Provable Non-convex Phase Retrieval with Outliers: Median Truncated Wirtinger Flow

Supplementary Materials

A. Proof of Properties of Median (Section 5.1)
A.1. Proof of Lemma 1

For simplicity, denote 8, := 6,(F) and 6, := 6,({X;},). Since F" is continuous and positive, for an ¢, there exists a J;
such that P(X < 6, —€) = p — §1, where §; € (el, eL). Then one has

N a s 1 &
P (0;, < 0}0 — 6) (:) P (Z 1{X,3§9p—e} > pm) =P (m Z 1{X1,§9p—6} > (p — (51) + 51)
i=1 =1
(b)
< exp(—2mé?) < exp(—2me?l?),

where (a) is due to the definition of the quantile function in (15) and (b) is due to the fact that 1; x, <o, ¢} ~ Bernoulli(p —
d1) i.i.d., followed by the Hoeffding inequality. Similarly, one can show for some d2 € (el,eL),

P (ép > 0, + e) < exp(—2mé3) < exp(—2mel?).

Combining these two inequalities, one has the conclusion.

A.2. Proof of Lemma 2
It suffices to show that
|X(k)*Y(k)|§mlaX|Xz*Yl|, Vk=1,---,n. (25)

Case 1: k = n, suppose X(,y = X; and Y{,,) = Y}, i.e,, X; is the largest among {X;}; , and Yj is the largest among
{Y1};,. Then we have either X; < X; <Yj orY; <Y; < X;. Hence,

[ X(n) = Yy | = [ X3 = V| < max{|X; = Yil, [ X = Vj[}.

Case 2: k = 1, suppose that X (1) = X; and Y(;) = Y. Similarly
(X1 = Yyl = |Xi = Y| < max{|X; = Yi[,[X; — Yj}.

Case 3: 1 < k < n, suppose that X(k) = X;, Y(k.) =Y}, and without loss of generality assume that X; < Y; (if X; =Y/,
0 = [X(x) — Y| < max; | X; — ;| holds trivially). We show the conclusion by contradiction.

Assume |X (1) — Y(3)| > max; [X; — Y;|. Then one must have Y; < Y and X; > X and i # j. Moreover for any p < k
and g > k, the index of X, cannot be equal to the index of Y{,); otherwise the assumption is violated.

Thus, all Y(q) for ¢ > k must share the same index set with X (p) for p > k. However, X;, which is larger than X; (thus if
X;=X (k')» then k' > k), shares the same index with Y;, where Y; = Y(k). This yields contradiction.

A.3. Proof of Lemma 3

Assume that sm is an integer. Since there are sm corrupted samples in total, one can select out at least [(% — s)m} clean
samples from the left half of ordered contaminated samples {61/, ({Xi}), 02/m ({Xi}), - ,01/2({Xi})}. Thus one has

the left inequality. Furthermore, one can also select out at least [(% — s)mw clean samples from the right half of ordered

contaminated samples {607 /o({X;}), -+ ,01({X;})}. One has the right inequality.

A.4. Proof of Lemma 4

First we introduce some general facts for the distribution of the product of two correlated standard Gaussian random
variables (Donahue, 1964). Let u ~ N(0,1), v ~ N(0,1), and their correlation coefficient be p € [—1,1]. Then the
density of uv is given by

1
¢p($)=Wmexp<1ixp2>](o(l|_xlp2), x #0,
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where Kj(-) is the modified Bessel function of the second kind. Thus the density of r = |uv| is

1 T T |z]
o) = i oo (7255 e (253 [ o (255) >0 o

for |p| < 1. If |p| = 1, r becomes a x? random variable, with the density

Ylp|=1(x) = L96_1/2 exp(—z/2), z>0.

V2r

It can be seen from (26) that the density of r only relates to the correlation coefficient p € [—1,1].

Let 6 /2(1),) be the 1/2 quantile (median) of the distribution v, (x), and 9/,,(0; /2) be the value of the function 1, at the
point 0 /5(¢),,). Although it is difficult to derive the analytical expressions of ¢ /5(1),) and 1), (6 /2) due to the complicated
form of v, in (26), due to the continuity of v,(x) and 6, ,5(1),), we can calculate them numerically, as illustrated in
Figure 4. From the numerical calculation, one can see that both ¢, (61 2) and 6 )2(1,) are bounded from below and above
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Figure 4. Quantiles and density at quantiles across p

for all p € [0,1] (¢,(-) is symmetric over p, hence it is sufficient to consider p € [0, 1]), satisfying
0.348 < 01/2(1/1p) < 0.455, 047 < ¢p(91/2) < 0.76. 27

B. Robust Initialization with Outliers (Section 5.2)

This section proves that the truncated spectral method provides a good initialization even if sm measurements are corrupted
by arbitrary outliers as long as s is small.

