Multilayer Perceptron 4.98% 14.72% 28.68% 63.91%
LeNet5 2.08% 9.27% 9.35% 32.36%

Recursive Kernel (k = 1) 3.31% 9.71% 22.39% 53.72%
Recursive Kernel (k = 4) 3.08% 8.78% 22.13% 52.94%

Table 1. Classification error rates of different methods on the MNIST dataset and its variations. The best results are marked by the bold
font.

2
t+1
2 βtvj,k1 . . . vj,kt . By this definition, we have

σ(〈vj , x(p−1)〉) =

∞∑
t=0

βt(〈vj , x(p−1)〉)t

=

∞∑
t=0

βt
∑

(k1,...,kt)∈Nt
vj,k1 . . . vj,ktx

(p−1)
k1

. . . x
(p−1)
kt

= 〈uj , ψ(x(p−1))〉, (9)

where the first equation holds since σ(x) has a polynomial
expansion σ(x) =

∑∞
t=0 βtx

t, the second by expanding
the inner product, and the third by definition of ψ(x) .
Combining Eq. (8) and Eq. (9), we have

g
(p)
i (x) =

d(p)∑
j=1

w
(p)
i,j 〈uj , ψ(ψ(p−1)(x))〉

=
〈 d(p)∑
j=1

w
(p)
ji uj , ψ

(p)(x)
〉
.

This implies that g(p)i belongs to the RKHS induced by the
kernel K(p).

Finally, we upper bound the norm of g(p)i . Notice that

‖g(p)i ‖Fp =
∥∥∥ d(p)∑
j=1

w
(p)
i,j uj

∥∥∥
2

(10)

≤
d(p)∑
i=1

|w(p)
i,j | · ‖uj‖2 ≤ L · max

j∈[d(p)]
{‖uj‖2}.

Using the definition of uj and the inductive hypothesis, we

have

‖uj‖22 =

∞∑
t=0

2t+1β2
t

∑
(k1,...,kt)∈Nt

v2j,k1v
2
j,k2 · · · v

2
j,kt (11)

=

∞∑
t=0

2t+1β2
t ‖vj‖2t2 ≤

∞∑
t=0

2t+1β2
t (H(p−1)(L))2t.

Combining inequality (10) and (11), we have ‖g(p)i ‖Fp ≤
H(p)(L), which verifies that g(p)i ∈ Fp,H(p)(L).

6.2. Proof of Proposition 1

For the σerf function, the polynomial expansion is

σerf(x) =
1

2
+

1√
π

∞∑
j=0

(−1)j(
√
πx)2j+1

j!(2j + 1)
.

Therefore, we have

H(λ) = L ·

√√√√1

2
+

2

π

∞∑
j=0

(2πλ2)2j+1

(j!)2(2j + 1)2
. (12)

(Shalev-Shwartz et al., 2011, Corollary C) provides an up-
per bound on the right-hand side of Eq. (12). In particular,
they prove that for any λ ≥ 3:

2

π

∞∑
j=0

(2πλ2)2j+1

(j!)2(2j + 1)2
≤ 4λ2(1 + 3eπλ2e4πλ

2

). (13)

Plugging this upper bound to Eq. (12) completes the proof.

For the σsh function, since it is the integral of the σerf func-

`1-regularized Neural Networks are Improperly Learnable in Polynomial Time

tion, its polynomial expansion is

σsh(x) =
x

2
+

1√
π

∞∑
j=0

(−1)j(
√
πx)2j+1x

j!(2j + 1)(2j + 2)
,

and consequently,

H(λ) = L

√√√√λ2 +
2

π

∞∑
j=0

(2πλ2)2j+1(2λ2)

(j!)2(2j + 1)2(2j + 2)2
. (14)

We upper bound the right-hand side of Eq. (14) by

2

π

∞∑
j=0

(2πλ2)2j+1(2λ2)

(j!)2(2j + 1)2(2j + 2)2
≤ 4λ2

π

∞∑
j=0

(2πλ2)2j+1

(j!)2(2j + 1)2

≤ 8λ4(1 + 3eπλ2e4πλ
2

) ∀ λ ≥ 3,

where the final inequality holds because of Eq. (13). Plug-
ging this upper bound into Eq. (14) completes the proof.

