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Supplementary Materials

A. Proof of Properties of Median (Section 5.1)
A.1. Proof of Lemma 1

For simplicity, denote θp := θp(F ) and θ̂p := θp({Xi}mi=1). Since F ′ is continuous and positive, for an ε, there exists a δ1
such that P(X ≤ θp − ε) = p− δ1, where δ1 ∈ (εl, εL). Then one has

P
(
θ̂p < θp − ε

)
(a)
= P

(
m∑
i=1

1{Xi≤θp−ε} ≥ pm

)
= P

(
1

m

m∑
i=1

1{Xi≤θp−ε} ≥ (p− δ1) + δ1

)
(b)

≤ exp(−2mδ21) ≤ exp(−2mε2l2),

where (a) is due to the definition of the quantile function in (15) and (b) is due to the fact that 1{Xi≤θp−ε} ∼ Bernoulli(p−
δ1) i.i.d., followed by the Hoeffding inequality. Similarly, one can show for some δ2 ∈ (εl, εL),

P
(
θ̂p > θp + ε

)
≤ exp(−2mδ22) ≤ exp(−2mε2l2).

Combining these two inequalities, one has the conclusion.

A.2. Proof of Lemma 2

It suffices to show that

|X(k) − Y(k)| ≤ max
l
|Xl − Yl|, ∀k = 1, · · · , n. (25)

Case 1: k = n, suppose X(n) = Xi and Y(n) = Yj , i.e., Xi is the largest among {Xl}nl=1 and Yj is the largest among
{Yl}nl=1. Then we have either Xj ≤ Xi ≤ Yj or Yi ≤ Yj ≤ Xi. Hence,

|X(n) − Y(n)| = |Xi − Yj | ≤ max{|Xi − Yi|, |Xj − Yj |}.

Case 2: k = 1, suppose that X(1) = Xi and Y(1) = Yj . Similarly

|X(1) − Y(1)| = |Xi − Yj | ≤ max{|Xi − Yi|, |Xj − Yj |}.

Case 3: 1 < k < n, suppose that X(k) = Xi, Y(k) = Yj , and without loss of generality assume that Xi < Yj (if Xi = Yj ,
0 = |X(k) − Y(k)| ≤ maxl |Xl − Yl| holds trivially). We show the conclusion by contradiction.

Assume |X(k) − Y(k)| > maxl |Xl − Yl|. Then one must have Yi < Yj and Xj > Xi and i 6= j. Moreover for any p < k
and q > k, the index of X(p) cannot be equal to the index of Y(q); otherwise the assumption is violated.

Thus, all Y(q) for q > k must share the same index set with X(p) for p > k. However, Xj , which is larger than Xi (thus if
Xj = X(k′), then k′ > k), shares the same index with Yj , where Yj = Y(k). This yields contradiction.

A.3. Proof of Lemma 3

Assume that sm is an integer. Since there are sm corrupted samples in total, one can select out at least
⌈
( 1
2 − s)m

⌉
clean

samples from the left half of ordered contaminated samples {θ1/m({Xi}), θ2/m({Xi}), · · · , θ1/2({Xi})}. Thus one has
the left inequality. Furthermore, one can also select out at least

⌈
( 1
2 − s)m

⌉
clean samples from the right half of ordered

contaminated samples {θ1/2({Xi}), · · · , θ1({Xi})}. One has the right inequality.

A.4. Proof of Lemma 4

First we introduce some general facts for the distribution of the product of two correlated standard Gaussian random
variables (Donahue, 1964). Let u ∼ N (0, 1), v ∼ N (0, 1), and their correlation coefficient be ρ ∈ [−1, 1]. Then the
density of uv is given by

φρ(x) =
1

π
√

1− ρ2
exp

(
ρx

1− ρ2

)
K0

(
|x|

1− ρ2

)
, x 6= 0,
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where K0(·) is the modified Bessel function of the second kind. Thus the density of r = |uv| is

ψρ(x) =
1

π
√

1− ρ2

[
exp

(
ρx

1− ρ2

)
+ exp

(
− ρx

1− ρ2

)]
K0

(
|x|

1− ρ2

)
, x > 0, (26)

for |ρ| < 1. If |ρ| = 1, r becomes a χ2
1 random variable, with the density

ψ|ρ|=1(x) =
1√
2π
x−1/2 exp(−x/2), x > 0.

It can be seen from (26) that the density of r only relates to the correlation coefficient ρ ∈ [−1, 1].

Let θ1/2(ψρ) be the 1/2 quantile (median) of the distribution ψρ(x), and ψρ(θ1/2) be the value of the function ψρ at the
point θ1/2(ψρ). Although it is difficult to derive the analytical expressions of θ1/2(ψρ) and ψρ(θ1/2) due to the complicated
form of ψρ in (26), due to the continuity of ψρ(x) and θ1/2(ψρ), we can calculate them numerically, as illustrated in
Figure 4. From the numerical calculation, one can see that both ψρ(θ1/2) and θ1/2(ψρ) are bounded from below and above
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Figure 4. Quantiles and density at quantiles across ρ

for all ρ ∈ [0, 1] (ψρ(·) is symmetric over ρ, hence it is sufficient to consider ρ ∈ [0, 1]), satisfying

0.348 < θ1/2(ψρ) < 0.455, 0.47 < ψρ(θ1/2) < 0.76. (27)

B. Robust Initialization with Outliers (Section 5.2)
This section proves that the truncated spectral method provides a good initialization even if smmeasurements are corrupted
by arbitrary outliers as long as s is small.