Consider the model in (1). Lemma 3 yields

01_({(af2)*}) < 012({wi}) < 011 ({(af )*}). (28)

Observe that al z = a? ||x||?, where a;; = alz/| x| is a standard Gaussian random variable. Thus |a;1|? is a x?
random variable, whose cumulative distribution function is denoted as K (x). Moreover by Lemma 1, for a small ¢, one

has |05, ({an[?}) - 9%,S(K)‘ < cand |05, ({lanl?}) - e%+S(K)‘ < ¢ with probability 1 — 2 exp(—cme?) and ¢

is a constant around 2 x 0.47% (c.f. Figure 4). We note that 0; »(K) = 0.455 and both 01 (K)and 6, (K) can be
arbitrarily close to 0 1 (K) simultaneously as long as s is small enough (independent of n). Thus one has

(034 () =) llzll® < 012({w:)) < (034K + €) [ 29)

with probability at least 1 — exp(—cme?). For the sake of simplicity, we introduce two new notations (s := 1_4(K) and

¢° = H%JrS(K). Specifically for the instance of s = 0.01, one has (s = 0.434 and (* = 0.477. It is easy to see that (* — (;
can be arbitrarily small if s is small enough.

We first consider the case when ||z|| = 1. On the event that (29) holds, the truncation function has the following bounds,
Lyi<a20, o (tuih) /0455 = 11y <oz (o6 /0.455)

Liyi<az 01/2({y:})/0.455} = 1{yi§a§(cs—e)/0.4s5}'
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On the other hand, denote the support of the outliers as .S, we have

Zaz a x) 1{(a @)2<a20,,5({y:})/0.455} T — Zala Yiliy,<a aZ01/2({yi})/0.455} -
Z¢S lGS

Consequently, one can bound Y as

Y:: *Zaz a x) 1{(a x)?<aj(Cs—e)/0.455} <Y

¢S
Z a;a a w 1{(a :1;)2<a2 (¢5+€)/0.455} + — Z a;a CS + 6)/0455 = YQ,
z¢S ’LES

where we have

2 (¢ +e)
0.455
: — 4 _ 2 — 2

with fy = E[¢ 1{\£\§ay\/m}} Bl Lieza, (cs—e>/0-455}]’ fo = ELE 1{|f|§%\/m}] and

Bs = Bl e, yerama)) ~ B gca, viorapams)) P = B <o, eraroms) b assuming
&~ N(0,1).

Applying standard results on random matrices with non-isotropic sub-Gaussian rows (Vershynin, 2012, equation
(5.26)) and noticing that aiaiT(aiTx)Ql{|a7m‘§C} can be rewritten as bibiT for some sub-Gaussian vector b; :=

ElY1] = (1—s)(Bimz’ + BoI), E[Y2]=(1—s)(Bsza” + BuI) + so,

I, (30)

ai(a;frzc)lﬂarm‘gc}, one can deduce
IY: —E[Ya]| <6, [[Y2—E[Y2]| <§ 3D

with probability 1 — exp(—€2(m)), provided that m/n exceeds some large constant. Besides, when € and s are sufficiently
small, one further has ||E[Y 1] — E[Y'2]|| < J. Putting these together, one has

1Y — (1 = s)(Brza” + BoI)|| < 36. (32)

Let 2(*) be the normalized leading eigenvector of Y. Repeating the same argument as in (Candes et al., 2015, Section 7.8)
and taking 4, € to be sufficiently small, one has

dist(29, x) < 0, (33)

for a given 6>0,as long as m/n exceeds some large constant.

Furthermore let (%) = \/med{y;}/0.4552%) to handle cases ||| # 1. By the bound (29), one has

med({yz}) Cs - CS +e 2 Cs - Cs +e€ 2
—eE < -1 <> s TE
Thus
(0 o T Cs e PRI,
dist(2%), ) < 2 )|+ e < —x (39)

as long as s is a small enough constant.