6.3. Proof of Theorem 3

We construct a one-hidden-layer neural network that en-
codes the intersection of T halfspaces. Suppose that the
t-th halfspace is characterized by gt(x) = wTt x− bt−1/2.
Since both x, wt and bt are composed of integers, we have
gt(x) ≥ 1/2 when ht(x) = 1, and gt(x) ≤ −1/2 when
ht(x) = −1. We extend x to be (x, 1), then extend wt to
be (wt, bt), and define

g̃t(x) = 〈w̃t, x̃〉 where

x̃ :=
1√
d+ 1

(x, 1) and w̃ := 2λ
√
d+ 1(wt, bt),

where λ is a scalar to be specified. According to this defini-
tion, we have ‖x̃‖2 = 1 and ‖w̃‖2 = poly(d). In addition,
we have g̃t(x) ≥ λ when ht(x) = 1, and g̃t(x) ≤ −λ
when ht(x) = −1.

Sigmoid-like Activation If σ a is sigmoid-like function,
there is a constant c such that

lim
x→−∞

xcσ(x) = lim
x→∞

xc(1− σ(x)) = 0.

Thus, there is a sufficiently large constant C such that
σ(x) ≤ x−c for all x ≤ −C and σ(x) ≥ 1 − x−c for
all x ≥ C. Note that the number T of intersecting halfs-
paces is a polynomial function of dimension d. As a con-
sequence, there is a sufficiently large constant λ ∼ poly(d)
such that

∀ x > λ, σ(x) ≥ 1− 1

4T
and ∀ x ≤ −λ, σ(x) ≤ 1

4T
.

Thus, we have σ(g̃t(x)) ≥ 1 − 1
4T if ht(x) = 1 and

σ(g̃t(x)) ≤ 1
4T if ht(x) = −1.

We define the neural network N to be

N (x) =

T∑
t=1

4 σ(g̃t(x))− (4T − 2). (15)

It is easy to verify thatN ∈ N1,L,σ for some L ∼ poly(d).
If h∗(x) = 1, then x belongs to the intersection of halfs-
paces. It implies that σ(g̃t(x)) ≥ 1 − 1

4T for all t ∈ [T].
Combining with Eq. (15), we obtain N (x) ≥ 1. On the
other hand, if h∗(x) = −1, then there is some t such that
σ(g̃t(x)) ≤ 1

4T . Thus, Eq. (15) implies N (x) ≤ −1. In
summary, we have h∗(x)N (x) ≥ 1 for any x ∈ X . As a
consequence, we have `(N (x), h∗(x)) ≡ 0 where ` is the
hinge loss.

Assume that there is a predictor f̂ satisfying the error
bound (7). Let ĥ(x) = sign(f̂(x)) be a classifier that
judges the intersection of hyperplanes. Since the hinge loss
is an upper bound on the zero-one loss, we have

P (ĥ(x) 6= h∗(x)) = E[I(ĥ(x) 6= h∗(x))]

= E[I(sign(f̂(x)) 6= h∗(x))] ≤ E[`(f̂(x), h∗(x))]

≤ E[`(N (x), h∗(x))] + ε = ε,

where the final inequality follows from inequality (7). The
last equation holds since `(N (x), h∗(x)) ≡ 0. This implies
that the associated classifier ĥ satisfies the error bound (6).
Since ĥ cannot be computed in poly(d) time, we conclude
that f̂ cannot be computed in poly(L) time.

ReLU-like Activation If σ is a ReLU-like function, then
by definition, we have σ′(x) := σ(x) − σ(x − 1) is
a sigmoid-like function. Following the argument for the
sigmoid-like activation, if we treat σ′ as the activation func-
tion, then the remaining part of the proof will go through
without any further modification. This completes the proof
for the ReLU-like activation.

7. Discussion
There is an increasing interest on understanding the con-
nection between the kernel method and the deep neural net-
works. Cho & Saul (2009) propose an arc-cosine kernel
that mimics the computation of neural networks. Mairal
et al. (2014) use the kernel as a tool to train convolutional
neural networks. A key ingredient of our analysis is to ap-
proximate the neural network by a polynomial expansion.
Andoni et al. (2014) study the reverse problem: they show
that a polynomial function can be learned via gradient de-
scent on neural networks.

We view this line of work as a contribution to the ongoing
effort to develop learning algorithms for neural networks
that are both understandable in theory and useful in prac-
tice. The theoretical results in this paper are likely to be
conservative. Theorem 3 shows that the exponential depen-
dence on the norm L is unavoidable under the worst-case
data distribution. The real data, however, are rarely gener-
ated from the worst-case distribution. An intriguing open
problem is to exploit the property of the data distribution to
achieve a polynomial dependence on the norm L.