Consider the model in (1). Lemma 3 yields

θ 1
2−s

({(aTi x)2}) < θ1/2({yi}) < θ 1
2+s

({(aTi x)2}). (28)

Observe that aTi x = ã2i1‖x‖2, where ãi1 = aTi x/‖x‖ is a standard Gaussian random variable. Thus |ãi1|2 is a χ2
1

random variable, whose cumulative distribution function is denoted as K(x). Moreover by Lemma 1, for a small ε, one
has

∣∣∣θ 1
2−s

({|ãi1|2})− θ 1
2−s

(K)
∣∣∣ < ε and

∣∣∣θ 1
2+s

({|ãi1|2})− θ 1
2+s

(K)
∣∣∣ < ε with probability 1 − 2 exp(−cmε2) and c

is a constant around 2 × 0.472 (c.f. Figure 4). We note that θ1/2(K) = 0.455 and both θ 1
2−s

(K) and θ 1
2+s

(K) can be
arbitrarily close to θ 1

2
(K) simultaneously as long as s is small enough (independent of n). Thus one has(

θ 1
2−s

(K)− ε
)
‖x‖2 < θ1/2({yi}) <

(
θ 1

2+s
(K) + ε

)
‖x‖2, (29)

with probability at least 1− exp(−cmε2). For the sake of simplicity, we introduce two new notations ζs := θ 1
2−s

(K) and
ζs := θ 1

2+s
(K). Specifically for the instance of s = 0.01, one has ζs = 0.434 and ζs = 0.477. It is easy to see that ζs−ζs

can be arbitrarily small if s is small enough.

We first consider the case when ‖x‖ = 1. On the event that (29) holds, the truncation function has the following bounds,

1{yi≤α2
yθ1/2({yi})/0.455} ≤ 1{yi≤α2

y(ζ
s+ε)/0.455}

1{yi≤α2
yθ1/2({yi})/0.455} ≥ 1{yi≤α2

y(ζs−ε)/0.455}.
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On the other hand, denote the support of the outliers as S, we have

Y =
1

m

∑
i/∈S

aia
T
i (aTi x)21{(aTi x)2≤α2

yθ1/2({yi})/0.455} +
1

m

∑
i∈S

aia
T
i yi1{yi≤α2

yθ1/2({yi})/0.455}.

Consequently, one can bound Y as

Y 1 :=
1

m

∑
i/∈S

aia
T
i (aTi x)21{(aTi x)2≤α2

y(ζs−ε)/0.455} ≺ Y

≺ 1

m

∑
i/∈S

aia
T
i (aTi x)21{(aTi x)2≤α2

y(ζ
s+ε)/0.455} +

1

m

∑
i∈S

aia
T
i α

2
y(ζs + ε)/0.455 =: Y 2,

where we have

E[Y 1] = (1− s)(β1xxT + β2I), E[Y 2] = (1− s)(β3xxT + β4I) + sα2
y

(ζs + ε)

0.455
I, (30)

with β1 := E[ξ41{
|ξ|≤αy

√
(ζs−ε)/0.455

}] − E[ξ21{
|ξ|≤αy

√
(ζs−ε)/0.455

}], β2 := E[ξ21{
|ξ|≤αy

√
(ζs−ε)/0.455

}] and

β3 := E[ξ41{
|ξ|≤αy

√
(ζs+ε)/0.455

}] − E[ξ21{
|ξ|≤αy

√
(ζs+ε)/0.455

}], β4 := E[ξ21{
|ξ|≤αy

√
(ζs+ε)/0.455

}], assuming

ξ ∼ N (0, 1).

Applying standard results on random matrices with non-isotropic sub-Gaussian rows (Vershynin, 2012, equation
(5.26)) and noticing that aiaTi (aTi x)21{|aTi x|≤c} can be rewritten as bibTi for some sub-Gaussian vector bi :=

ai(a
T
i x)1{|aTi x|≤c}, one can deduce

‖Y 1 − E[Y 1]‖ ≤ δ, ‖Y 2 − E[Y 2]‖ ≤ δ (31)

with probability 1− exp(−Ω(m)), provided that m/n exceeds some large constant. Besides, when ε and s are sufficiently
small, one further has ‖E[Y 1]− E[Y 2]‖ ≤ δ. Putting these together, one has

‖Y − (1− s)(β1xxT + β2I)‖ ≤ 3δ. (32)

Let z̃(0) be the normalized leading eigenvector of Y . Repeating the same argument as in (Candès et al., 2015, Section 7.8)
and taking δ, ε to be sufficiently small, one has

dist(z̃(0),x) ≤ δ̃, (33)

for a given δ̃ > 0, as long as m/n exceeds some large constant.

Furthermore let z(0) =
√
med{yi}/0.455z̃(0) to handle cases ‖x‖ 6= 1. By the bound (29), one has∣∣∣∣med({yi})

0.455
− ‖x‖2

∣∣∣∣ ≤ max

{∣∣∣∣ζs − ε0.455
− 1

∣∣∣∣ , ∣∣∣∣ζs + ε

0.455
− 1

∣∣∣∣} ‖x‖2 ≤ ζs − ζs + ε

0.455
‖x‖2 (34)

Thus

dist(z(0),x) ≤ ζs − ζs + ε

0.455
‖x‖+ δ̃‖x‖ ≤ 1

11
‖x‖ (35)

as long as s is a small enough constant.

C. Geometric Convergence for Noise-free Model (Proof of Corollary 2)
After obtaining a good initialization, the central idea to establish geometric convergence is to show that the truncated
gradient ∇`tr(z) in the neighborhood of the global optima satisfies the Regularity Condition RC(µ, λ, ε) defined in Def-
inition 2. We show this by two steps. Step 1 establishes a key concentration property for the sample median used in the
truncation rule, which is then subsequently exploited to prove RC in Step 2.
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C.1. Proof of Concentration Property for Sample Median

We show that the sample median used in the truncation rule concentrates at the level ‖z−x‖‖z‖ as stated in the following
proposition. Along the way, we also establish that the sample quantiles around the median are also concentrated at the level
‖z − x‖‖z‖.
Proposition 2 (Refined version of Proposition 1). Fix ε ∈ (0, 1). If m > c0(ε−2 log 1

ε )n log n, then with probability at
least 1− c1 exp(−c2mε2),

(0.65− ε)‖z‖‖h‖ ≤ med{|(aTi x)2 − (aTi z)2|} ≤ (0.91 + ε)‖z‖‖h‖, (36)

(0.63− ε)‖z‖‖h‖ ≤ θ0.49, θ0.51{|(aTi x)2 − (aTi z)2|} ≤ (0.95 + ε)‖z‖‖h‖, (37)

hold for all x, z with ‖x− z‖ < 1/11‖z‖, where h := z − x.

Proof. We first show for a fixed pair z and x, (36) and (37) hold with high probability.

Let ri = |(aTi x)2 − (aTi z)2|. Then ri’s are i.i.d. copies of a random variable r, where r = |(aTx)2 − (aTz)2| with the
entries of a composed of i.i.d. standard Gaussian random variables. Note that the distribution of r is fixed once given h
and z.

Let x(1) denote the first element of a generic vector x, and x−1 denote the remaining vector of x after eliminating the
first element. Let Uh be an orthonormal matrix with first row being hT /‖h‖, and ã = Uha, z̃ = Uhz. Similarly define
U z̃−1 and let b̃ = U z̃−1 ã−1. Then ã(1) and b̃(1) are independent standard normal random variables. We further express
r as follows.

r = |(aTz)2 − (aTx)2|
= |(2aTz − aTh)(aTh)|
= |(2ãT z̃ − ã(1)‖h‖)(ã(1)‖h‖)|
= |(2hTz − ‖h‖2)ã(1)2 + 2(ãT−1z̃−1)(ã(1)‖h‖)|
= |(2hTz − ‖h‖2)ã(1)2 + 2b̃(1)‖z̃−1‖ã(1)‖h‖|

= |(2hTz − ‖h‖2)ã(1)2 + 2
√
‖z‖2 − z̃(1)2ã(1)b̃(1)‖h‖|

=

∣∣∣∣∣∣∣
(

2
hTz

‖h‖‖z‖
− ‖h‖
‖z‖

)
ã(1)2 + 2

√√√√1−

(
hTz

‖h‖‖z‖

)2

ã(1)b̃(1)

∣∣∣∣∣∣∣ · ‖h‖‖z‖
=:
∣∣∣(2 cos(ω)− t)ã(1)2 + 2

√
1− cos2(ω)ã(1)b̃(1)

∣∣∣ · ‖h‖‖z‖
=: |uṽ| · ‖h‖‖z‖

where ω is the angle between h and z, and t = ‖h‖/‖z‖ < 1/11. Consequently, u = ã(1) ∼ N (0, 1) and ṽ =

(2 cos(ω) − t)ã(1) + 2| sin(ω)|b̃(1) is also a Gaussian random variable with variance 3.6 < Var(ṽ) < 4 under the
assumption t < 1/11.

Let v = ṽ/
√

Var(ṽ), then v ∼ N (0, 1). Furthermore, let r′ = |uv|. Denote the density function of r′ as ψρ(·) and the
1/2-quantile point of r′ as θ1/2(ψρ). By Lemma 4, we have

0.47 < ψρ(θ1/2) < 0.76, 0.348 < θ1/2(ψρ) < 0.455. (38)

By Lemma 1, we have with probability at least 1− 2 exp(−cmε2) (here c is around 2× 0.472),

0.348− ε < med({r′i}mi=1) < 0.455 + ε. (39)

The same arguments carry over to other quantiles θ0.49({r′i}) and θ0.51({r′i}). From Figure. 4, we observe that for
ρ ∈ [0, 1]

0.45 < ψρ(θ0.49), ψρ(θ0.51) < 0.78, 0.336 < θ0.49(ψρ), θ0.51(ψρ) < 0.477 (40)
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and then we have with probability at least 1− 2 exp(−cmε2) (here c is around 2× 0.452),

0.336− ε < θ0.49({r′m}), θ0.51({r′m}) < 0.477 + ε. (41)

Hence, by multiplying back
√

Var(ṽ), we have with probability 1− 2 exp(−cmε2),

(0.65− ε)‖z − x‖‖z‖ ≤ med
({
|(aTi z)2 − (aTi x)2|

})
≤ (0.91 + ε)‖z − x‖‖z‖, (42)

(0.63− ε)‖z − x‖‖z‖ ≤ θ0.49, θ0.51
({
|(aTi z)2 − (aTi x)2|

})
≤ (0.95 + ε)‖z − x‖‖z‖. (43)

We note that, to keep notation simple, c and ε may vary line by line within constant factors.

Up to now, we proved for any fixed z and x, the median or neighboring quantiles of
{
|(aTi z)2 − (aTi x)2|

}
are upper and

lower bounded by ‖z − x‖‖z‖ times constant factors. To prove (36) and (37) for all z and x with ‖z − x‖ ≤ 1
11‖z‖,

we use the net covering argument. Still we argue for median first and the same arguments carry over to other quantiles
smoothly.

To proceed, we restate (42) as

(0.65− ε) ≤ med

({∣∣∣∣(2(aTi z)

‖z‖
− a

T
i h

‖h‖
‖h‖
‖z‖

)
aTi h

‖h‖

∣∣∣∣}) ≤ (0.91 + ε), (44)

holds with probability at least 1− 2 exp(−cmε2) for a given pair h, z satisfying ‖h‖/‖z‖ ≤ 1/11.

Let τ = ε/(6n+ 6m), and let Sτ be a τ -net covering the unit sphere, Lτ be a τ -net covering a line with length 1/11, and
set

Nτ = {(z0,h0, t0) : (z0,h0, t0) ∈ Sτ × Sτ × Lτ}. (45)

One has cardinality bound (i.e., the upper bound on the covering number) |Nτ | ≤ (1 + 2/τ)2n/(11τ) < (1 + 2/τ)2n+1.
Taking the union bound we have

(0.65− ε) ≤ med
({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
≤ (0.91 + ε), ∀(z0,h0, t0) ∈ Nε (46)

with probability at least 1− (1 + 2/τ)2n+1 exp(−cmε2).

We next argue that (46) holds with probability 1 − c1 exp(−c2mε2) for some constants c1, c2 as long as m ≥
c0(ε−2 log ε−1)n log n for sufficient large constant c0. To prove this claim, we first observe

(1 + 2/τ)2n+1 � exp(2n(log(n+m) + log 12 + log(1/ε))) � exp(2n(logm)).

We note that once ε is chosen, it is fixed in the whole proof and does not scale with m or n. For simplicity, assume that
ε < 1/e. Fix some positive constant c′ < c − c2. It then suffices to show that there exist large constant c0 such that if
m ≥ c0(ε−2 log ε−1)n log n, then

2n logm < c′mε2. (47)

For any fixed n, if (47) holds for some m and m > (2/c′)ε−2n, then (47) always holds for larger m, because

2n log(m+ 1) = 2n logm+ 2n(log(m+ 1)− logm) = 2n logm+
2n

m
log(1 +

1

m
)m

≤ 2n logm+
2n

m
≤ c′mε2 + c′ε2 = c′(m+ 1)ε2.

Next, for any n, we can always find a c0 such that (47) holds for m = c0(ε−2 log ε−1)n log n. Such c0 can be easily found
for large n, i.e., c0 = 4/c′ is a valid option if

(4/c′)(ε−2 log ε−1)n log n < n2. (48)

Moreover, since the number of n that violates (48) is finite, the maximum over all such c0 serves the purpose.
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Next, one needs to bound∣∣med
({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
−med

({
|2(aTi z)− (aTi h)t||aTi h|

})∣∣
for any ‖z − z0‖ < τ, ‖z − z0‖ < τ and ‖t− t0‖ < τ .

By Lemma 2 and the relation
∣∣|x| − |y|∣∣ ≤ |x− y|, we have∣∣med

({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
−med

({
|2(aTi z)− (aTi h)t||aTi h|

})∣∣
≤ max
i∈[m]

∣∣(2(aTi z0)− (aTi h0)t0
)

(aTi h0)−
(
2(aTi z)− (aTi h)t

)
(aTi h)

∣∣
≤ max
i∈[m]

∣∣(2(aTi z0)− (aTi h0)t0
)

(aTi h0)−
(
2(aTi z)− (aTi h)t

)
(aTi h0)

∣∣
+ max
i∈[m]

∣∣(2(aTi z)− (aTi h)t
)

(aTi h0)−
(
2(aTi z)− (aTi h)t

)
(aTi h)

∣∣
≤ max
i∈[m]

(∣∣2aTi (z0 − z)
∣∣+
∣∣(aTi h0)t0 − (aTi h)t

∣∣) ∣∣aTi h0

∣∣+ max
i∈[m]

∣∣2(aTi z)− (aTi h)t
∣∣ |aTi (h0 − h)|

≤ max
i∈[m]

‖ai‖2(3 + t)τ + max
i∈[m]

‖ai‖2(2 + t)τ

≤ max
i∈[m]

‖ai‖2(5 + 2t)τ

On the event E1 :=
{

maxi∈[m] ‖ai‖2 ≤ m+ n
}

, one can show that∣∣med
({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
−med

({
|2(aTi z)− (aTi h)t||aTi h|

})∣∣ < 6(m+ n)τ < ε. (49)

We claim that E1 holds with probability at least 1 − m exp(−m/8) if m > n. This can be argued as follows. Notice
that ‖ai‖2 =

∑n
j=1 ai(j)

2, where ai(j) is the j th element of ai. In other words, ‖ai‖2 is a sum of n i.i.d. χ2
1 random

variables. Applying the Bernstein-type inequality (Corollary5.17 Vershynin) and observing that the sub-exponential norm
of χ2

1 is smaller than 2, we have

P
{
‖ai‖2 ≥ m+ n

}
≤ exp(−m/8). (50)

Then a union bound concludes the claim.

Note that (46) holds on an event E2, which has probability 1− c1 exp(−c2mε2) as long as m ≥ c0(ε−2 log 1
ε )n log n. On

the intersection of E1 and E2, (36) holds.

The net covering arguments can also carry over to show that (37) holds for all x and z obeying ‖x− z‖ ≤ 1
11‖z‖.

C.2. Proof of RC

Following Proposition 2, we choose some small ε (i.e. ε < 0.03), then with probability at least 1− exp(−Ω(m)),

0.6‖z − x‖‖z‖ ≤ med(
{
|(aTi x)2 − (aTi z)2|

}
) ≤ 1.0‖z − x‖‖z‖ (51)

holds for all z and x satisfying ‖h‖ ≤ 1/11‖z‖. For each i, we introduce two new events

E i3 := {
∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ 0.6αh‖h‖ · |aTi z|}, (52)

E i4 := {
∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ 1.0αh‖h‖ · |aTi z|}. (53)

Conditioned on (51), the following inclusion property

E i3 ⊆ E i2 ⊆ E i4 (54)

holds for all i, where E i2 is defined in Algorithm 1. It is easier to work with these new events because E i3’s (resp. E i4’s)
are statistically independent for any fixed x and z. To further decouple the quadratic inequalities in E i3 and E i4 into linear
inequalities, we introduce two more events and states their properties in the following lemma.
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Lemma 5 (Lemma 3 in (Chen & Candès, 2015)). For any γ > 0, define

Diγ := {
∣∣(a∗ix)2 − (a∗i z)2

∣∣ ≤ γ‖h‖|a∗i z|}, (55)

Di,1γ :=

{
|a∗ih|
‖h‖

≤ γ
}
, (56)

Di,2γ :=

{∣∣∣∣a∗ih‖h‖ − 2a∗i z

‖h‖

∣∣∣∣ ≤ γ} . (57)

On the event E i1 defined in Algorithm 1, the quadratic inequality specifyingDiγ implicates that aTi h belongs to two intervals
centered around 0 and 2aTi z, respectively, i.e. Di,1γ and Di,2γ . The following inclusion property holds(

Di,1γ
1+
√

2

∩ E i1
)
∪
(
Di,2γ

1+
√

2

∩ E i1
)
⊆ Diγ ∩ E i1 ⊆

(
Di,1γ ∩ E i1

)
∪
(
Di,2γ ∩ E i1

)
. (58)

Using Lemma 2, we can establish that −
〈

1
m∇`tr(z),h

〉
is lower bounded on the order of ‖h‖2, as in Proposition 3, and

that
∥∥ 1
m∇`tr(z)

∥∥ is upper bounded on the order of ‖h‖, as in Proposition 4.
Proposition 3 (Adapted version of Proposition 2 of (Chen & Candès, 2015)). Consider the noise-free measurements
yi = |aTi x|2 and any fixed constant ε > 0. Under the condition (10), if m > c0n log n, then with probability at least
1− c1 exp(−c2m),

−
〈

1

m
∇`tr(z),h

〉
≥ 2

{
1.99− 2(ζ1 + ζ2)−

√
8/πα−1h − ε

}
‖h‖2 (59)

holds uniformly over all x, z ∈ Rn satisfying

‖h‖
‖z‖

≤ min

{
1

11
,
αl
αh
,
αl
6
,

√
98/3(αl)

2

2αu + αl

}
, (60)

where c0, c1, c2 > 0 are some universal constants, and ζ1, ζ2 are defined in (10).

The proof of Proposition 3 adapts the proof of Proposition 2 of (Chen & Candès, 2015), by properly setting parameters
based on the properties of sample median. For completeness, we include a short outline of the proof in Appendix F.
Proposition 4 (Lemma 7 of (Chen & Candès, 2015)). Under the same condition as in Proposition 3, if m > c0n log n,
then there exist some constants, c1, c2 > 0 such that with probability at least 1− c1 exp(−c2m),∥∥∥∥ 1

m
∇`tr(z)

∥∥∥∥ ≤ (1 + δ) · 4
√

1.02 + 2/αh‖h‖ (61)

holds uniformly over all x, z ∈ Rn satisfying

‖h‖
‖z‖

≤ min

{
1

11
,
αl
αh
,
αl
6
,

√
98/3(αl)

2

2αu + αl

}
, (62)

where δ can be arbitrarily small as long as m/n sufficiently large.

With these two propositions, RC is guaranteed by setting µ < µ0 :=
1.99−2(ζ1+ζ2)−

√
8/πα−1

h

4(1+δ)2·(1.02+2/αh)
and λ + µ · 16(1 + δ)2 ·

(1.02 + 2/αh) < 4
{

1.99− 2(ζ1 + ζ2)−
√

8/πα−1h − ε
}

.

D. Geometric Convergence with Outliers (Proof of Theorem 1)

We consider the model (1) with outliers, i.e., yi = |〈ai,x〉|2 + ηi for i = 1, · · · ,m. It suffices to show that ∇`tr(z)
satisfies the RC. The critical step is to lower and upper bound the sample median of the corrupted measurements. Lemma 3
yields

θ 1
2−s

({|(aTi x)2 − (aTi z)2|}) ≤ θ 1
2
({|yi − (aTi z)2|}) ≤ θ 1

2+s
({|(aTi x)2 − (aTi z)2|}. (63)
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For the instance of s = 0.01, by (37) in Proposition 2, we have with probability at least 1− 2 exp(−Ω(m)ε2),

(0.63− ε)‖z‖‖h‖ ≤ θ 1
2
({|yi − (aTi z)2|}) ≤ (0.95 + ε)‖z‖‖h‖. (64)

To differentiate from E i2, we define Ẽ i2 :=
{∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ αhmed
{∣∣yi − (aTi z)2

∣∣} |aTi z|
‖z‖

}
. We then have

−∇`tr(z) = 2

m∑
i=1

(aTi z)2 − yi
aTi z

ai1Ei1∩Ei2

= 2

m∑
i=1

(aTi z)2 − (aTi x)2

aTi z
ai1Ei1∩Ẽi2︸ ︷︷ ︸

∇clean`tr(z)

+ 2
∑
i∈S

(
(aTi z)2 − yi

aTi z
1Ei1∩Ei2 −

(aTi z)2 − (aTi x)2

aTi z
1Ei1∩Ẽi2

)
ai︸ ︷︷ ︸

∇extra`tr(z)

.

Choosing ε small enough, the inclusion property (i.e. E i3 ⊆ Ẽ i2 ⊆ E i4) holds, and all the proof arguments for Proposition 3
and 4 are also valid to∇clean`tr(z). Thus, one has

1

m
〈∇clean`tr(z),h〉 ≥ 2

{
1.99− 2(ζ1 + ζ2)−

√
8/πα−1h − ε

}
‖h‖2, (65)

1

m

∥∥∇clean`tr(z)
∥∥ ≤ (1 + δ) · 4

√
1.02 + 2/αh‖h‖. (66)

We next bound the contribution of ∇extra`tr(z). Introduce q = [q1, . . . , qm]T , where

qi :=

(
(aTi z)2 − yi

aTi z
1Ei1∩Ei2 −

(aTi z)2 − (aTi x)2

aTi z
1Ei1∩Ẽi2

)
1{i∈S}, (67)

and then |qi| ≤ 2αh‖h‖. Thus ‖q‖ ≤
√
sm · 2αh‖h‖, and∥∥∥∥ 1

m
∇extra`tr(z)

∥∥∥∥ =
1

m

∥∥∥ATq
∥∥∥ ≤ 2(1 + δ)

√
sαh‖h‖, (68)∣∣∣∣〈 1

m
∇extra`tr(z),h

〉∣∣∣∣ ≤ ‖h‖ · ∥∥∥∥ 1

m
∇extra`tr(z)

∥∥∥∥ ≤ 2(1 + δ)
√
sαh‖h‖2, (69)

whereA = [a1, . . . ,am]T . Then, we have

−
〈

1

m
∇`tr(z),h

〉
≥
〈

1

m
∇clean`tr(z),h

〉
−
∣∣∣∣〈 1

m
∇extra`tr(z),h

〉∣∣∣∣ (70)

≥ 2
(

1.99− 2(ζ1 + ζ2)−
√

8/πα−1h − ε− (1 + δ)
√
sαh

)
‖h‖2, (71)

and ∥∥∥∥ 1

m
∇`tr(z)

∥∥∥∥ ≤ ∥∥∥∥ 1

m
∇clean`tr(z)

∥∥∥∥+

∥∥∥∥ 1

m
∇extra`tr(z)

∥∥∥∥ (72)

≤ (1 + δ)
(

4
√

1.02 + 2/αh + 2
√
sαh

)
‖h‖. (73)

The RC is guaranteed if µ, λ, ε are chosen properly and s is sufficiently small.

E. Geometric Convergence with Outliers and Bounded Noise (Proof of Theorem 2)

We consider the model (2) with outliers and bounded noise, i.e., yi = |〈ai,x〉|2 + wi + ηi for i = 1, · · · ,m. We omit the
initialization analysis as it is similar to Appendix B. We split our analysis of the gradient loop into two regimes.
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• Regime 1: c4‖z‖ ≥ ‖h‖ ≥ c3 ‖w‖∞‖z‖ . In this regime, error contraction by each gradient step is given by

dist
(
z +

µ

m
∇`tr(z),x

)
≤ (1− ρ)dist(z,x). (74)

It suffices to justify that∇`tr(z) satisfies the RC. Denote ỹi := (aTi x)2 + wi. Then by Lemma 3, we have

θ 1
2−s

{∣∣ỹi − (aTi z)2
∣∣} ≤ med

{∣∣yi − (aTi z)2
∣∣} ≤ θ 1

2+s

{∣∣ỹi − (aTi z)2
∣∣} . (75)

Moreover, by Lemma 2 we have∣∣∣θ 1
2+s

{∣∣ỹi − (aTi z)2
∣∣}− θ 1

2+s

{∣∣(aTi x)2 − (aTi z)2
∣∣}∣∣∣ ≤ ‖w‖∞, (76)∣∣∣θ 1

2−s
{∣∣ỹi − (aTi z)2

∣∣}− θ 1
2−s

{∣∣(aTi x)2 − (aTi z)2
∣∣}∣∣∣ ≤ ‖w‖∞. (77)

Assume that s = 0.01 and apply Proposition 2. Moreover, if c3 is sufficiently large (i.e., c3 > 100) and ε is small enough
(i.e., ε < 0.02), then we have

0.6‖x− z‖‖z‖ ≤ med
{∣∣yi − (aTi z)2

∣∣} ≤ 1‖x− z‖‖z‖. (78)

Furthermore, recall Ẽ i2 :=
{∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ αhmed
{∣∣(aTi z)2 − yi

∣∣} |aTi z|
‖z‖

}
, then

−∇`tr(z) = 2

m∑
i=1

(aTi z)2 − yi
aTi z

ai1Ei1∩Ei2

= 2

(∑
i/∈S

(aTi z)2 − (aTi x)2

aTi z
ai1Ei1∩Ei2 +

∑
i∈S

(aTi z)2 − (aTi x)2

aTi z
ai1Ei1∩Ẽi2

)
︸ ︷︷ ︸

∇clean`tr(z)

− 2
∑
i/∈S

wi

aTi z
ai1Ei1∩Ei2︸ ︷︷ ︸

∇noise`tr(z)

+ 2
∑
i∈S

(
(aTi z)2 − yi

aTi z
1Ei1∩Ei2 −

(aTi z)2 − (aTi x)2

aTi z
1Ei1∩Ẽi2

)
ai︸ ︷︷ ︸

∇extra`tr(z)

.

For i /∈ S, the inclusion property (i.e. E i3 ⊆ E i2 ⊆ E i4) holds because∣∣yi − (aTi z)2
∣∣ ∈ ∣∣(aTi x)2 − (aTi z)2

∣∣± |wi|
and |wi| ≤ 1

c3
‖h‖‖z‖ for some sufficient large c3. For i ∈ S, the inclusion E i3 ⊆ Ẽ i2 ⊆ E i4 holds because of (78). All the

proof arguments for Proposition 3 and 4 are also valid for∇clean`tr(z), and thus we have

1

m
〈∇clean`tr(z),h〉 ≥ 2

{
1.99− 2(ζ1 + ζ2)−

√
8/πα−1h − ε

}
‖h‖2, (79)

1

m

∥∥∇clean`tr(z)
∥∥ ≤ (1 + δ) · 4

√
1.02 + 2/αh‖h‖. (80)

Next, we turn to control the contribution of the noise. Let w̃i = 2wi

aTi z
1Ei1∩Ei2 , then we have

1

m
‖∇noise`tr(z)‖ =

∥∥∥∥ 1

m
AT w̃

∥∥∥∥ ≤ ∥∥∥∥ 1√
m
AT

∥∥∥∥∥∥∥∥ w̃√m
∥∥∥∥ ≤ (1 + δ)‖w̃‖∞ ≤ (1 + δ)

2‖w‖∞
αl‖z‖

, (81)

when m/n is sufficiently large. Given the regime condition ‖h‖ ≥ c3 ‖w‖∞‖z‖ , we further have

1

m
‖∇noise`tr(z)‖ ≤ 2(1 + δ)

c3αl
‖h‖, (82)

1

m

∣∣〈∇noise`tr(z),h
〉∣∣ ≤ 1

m

∥∥∇noise`tr(z)
∥∥ · ‖h‖ ≤ 2(1 + δ)

c3αl
‖h‖2. (83)
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We next bound the contribution of ∇extra`tr(z). Introduce q = [q1, . . . , qm]T , where

qi := 2

(
(aTi z)2 − yi

aTi z
1Ei1∩Ei2 −

(aTi z)2 − (aTi x)2

aTi z
1Ei1∩Ẽi2

)
1{i∈S}. (84)

Then |qi| ≤ 2αh‖h‖, and ‖q‖ ≤
√
sm · 2αh‖h‖. We thus have∥∥∥∥ 1

m
∇extra`tr(z)

∥∥∥∥ =
1

m

∥∥∥ATq
∥∥∥ ≤ 2(1 + δ)

√
sαh‖h‖, (85)∣∣∣∣〈 1

m
∇extra`tr(z),h

〉∣∣∣∣ ≤ ‖h‖ · ∥∥∥∥ 1

m
∇extra`tr(z)

∥∥∥∥ ≤ 2(1 + δ)
√
sαh‖h‖2. (86)

Putting these together, one has

− 1

m
〈∇`tr(z),h〉 ≥ 1

m

〈
∇clean`tr(z),h

〉
− 1

m

∣∣〈∇noise`tr(z),h
〉∣∣− 1

m

∣∣〈∇extra`tr(z),h
〉∣∣

≥ 2
(

1.99− 2(ζ1 + ζ2)−
√

8/πα−1h − ε− (1 + δ)(1/(c3α
l
z) +

√
sαh)

)
‖h‖2, (87)

and

1

m
‖∇`tr(z)‖ ≤ 1

m

∥∥∇clean`tr(z)
∥∥+

1

m

∥∥∇noise`tr(z)
∥∥+

1

m

∥∥∇extra`tr(z)
∥∥

≤ 2(1 + δ)
(

2
√

1.02 + 2/αh + 1/(c3α
l
z) +

√
sαh

)
‖h‖. (88)

The RC is guaranteed if µ, λ, ε are chosen properly, c3 is sufficiently large and s is sufficiently small.

• Regime 2: Once the iterate enters this regime with ‖h‖ ≤ c3‖w‖∞
‖z‖ , each gradient iterate may not reduce the estimation

error. However, in this regime each move size µ
m∇`tr(z) is at most O(‖w‖∞/‖z‖). Then the estimation error cannot

increase by more than ‖w‖∞‖z‖ with a constant factor. Thus one has

dist
(
z +

µ

m
∇`tr(z),x

)
≤ c5

‖w‖∞
‖x‖

(89)

for some constant c5. As long as ‖w‖∞/‖x‖2 is sufficiently small, it is guaranteed that c5
‖w‖∞
‖x‖ ≤ c4‖x‖. If the iterate

jumps out of Regime 2, it falls into Regime 1.

F. Proof of Proposition 3
The proof adapts the proof of Proposition 2 in (Chen & Candès, 2015). We outline the main steps for completeness.
Observe that for the noise-free case, yi = (aTi x)2. We obtain

− 1

2m
∇`tr(z) =

1

m

m∑
i=1

(aTi z)2 − (aTi x)2

aTi z
ai1Ei1∩Ei2

=
1

m

m∑
i=1

2(aTi h)ai1Ei1∩Ei2 −
1

m

m∑
i=1

(aTi h)2

aTi z
ai1Ei1∩Ei2 . (90)

One expects the contribution of the second term in (90) to be small as ‖h‖/‖z‖ decreases.

Specifically, following the two inclusion properties (54) and (58), we have

Di,1γ3 ∩ E
i
1,γ3 ⊆ E

i
3 ∩ E i1 ⊆ E i2 ∩ E i1 ⊆ E i4 ∩ E i1 ⊆ (Di,1γ4 ∪ D

i,2
γ4 ) ∩ E i1 (91)

where the parameters γ3, γ4 are given by

γ3 := 0.248αh, and γ4 := αh. (92)
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Continuing with the identity (90), we have a lower bound

−
〈

1

2m
∇`tr(z),h

〉
≥ 2

m

m∑
i=1

(aTi h)21Ei1∩Di,1γ3
− 1

m

m∑
i=1

|aTi h|3

|aTi z|
1Di,1γ4 ∩Ei1

− 1

m

m∑
i=1

|aTi h|3

|aTi z|
1Di,2γ4 ∩Ei1

. (93)

The three terms in (93) can be bounded following Lemmas 4, 5, and 6 in (Chen & Candès, 2015), which concludes the
proof.