C. Geometric Convergence for Noise-free Model (Proof of Corollary 2)

After obtaining a good initialization, the central idea to establish geometric convergence is to show that the truncated
gradient V/;,.(z) in the neighborhood of the global optima satisfies the Regularity Condition RC (i, A, €) defined in Def-
inition 2. We show this by two steps. Step 1 establishes a key concentration property for the sample median used in the
truncation rule, which is then subsequently exploited to prove RC in Step 2.
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C.1. Proof of Concentration Property for Sample Median

We show that the sample median used in the truncation rule concentrates at the level ||z — x|||| z|| as stated in the following
proposition. Along the way, we also establish that the sample quantiles around the median are also concentrated at the level
Iz —|l||=].

Proposition 2 (Refined version of Proposition 1). Fix ¢ € (0,1). If m > co(e 2log %)n log n, then with probability at
least 1 — ¢y exp(—come?),

(0.65 = o)|[z[[lh]l < med{|(af'x)* — (a] 2)*[} < (0.91 + €) | 2[l[|h ], (36)
(0.63 = o) zll[lh]l < Oo.49, 051 {I(al @)* — (ai 2)*[} < (0.95 + ¢)|z]|[| ], (37

hold for all ©, z with |x — z|| < 1/11]|z||, where h := z — x.

Proof. We first show for a fixed pair z and x, (36) and (37) hold with high probability.

Letr; = |(al'z)? — (al 2)?|. Then r;’s are i.i.d. copies of a random variable r, where 7 = |(a” a:)2 — (a™'2)?| with the
entries of a composed of i.i.d. standard Gaussian random variables. Note that the distribution of r is fixed once given h
and z.

Let (1) denote the first element of a generic vector @, and «_; denote the remaining vector of x after eliminating the
first element. Let U, be an orthonormal matrix with first row being h” /|||, and @ = Ua, 2 = U},z. Similarly define
U:_ ,andletb =U;:_,a_;. Then a(1) and b(1) are independent standard normal random variables. We further express
7 as follows.

(a”2)” — (a"z)’|

(2a z—aTh)( Th)|

(2a”z —a(1)|r[)(a(1 )||h||)\

(2hTzf||hH )a(1)? +2(al,z_1)(a(1)|k])]
(2h"z — ||hl*)a(1)? + 2b(1)]|2- 1|| ( )||h|||
( (

)2
)’
1)? +2v/]z[? - 1) Al
2
z__ IRl I RN I
<2|h||||z| ||z||> <|h|||z||> (Dv)| - IRzl

= |(2cos(w) — )a(1)? + 2y/T— o2 (@)a((1)| - [ l}2]

fuol - IIhHHZII

ohTz — ||h|?)

Qz

where w is the angle between h and z, and t = ||h|/||z|| < 1/11. Consequently, v = a(1) ~ N(0,1) and o =
(2cos(w) — t)a(l) + 2|sin(w)|b(1) is also a Gaussian random variable with variance 3.6 < Var(?) < 4 under the
assumption ¢ < 1/11.

Let v = 0/4/Var(?), then v ~ N(0,1). Furthermore, let v’ = |uv|. Denote the density function of ' as 1), (-) and the
1/2-quantile point of 7’ as 61 /5(1),). By Lemma 4, we have

0.47 < P,(01/2) < 0.76, 0.348 < 0y /5(1),) < 0.455. (38)

By Lemma 1, we have with probability at least 1 — 2 exp(—cme?) (here c is around 2 x 0.472),
0.348 — ¢ < med({r/},) < 0.455 + . (39)

The same arguments carry over to other quantiles 6y 49({r}}) and 6y51({r}}). From Figure. 4, we observe that for
p€[0,1]

0.45 < ¢p(90_49),1/)p(90_51) < 078, 0.336 < 90_49(’¢p), 00,51(1,/),,) < 0.477 40)
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and then we have with probability at least 1 — 2 exp(—cme?) (here c is around 2 x 0.452),
0.336 — e < 90.49({7";,1}), 90,51({7’7/%}) < 0477+ €. 41)
Hence, by multiplying back +/Var (%), we have with probability 1 — 2 exp(—cme?),

(0.65 — e)|z — ||| z]| < med ({|(a] 2)* - (a]®)*[}) < (0.91+ )|z - ||| =] (42)
(0.63 = ©)llz = [l 2]l < o.49, 6051 ({I(af 2)* — (af x)?[}) < (0.95 + €|z — x| |1 2] 43)

We note that, to keep notation simple, ¢ and € may vary line by line within constant factors.

Up to now, we proved for any fixed z and @, the median or neighboring quantiles of {|(a] z)? — (a] x)?|} are upper and

lower bounded by ||z — ||||z|| times constant factors. To prove (36) and (37) for all z and x with ||z — z|| < | z||,
we use the net covering argument. Still we argue for median first and the same arguments carry over to other quantiles
smoothly.

To proceed, we restate (42) as

(063 =) = med ({’(2(|T;|) ||ZT|L |||Z|”> i l}) < 0ot 4

holds with probability at least 1 — 2 exp(—cme?) for a given pair h, z satisfying ||h||/||z] < 1/11.

Let 7 = ¢/(6n + 6m), and let S, be a 7-net covering the unit sphere, £ be a 7-net covering a line with length 1/11, and
set

NT = {(Zo,h(),to) : (Zo,ho,to) eS8, xS, x ET} 45)

One has cardinality bound (i.e., the upper bound on the covering number) [N, | < (1 +2/7)%"/(117) < (1 +2/7)?*"+L
Taking the union bound we have

(0.65 — €) < med ({|2(a] z0) — (a] ho)to|la] ho|}) < (0.91+¢€), V(zq,ho,to) € Ne (46)

with probability at least 1 — (1 + 2/7)%"*! exp(—cme?).

We next argue that (46) holds with probability 1 — c¢; exp(—come?) for some constants ci,co as long as m >
co(e72?log e~ 1)nlogn for sufficient large constant co. To prove this claim, we first observe

(1+2/7)?" ! < exp(2n(log(n + m) + log 12 + log(1/e))) < exp(2n(logm)).

We note that once € is chosen, it is fixed in the whole proof and does not scale with m or n. For simplicity, assume that
€ < 1/e. Fix some positive constant ¢’ < ¢ — ¢. It then suffices to show that there exist large constant ¢y such that if
m > co(e?log e 1)nlogn, then

2nlogm < ¢'me>. 47)

For any fixed n, if (47) holds for some m and m > (2/c’)e~2n, then (47) always holds for larger m, because
2n 1
2nlog(m 4+ 1) = 2nlogm + 2n(log(m + 1) —logm) = 2nlogm + — log(1 + —)™
m m
< 2nlogm+— <dme? +deé? = (m+1)é?
m

Next, for any n, we can always find a ¢, such that (47) holds for m = cy(e~2 log e ~!)nlog n. Such ¢y can be easily found
for large n, i.e., cg = 4/’ is a valid option if

(4/¢) (e %loge Hnlogn < n?. (48)

Moreover, since the number of n that violates (48) is finite, the maximum over all such ¢, serves the purpose.
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Next, one needs to bound
[med ({[2(a7 z0) — (a7 ho)tol [T hol}) — med ({|2(a2) — (a R)tl|al h})|

forany ||z — zo|| < 7, ||z — 20| < 7and ||t — to]| < 7.

By Lemma 2 and the relation ||z — |y|| < |2 — yl, we have

Imed ({[2(a? 20) — (aT ho)tollal ho|}) — med ({|2(al2) — (aT R}l h]})]

(3

< max | (2(a] =) ~ (@l ho)to) (alho) — (2(al'2) ~ (a ) (al'h)|

7

< llg[% |(2(a] z0) — (al ho)to) (a] ho) — (2(a] z) — (a] h)t) (a] ho)|

+ max |(2(al 2) — (ai R)t) (a] ho) — (2(a] 2) — (a] h)t) (a] h)|

< max (2] (20 = 2)| + |(a] ho)to — (af h)t]) [aT ho| + mmax [2(a] =) — (af Rt o (ho — h)
< max lail*(3 + )7 + max lail®(2 + t)7
e|lm €|lm

< max oy |25+ 207
i€[m

On the event By := {max;ec[m] |a;||> < m + n}, one can show that
|med ({|2(a] z0) — (a] ho)to||a] hol}) — med ({[2(a] 2) — (a] h)t||a] h|})| < 6(m +n)T <. (49)

We claim that £ holds with probability at least 1 — mexp(—m/8) if m > n. This can be argued as follows. Notice
that [|la;[|* = >=7_, a;(j)* where a;(j) is the j th element of a;. In other words, ||a;||* is a sum of n i.i.d. x7 random
variables. Applying the Bernstein-type inequality (Corollary5.17 Vershynin) and observing that the sub-exponential norm
of X% is smaller than 2, we have

P{lla:||> >m+n} < exp(—m/8). (50)

Then a union bound concludes the claim.

Note that (46) holds on an event E5, which has probability 1 — ¢; exp(—came?) as long as m > co(e~2log )nlogn. On
the intersection of F; and Es, (36) holds.

The net covering arguments can also carry over to show that (37) holds for all & and z obeying |« — z|| < |z]. O

C.2. Proof of RC

Following Proposition 2, we choose some small € (i.e. € < 0.03), then with probability at least 1 — exp(—(m)),
0.6z — ||| z]| < med({|(ai@)* ~ (ai 2)[}) < 1.0]lz — ||| (51

holds for all z and « satisfying ||h|| < 1/11||z||. For each ¢, we introduce two new events

Ei = {’(a?az)2 - (a;fpz)Q‘ < 0.6ay||h| - |al 2|}, (52)
Ei = {’(aiTzls)2 — (aiTz)Q‘ < 1.0ap k|| - \aiTz|}. (53)

Conditioned on (51), the following inclusion property
gCe e, (54)

holds for all 4, where &} is defined in Algorithm 1. It is easier to work with these new events because E5’s (resp. £i’s)
are statistically independent for any fixed  and z. To further decouple the quadratic inequalities in £5 and &} into linear
inequalities, we introduce two more events and states their properties in the following lemma.
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Lemma 5 (Lemma 3 in (Chen & Candes, 2015)). For any v > 0, define

D = {|(ajz)* — (a7 2)?| < ~|hllla}=[}, (55)
D1,1 = { |a’z < 7}7 (56)
’ Il

aih  2aiz
[kl IR

DI = { < 7} . (57)

On the event &} defined in Algorithm 1, the quadratic inequality specifying Df/ implicates that al h belongs to two intervals
centered around 0 and 2a} z, respectively, i.e. Di’l and DQ’Q. The following inclusion property holds

(plf m‘:{) U (p?f mé‘{) CDinElC (DY NE U (D2 NE). (58)

1+V2 1+v2

Using Lemma 2, we can establish that — (-LV/,,.(z), h) is lower bounded on the order of ||k[|%, as in Proposition 3, and
that || -L V¢4, (2)|| is upper bounded on the order of ||k|, as in Proposition 4.

Proposition 3 (Adapted version of Proposition 2 of (Chen & Candes, 2015)). Consider the noise-free measurements
= |al'z|? and any fixed constant € > 0. Under the condition (10), if m > conlogn, then with probability at least
1 — ¢1 exp(—cam),

<;vetr(z>,h> 2{1.99 — 2(G: + ¢2) = VB/maz ~ e} |InI]? (59)

holds uniformly over all x,z € R™ satisfying

Ikl min{1 QA 98/3(al)2} (60)

=z — 117ap” 67 20y +
where cg, c1, co > 0 are some universal constants, and (1, (5 are defined in (10).

The proof of Proposition 3 adapts the proof of Proposition 2 of (Chen & Candes, 2015), by properly setting parameters
based on the properties of sample median. For completeness, we include a short outline of the proof in Appendix F.

Proposition 4 (Lemma 7 of (Chen & Candes, 2015)). Under the same condition as in Proposition 3, if m > conlogn,
then there exist some constants, ¢y, co > 0 such that with probability at least 1 — ¢q exp(—com),

< (1+0) - 4y/1.02 + 2/au | b (1)

1
H Ev&r(z)

holds uniformly over all x, z € R™ satisfying

M < min {1 alaparl 98/3(@1)2} (62)

=l — 117’ 67 204 + oy

where 0 can be arbitrarily small as long as m/n sufficiently large.

With these two propositions, RC is guaranteed by setting 1 < po = 1'92(711(5)1:((122); h% 7;&;’? and A + g - 16(1 + 4)2
(1.02 + 2/ap) < 4{1 99 — 2(Cy + C2) — /8/ma; t — e}

D. Geometric Convergence with Outliers (Proof of Theorem 1)

We consider the model (1) with outliers, i.e., y; = |{(a;, ar;>|2 +n; fori = 1,--- ,m. It suffices to show that V{.(2)
satisfies the RC. The critical step is to lower and upper bound the sample median of the corrupted measurements. Lemma 3
yields

0,_({l(af®)* — (af 2)’1}) < 03 ({ly: — (af 2)’[}) < 0, ,.({|(a] x)* — (a] 2)*|}. (63)

1
2
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For the instance of s = 0.01, by (37) in Proposition 2, we have with probability at least 1 — 2 exp(—Q(m)e?),

(0.63 — o)zl [[Rll < 81 ({ly: — (ai 2)?[}) < (0.95 + €) | ][ -
To differentiate from £, we define £ := {‘(aiTalc)2 — (al'2)?| < apmed {|y; — (al'z)?| |‘|1‘ ‘Tl } We then have
i CLZTZ 2 Y
U Yo
~ alz
- (af2)* — (afz)? 1T (af 2)* — (af z)?
=2 2 a,sz az 51 S‘ +2’L€ZS 151m5l — asz 15{“% a; .
VCle‘”thr(z) Veztraztr(z)

(64)

Choosing e small enough, the inclusion property (i.e. £ C & C &}) holds, and all the proof arguments for Proposition 3

and 4 are also valid to V/¢®"¢, (z). Thus, one has

<vclean€tr(z)7h> >2 {199 — 2(41 + CQ) - 8/7’(04;1 _ 6} ||hH27

chleangw(z)n < (1 + 5) zu/Wlth

3=3=

We next bound the contribution of V¢%%"%¢,, (). Introduce q = [q1, - - - , gm]?, where

(af 2)* — y; (af 2)* — (a] 2)*
qi = <la.z15f”€5 — T, Leng ) Luesy
1 K2

and then |g;| < 2ay||k||. Thus ||q|| < v/sm - 2ap]| k]|, and

Vet (2)| = | ATd|| < 201 + 6)Vaoulinl,

E

1
(Lt < )| Lvees (2 <204 0 el

where A = [ay,...,a,,]T. Then, we have

- <7711V€tr(z),h> > <7711vczeangtT(z),h> - ‘<;Vemtragtr(z),h>’

) (1.99 —2G +G) — VB/magt —e— (1+ 5)\/§ozh) |Rf2,

and

H;wtr(a

H v(‘lpang

<(1+0) (4¢m+ 2v5a1) .

The RC is guaranteed if i, A, € are chosen properly and s is sufficiently small.

|+ [ eenis

E. Geometric Convergence with Outliers and Bounded Noise (Proof of Theorem 2)

We consider the model (2) with outliers and bounded noise, i.e., ; = |(a;, z)|* + w; +n; fori =1,- -
initialization analysis as it is similar to Appendix B. We split our analysis of the gradient loop into two regimes.

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

,m. We omit the
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llwlloe

* Regime 1: cq[|z|| > ||h|| > c3- ;7. In this regime, error contraction by each gradient step is given by

dist (z + ﬁv&r(z),w) < (1 — p)dist(z, x).
m
It suffices to justify that V/;,.(z) satisfies the RC. Denote §; := (al'x)? + w;. Then by Lemma 3, we have

03— {[0: — (@l 2)*|} < med {[y; — (@l 2)*|} < 0y {|5i — (a2)°[}.

Moreover, by Lemma 2 we have

Oyve {[5i — (@ 2)[} = 03, {|(aT@)? ~ (@l 2)?[}| < |[wll

0y {[s — (@l 2)*[} = 0, {|(al @) - (al2)|}] < ]l

(74)

(75)

(76)

)

Assume that s = 0.01 and apply Proposition 2. Moreover, if ¢3 is sufficiently large (i.e., ¢3 > 100) and € is small enough

(i.e., € < 0.02), then we have

0.6]|z — z[|]|z]| < med {|y; — (af 2)?|} < 1|z — 2|2

Furthermore, recall £} :=

=

’(a?alc)2 — (aiTz)z‘ < a,med {|(aiTz)2 — yz‘} “ﬁiﬁ‘ }, then

m
(al'z)? —y;
S -2 3
i=1 i
.y ( (aT2)? — (aiTx)Qa‘lg_ s (al z)* — (a?w)za‘l » ~_>
= T i ingi T itgingi
igs ai z BT ai z s
Vclean[t ( )
- (al'2)? - (aT2)’
—22 T a115m51+22< 1g;ﬂmsg* T, leing )@
igs i ieS i
vnoise(tr(z) vcztrag”‘(z)

For i ¢ S, the inclusion property (i.e. £ C £ C £1) holds because

lyi — (ai 2)°| € [(af 2)* — (a] 2)*| &+ |wi]

(78)

and |w;| < L|/h||||z| for some sufficient large c3. For i € S, the inclusion £ C £} C &I holds because of (78). All the

S
proof arguments for Proposition 3 and 4 are also valid for V¢/*?™(,,.(z), and thus we have

Ligetenng,, (2),) > 2{1.99 - 2(G1 + Go) — v/8/mayt — ¢} 2
Ve, (2)|| < (1+6) - 44/1.02 + 2/ay || ]|

3=3

Next, we turn to control the contribution of the noise. Let w; = zT%l gine;» then we have

2||wfl

1 . 1 -
v 2] = | L aTa| < |-t (14 Dbl < (1+0)

|l <

when m/n is sufficiently large. Given the regime condition ||h| > c3 Hﬁ’z‘lr , we further have

1 noise 2 1+5
Ljgroner, ()] < %nhn,
3al
1 noise = noise . (]‘ + 6) 2
(Tl (), )| < (|9 ) Ihl < == Ih]*

alllz

(79)

(80)

(81)

(82)

(83)
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We next bound the contribution of V¢**"%¢, (z). Introduce q = [q1, ..., qm]|*, where
(af2)? —yi (af2)? — (af ®)?
¢ =2 <aiTzl£;‘ms2i - o’z Leing; | Liesy (84)
Then |¢;| < 2ap||k]], and ||g|| < +/sm - 2ay,| h||. We thus have
1 1
| ovemreg, )] = o[ A% < 20+ 5)vEann, (85)
m m
1 rir 1 i
‘<mvm%r(z),h>‘ < ||kl - Hmvm'%(z) < 2(1 + 6)v/sou|| R (86)
Putting these together, one has
1 1 ctean noise extra
75<v&r(z),h> E<vl 0 ()h>f—|<v Ly >|ff|<v iy (2), b))

> 2 (1 99 — 2(¢1 + ) — V8/mayt — e — (1+6)(1/(c3al )+\[Qh)> |R|?, 87)

and

1 1 1 .
E HV&T(Z)H < — chleangtr(z)n 4+ = anozse€ H + = Hvextrag ( )H

201+ 6) (2\/1 02 + 2/‘ah +1/(czal) + fah) |IR]. (88)

The RC is guaranteed if p, A, € are chosen properly, cs is sufficiently large and s is sufficiently small.

o Regime 2: Once the iterate enters this regime with ||h|| < %, each gradient iterate may not reduce the estimation

error. However, in this regime each move size £-V/;,(z) is at most O(||w||o/[|2]|). Then the estimation error cannot

increase by more than llw i H”°° with a constant factor. Thus one has

dist (z + %Vﬁtr(z), :c) < s Hwal'w (89)
lwll

for some constant c5. As long as ||w||«/||||? is sufficiently small, it is guaranteed that c; = < cq||]|. If the iterate
jumps out of Regime 2, it falls into Regime 1.

F. Proof of Proposition 3

The proof adapts the proof of Proposition 2 in (Chen & Candes, 2015). We outline the main steps for completeness.
Observe that for the noise-free case, y; = (al x)?. We obtain

1 1 - (af 2)* — (a]z)?
-Vl (2) = — Z T ailging

2m m =
1 m 1 m (aTh)Q
= —> 2alh)ailgng — — > —r—ailging. (90)
mi:l 1 =2 7711_:1 a; z 1l 'e2

One expects the contribution of the second term in (90) to be small as ||h||/||z|| decreases.

Specifically, following the two inclusion properties (54) and (58), we have
DN, CENE CENE CENE C (DL UD)NE 1)
where the parameters 3, y4 are given by

v3 :=0.248a, and 4 1= op. ©2)
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Continuing with the identity (90), we have a lower bound
m

1 2 N T2 1\~ |alhf 1~ lalh?
_ <2mV€t,,.(z),h> > = > (@l h) 1 g — ~ > Lpiiner = — D lpizng;  (93)

T T
i=1 i=1 |a; 2| mia ja; 2|

The three terms in (93) can be bounded following Lemmas 4, 5, and 6 in (Chen & Candes, 2015), which concludes the
proof.





