
Collapsed Variational Inference for Sum-Product Networks

A. Synthetic Experiments
In this section we provide synthetic experiments to demonstrate that (11) is a good approximation to (7) when the variational
Dirichlet posterior has a single mode, which is easily achieved in practice when��� > 1. We use the SPN shown in Fig. 3 as a
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Figure 3. A simple SPN over two binary variables X1 and X2 that can be decomposed into three components.

synthetic example where each leaf univariate distribution is fixed to be an indicator variable, i.e., a point mass distribution.
The joint distribution is given by p(x|w) = w1Ix1Ix2 + w2Ix1Ix̄2 + w3Ix̄1Ix̄2 with w1 + w2 + w3 = 1.

Since the KL divergence KL(q(w|���) k p(w|↵↵↵)) is the same in both (7) and (11), to show the difference, we only need to
compare E

q(w|�

�

�)[log p(x|w)] and log p(x| exp(E
q

0(w0
|�

�

�)[w
0

])). Recall that we have w0

= logw by definition.

We use a data set {(1, 1), (1, 0), (0, 0)} that contains all the instances of x in the support of the distribution. To show
the approximation accuracy of (11), we test with both symmetric and skewed Dirichlet distributions q(w|���). To be more
specific, we use ���1 = [1.0, 1.0, 1.0]T and ���2 = [10.0, 1.0, 1.0]T as the hyperparameters of the variational posterior and
compute both E

q(w|�

�

�)[log p(x|w)] and log p(x| exp(E
q

0(w0
|�

�

�)[w
0

])) as a function of ���. To demonstrate the quality of the
approximation and the scale factor of the Dirichlet, for each ���, we fixed the shape of the Dirichlet distribution but gradually
increase its scale factor, i.e., ���0

= s���, where s ranges from 1 to 100. E
q(w|�

�

�)[log p(x|w)] does not admit a closed form
computation, hence we sample 10000 weight vectors from q(w|���) and use the empirical average to approximate the
expectation.

(a) Symmetric Dirichlet. (b) Skewed Dirichlet.

Figure 4. Synthetic experiments to compare the approximation of log p(x| exp(Eq0(w0|���)[w
0
])) (red, lower bound) to

Eq(w|���)[log p(x|w)] (blue, exact expectation). Fig. 4(a) corresponds to symmetric ���1 = [1.0, 1.0, 1.0]T and Fig. 4(b) corresponds
to skewed ��� = [10.0, 1.0, 1.0]T .

It can be observed from Fig. 4 that the approximation is actually very close to the true exact expectation, especially when
the Dirichlet distribution has a high concentration around its single mode, which corresponds to a large scale factor. This
holds no matter whether the variational posterior is symmetric or not.
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