`1-regularized Neural Networks are Improperly Learnable in Polynomial Time

References
Variations on the MNIST digits. http://www.iro.
umontreal.ca/˜lisa/twiki/bin/view.
cgi/Public/MnistVariations.

Andoni, Alexandr, Panigrahy, Rina, Valiant, Gregory, and
Zhang, Li. Learning polynomials with neural networks.
In Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pp. 1908–1916, 2014.

Arora, Sanjeev, Bhaskara, Aditya, Ge, Rong, and Ma,
Tengyu. Provable bounds for learning some deep rep-
resentations. ArXiv:1310.6343, 2013.

Auffinger, Antonio, Arous, Gérard Ben, and Černỳ, Jiřı́.
Random matrices and complexity of spin glasses. Com-
munications on Pure and Applied Mathematics, 66(2):
165–201, 2013.

Barron, Andrew R. Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Transac-
tions on Information Theory, 39(3):930–945, 1993.

Bengio, Yoshua, Roux, Nicolas L, Vincent, Pascal, Delal-
leau, Olivier, and Marcotte, Patrice. Convex neural net-
works. In Advances in Neural Information Processing
Systems, pp. 123–130, 2005.

Blum, Avrim L and Rivest, Ronald L. Training a 3-node
neural network is NP-complete. Neural Networks, 5(1):
117–127, 1992.

Chen, Danqi and Manning, Christopher D. A fast and ac-
curate dependency parser using neural networks. In Pro-
ceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), volume 1,
pp. 740–750, 2014.

Cho, Youngmin and Saul, Lawrence K. Kernel methods
for deep learning. In Advances in neural information
processing systems, pp. 342–350, 2009.

Choromanska, Anna, Henaff, Mikael, Mathieu, Michael,
Arous, Gérard Ben, and LeCun, Yann. The loss surface
of multilayer networks. ArXiv:1412.0233, 2014.

Dahl, George E, Sainath, Tara N, and Hinton, Geoffrey E.
Improving deep neural networks for lvcsr using rectified
linear units and dropout. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Confer-
ence on, pp. 8609–8613. IEEE, 2013.

Dauphin, Yann N, Pascanu, Razvan, Gulcehre, Caglar,
Cho, Kyunghyun, Ganguli, Surya, and Bengio, Yoshua.
Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization. In Advances
in Neural Information Processing Systems, pp. 2933–
2941, 2014.

Hinton, Geoffrey, Deng, Li, Yu, Dong, Dahl, George E,
Mohamed, Abdel-rahman, Jaitly, Navdeep, Senior, An-
drew, Vanhoucke, Vincent, Nguyen, Patrick, Sainath,
Tara N, et al. Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four
research groups. Signal Processing Magazine, IEEE, 29
(6):82–97, 2012.

Janzamin, Majid, Sedghi, Hanie, and Anandkumar, Anima.
Generalization bounds for neural networks through ten-
sor factorization. ArXiv:1506.08473, 2015.

Kakade, Sham M, Sridharan, Karthik, and Tewari, Ambuj.
On the complexity of linear prediction: Risk bounds,
margin bounds, and regularization. In Advances in neu-
ral information processing systems, pp. 793–800, 2009.

Klivans, Adam R, Sherstov, Alexander, et al. Crypto-
graphic hardness for learning intersections of halfspaces.
In 47th Annual IEEE Symposium on Foundations of
Computer Science, pp. 553–562. IEEE, 2006.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing
Systems, pp. 1097–1105, 2012.

Le, Quoc V. Building high-level features using large scale
unsupervised learning. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, pp.
8595–8598. IEEE, 2013.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner,
Patrick. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

Livni, Roi, Shalev-Shwartz, Shai, and Shamir, Ohad. On
the computational efficiency of training neural networks.
In Advances in Neural Information Processing Systems,
pp. 855–863, 2014.

Mairal, Julien, Koniusz, Piotr, Harchaoui, Zaid, and
Schmid, Cordelia. Convolutional kernel networks. In
Advances in Neural Information Processing Systems, pp.
2627–2635, 2014.

Sedghi, Hanie and Anandkumar, Anima. Provable meth-
ods for training neural networks with sparse connectiv-
ity. ArXiv:1412.2693, 2014.

Shalev-Shwartz, Shai, Shamir, Ohad, and Sridharan,
Karthik. Learning kernel-based halfspaces with the 0-
1 loss. SIAM Journal on Computing, 40(6):1623–1646,
2011.

Thom, Markus and Palm, Günther. Sparse activity and
sparse connectivity in supervised learning. Journal of
Machine Learning Research, 14(1):1091–1143, 2013.

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations

