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Lemma 2 If there exist all different e1, e2, · · · , e2k < 1 and a non-zero vector ~

�

⇤ =
[�⇤

1 ,�
⇤
2 , · · · ,�⇤

2k]
>, s.t.

• Hk

~

�

⇤ = 0,

• ~

�

⇤ has k positive elements and k negative elements.

then k-PL for 2k � 1 alternatives is not identifiable.
Proof: W.l.o.g. assume �⇤

1 ,�
⇤
2 , · · · ,�⇤

k

> 0 and �

⇤
k+1,�

⇤
k+2,�

⇤
2k < 0. Hk

2k�1
~

�

⇤ = 0
means that

kX

r=1

�

⇤
r

~

f

r

= �
2kX

r=k+1

�

⇤
r

~

f

r

According to the first row in Hk, we have
P

r

�

⇤
r

= 0. Let S =
P

k

r=1 �
⇤
r

. Further let
↵

⇤
r

= �

⇤
r

/S when r = 1, 2, · · · , k and ↵

⇤
r

= ��

⇤
r

/S when r = k + 1, k + 2, · · · , 2k.
We have

kX

r=1

↵

⇤
r

~

f

r

=
2kX

r=k+1

↵

⇤
r

~

f

r

where
P

k

r=1 ↵
⇤
r

= 1 and
P2k

r=k+1 ↵
⇤
r

= 1. This means that the model is not identifi-
able. ⌅

Lemma 4

P
s

1Q
t 6=s(es�et)

= 0 where 8s 6= t, e

s

6= e

t

.

Proof: The partial fraction decomposition of the first term is

1Q
q 6=1(e1 � e

q

)
=

X

q 6=1

(
B

q

e1 � e

q

)

where B

q

= 1Q
p 6=q,p 6=1(eq�ep)

.
Namely,

1Q
q 6=1(e1 � e

q

)
= �

X

q 6=1

(
1Q

p 6=q

(e
q

� e

p

)
)

We have
X

s

1Q
t 6=s

(e
s

� e

t

)
=

1Q
q 6=1(e1 � e

q

)
+
X

q 6=1

(
1Q

p 6=q

(e
q

� e

p

)
) = 0

⌅

Lemma 5 For all µ  ⌫ � 2, we have
P

⌫

s=1
(es)

µ
Q

t 6=s(es�et)
= 0.
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Proof: Base case: When ⌫ = 2, µ = 0, obviously

1

e1 � e2
+

1

e2 � e1
= 0

Assume the lemma holds for ⌫ = p and all µ  ⌫ � 2, that is
P

⌫

s=1
e

µ
sQ

t 6=s(es�et)
= 0.

When ⌫ = p+ 1, µ = 0, by Lemma 4 we have

p+1X

s=1

1Q
t 6=s

(e
s

� e

t

)
= 0

Assume
P

p+1
s=1

e

q
sQ

t 6=s(es�et)
= 0 for all µ = q, q  p� 2. For µ = q + 1,

p+1X

s=1

e

q+1
sQ

t 6=s

(e
s

� e

t

)
=

p+1X

s=1

e

q

s

e

p+1Q
t 6=s

(e
s

� e

t

)
+

p+1X

s=1

e

q

s

(e
s

� e

p+1)Q
t 6=s

(e
s

� e

t

)

=e

p+1

p+1X

s=1

e

q

sQ
t 6=s

(e
s

� e

t

)
+

pX

s=1

e

q

sQ
t 6=s

(e
s

� e

t

)
= 0

The last equality is obtained from the induction hypotheses. ⌅

Lemma 6 Let f(x) be any polynomial of degree ⌫ � 2, then
P

⌫

s=1
f(es)Q

t 6=s(es�et)
= 0.

This can be easily derived from Lemma 5.
Remaining proof for Theorem 1

Now we are ready to prove that Hk

~

�

⇤ = 0. Note that the degree of the numerator
of �⇤

r

is 2k � 3 (see Equation (3)). Let [Hk]
i

denote the i-th row of Hk. We have the
following calculations.

[Hk]1 ~�⇤ =
2kX

r=1

Q2k�3
p=1 (pe

r

+ 2k � 2� p)
Q

q 6=r

(e
r

� e

q

)
= 0

[Hk]2 ~�⇤ =
2kX

r=1

Q2k�3
p=1 e

r

(pe
r

+ 2k � 2� p)
Q

q 6=r

(e
r

� e

q

)
= 0

For any 2 < i  2k � 1, we have

[Hk]
i

~

�

⇤

=
2kX

r=1

e

r

(1� e

r

)i�2

Q
i�2
p=1(per + 2k � 2� p)

Q2k�3
p=1 (pe

r

+ 2k � 2� p)
Q

q 6=r

(e
r

� e

q

)

=
2kX

r=1

e

r

(1� e

r

)i�2
Q2k�3

p=i�1(per + 2k � 2� p)
Q

q 6=r

(e
r

� e

q

)
= 0

The last equality is obtained by letting v = 2k� 2 in Lemma 6. Therefore, Hk

~

�

⇤ = 0.
Note that ~

�

⇤ is also the solution for less than 2k � 1 alternatives. The theorem follows
after applying Lemma 2.
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Theorem 2 For k = 2, and any m � 4, the 2-PL is identifiable.
Proof: We will apply Lemma 1 to prove the theorem. That is, we will show that for
all non-degenerate ~

✓

(1)
,

~

✓

(2)
,

~

✓

(3)
,

~

✓

(4) such that rank(F2
4) = 4. We recall that F2

4 is a
24 ⇥ 4 matrix. Instead of proving rank(F2

4) = 4 directly, we will first obtain a 4 ⇥ 4
matrix F⇤ = T ⇥F2

4 by linearly combining some row vectors of F2
4 via a 4⇥24 matrix

T . Then, we show that rank(F⇤) = 4, which implies that rank(F2
4) = 4.

For simplicity we use [e
r

, b

r

, c

r

, d

r

]> to denote the parameter of rth Plackett-Luce
component for a1, a2, a3, a4 respectively. Namely,

h
~

✓

(1)
~

✓

(2)
~

✓

(3)
~

✓

(4)
i
=

2

664

e1 e2 e3 e4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

3

775

where for each r  4, ~!(r) is a row vector. We further let ~1 = [1, 1, 1, 1]. For proof
convenience we define 5 row vectors.

~1 = [1, 1, 1, 1]

~!

(1) = [e1, e2, e3, e4]

~!

(2) = [b1, b2, b3, d3]

~!

(3) = [c1, c2, c3, c4]

~!

(4) = [d1, d2, d3, d4]

Clearly we have
P4

i=1 ~!
(i) = ~1. Therefore, if there exist three ~!’s, for example

{~!(1)
, ~!

(2)
, ~!

(3)}, such that {~!(1)
, ~!

(2)
, ~!

(3)} and ~1 are linearly independent, then
rank(F2

4) = 4 because each ~!

(i) corresponds to the probability of a

i

being ranked
at the top, which means that ~!(i) is a linear combination of rows in F2

4. Because
~

✓

(1)
,

~

✓

(2)
,

~

✓

(3)
,

~

✓

(4) is non-degenerate, at least one of {~!(1)
, ~!

(2)
, ~!

(3)
, ~!

(4)} is linearly
independent of ~1. W.l.o.g. suppose ~!

(1) is linearly independent of ~1. This means that
not all of e1, e2, e3, e4 are equal. The theorem will be proved in the following two
cases.
Case 1. ~!

(2), ~!(3), and ~!

(4) are all linear combinations of ~1 and ~!

(1).
Case 2. There exists a ~!

(i) (where i 2 {2, 3, 4}) that is linearly independent of ~1 and
~!

(1).
Case 1. For all i = 2, 3, 4 we can rewrite ~!

(i) = p

i

~!

(1) + q

i

for some constants p
i

, q

i

.
More precisely, for all r = 1, 2, 3, 4 we have:

b

r

= p2er + q2 (5)
c

r

= p3er + q3 (6)
d

r

= p4er + q4 (7)

Because ~!

(1) + ~!

(2) + ~!

(3) + ~!

(4) = ~1, we have

p2 + p3 + p4 = �1 (8)
q2 + q3 + q4 = 1 (9)
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In this case for each r  4, the r-th column of F2
4, which is f4(~✓(r)), is a function of

e

r

. Because the ~

✓’s are non-degenerate, e1, e2, e3, e4 must be pairwise different.
We assume p2 6= 0 and q2 6= 1 for all subcases of Case 1 (This will be denoted

as Case 1 Assumption). The following claim shows that there exists p

i

, q

i

where
i 2 {2, 3, 4} satisfying this condition. If i 6= 2 we can switch the row of alternatives
a2 and a

i

. Then the assumption holds.

Claim 2 There exists i 2 2, 3, 4 which satisfy the following conditions:

• q

i

6= 1

• p

i

6= 0

Proof: Suppose for all i = 2, 3, 4, q
i

= 1 or p
i

= 0.
If p

i

= 0, q
i

must be positive because b

r

, c

r

, d

r

are all positive. If p
i

6= 0, Then
q

i

= 1 due to the assumption above. So q

i

> 0 for all i = 2, 3, 4. If there exists i

s.t. q

i

= 1, then (9) does not hold. So for all i, q
i

6= 1. Then p

i

= 0 holds for all
i 2 {2, 3, 4}, which violates (8). ⌅
Case 1.1. p2 + q2 6= 0 and p2 + q2 6= 1.

For this case we first define a 4⇥ 4 matrix F̂ as follows.

F̂ Moments2

664

1 1 1 1
e1 e2 e3 e4
e1b1
1�b1

e2b2
1�b2

e3b3
1�b3

e4b4
1�b4

e1b1
1�e1

e2b2
1�e2

e3b3
1�e3

e4b4
1�e4

3

775

~1
a1 � others

a2 � a1 � others
a1 � a2 � others

We use ~1 and ~!

(1) as the first two rows. ~!(1) corresponds to the probability that a1
is ranked in the top. We call such a probability a moment. Each moment is the sum
of probabilities of some rankings. For example, the “a1 � others” moment is the total
probability for {V 2 L(A) : a1 is ranked at the top of V }. It follows that there exists
a 4⇥ 24 matrix T̂ such that F̂ = T̂ ⇥ F2

4.
Define

~

✓

(b) = [
1

1� b1
,

1

1� b2
,

1

1� b3
,

1

1� b4
]

= [
1

1� p2e1 � q2
,

1

1� p2e2 � q2
,

1

1� p2e3 � q2
,

1

1� p2e4 � q2
]

and

~

✓

(e) = [
1

1� e1
,

1

1� e2
,

1

1� e3
,

1

1� e4
] (10)
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And define F⇤ =

2

664

~1
~!

(1)

~

✓

(b)

~

✓

(e)

3

775. It can be verified that F̂ = T

⇤ ⇥ F⇤, where

T

⇤ =

2

664

1 0 0 0
0 1 0 0

� 1
p2

�1 1�q2

p2
0

�(p2 + q2) �p2 0 p2 + q2

3

775

Because Case 1.1 assumes that p2 + q2 6= 0 and by Case 1 Assumption p2 6= 0,
q2 6= 1, we have that T ⇤ is invertible. Therefore, F⇤ = (T ⇤)�1 ⇥ F̂, which means that
F⇤ = T ⇥ F2

4 for some 4⇥ 24 matrix T .
We now prove that rank(F⇤) = 4. For the sake of contradiction, suppose that

rank(F⇤) < 4. It follows that there exist a nonzero row vector ~t = [t1, t2, t3, t4], such
that ~tF⇤ = 0. This means that for all r  4,

t1 + t2er +
t3

1� p2er � q2
+

t4

1� e

r

= 0

Let
f(x) = t1 + t2x+

t3

1� p2x� q2
+

t4

1� x

Let g(x) = (1� p2x� q2)(1� x)f(x). We recall that e1, e2, e3, e4 are four roots
of f(x), which means that they are also the four roots of g(x). Now we will verify that
not all coefficients of f(x) are zero. Suppose all coefficients of x in f(x) are zero, then
g(x) = 0 holds for all x. By assigning x to different values, we have

g(1) = t4(1� p2 � q2) = 0

g(
1� q2

p2
) =

t3(p2 + q2 � 1)

p2
= 0

By Case 1.1 assumption p2 + q2 6= 1, we have t3 = t4 = 0. Then from f(x) =
t1 + t2x = 0 holds for all x, we have t1 = t2 = 0, which is a contradiction.

We note that the degree of g(x) is 3. Therefore, due to the Fundamental Theorem
of Algebra, g(x) has at most three different roots. This means that e1, e2, e3, e4 are not
pairwise different, which is a contradiction. Therefore, rank(F⇤) = 4, which means
that rank(F2

4) = 4.
Case 1.2. p2 + q2 = 1.

If we can find an alternative a
i

, such that p
i

and q

i

satisfy the following conditions:

• p

i

6= 0

• q

i

6= 1

• p

i

+ q

i

6= 0

• p

i

+ q

i

6= 1
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Then we can use a
i

as a2, which belongs to Case 1.1. Otherwise we have the following
claim.

Claim 3 If for i 2 {3, 4}, p
i

and q

i

satisfy one of the following conditions

1. p

i

= 0

2. p

i

6= 0, q
i

= 1

3. p

i

+ q

i

= 0

4. p

i

+ q

i

= 1

We claim that there exists i 2 {3, 4} s.t. p

i

, q
i

satisfy condition 2, namely p

i

6= 0,
q

i

= 1.

Proof: Suppose p

i

= 0, then q

i

> 0 because p

i

e1 + q

i

is a parameter in a Plackett-
Luce component. If for i = 3, 4, p

i

and q

i

satisfy any of conditions 1, 3 or 4, then
q

i

� �p

i

(q
i

> 0 for condition 1, q
i

= �p

i

for condition 3, q
i

= 1 � p

i

> �p1 for
condition 4). As

P4
i=2 pi = �1,

P4
i=2 qi � 1�

P4
i=2 pi = 2, which contradicts thatP4

i=2 qi = 1. ⌅
Without loss of generality we let p3 6= 0 and q3 = 1. We now construct F̂ as is

shown in the following table.

F̂ Moments2

664

1 1 1 1
e1 e2 e3 e4
e1b1
1�e1

e2b2
1�e2

e3b3
1�e3

e4b4
1�e4

c1b1
1�c1

c2b2
1�c2

c3b3
1�c3

c4b4
1�c4

3

775

~1
a1 � others

a1 � a2 � others
a3 � a2 � others

We define ~

✓

(b) the same way as in Case 1.1, and define

~

✓

(c) = [
1

e1
,

1

e2
,

1

e3
,

1

e4
]

Define

F⇤ =

2

664

~1
~!

(1)

~

✓

(e)

~

✓

(c)

3

775

We will show that F̂ = T

⇤ ⇥ F⇤ where T

⇤ has full rank.
For all r = 1, 2, 3, 4

c

r

b

r

1� c

r

=
(p3er + q3)(p2er + q2)

1� p3er � q3
=

(p3er + 1)(p2er + 1� p2)

�p3er
= �p2er + (p2 � 1� p2

p3
)� 1� p2

p3er

6



So

F̂ =

2

6664

~1
~!

(1)

�~1� p2~!
(1) + ~

✓

(e)

(p2 � 1� p2

p3
)~1� p2~!

(1) � 1�p2

p3

~

✓

(c)

3

7775

Suppose p2 6= 1, we have F̂ = T

⇤ ⇥ F⇤ where

T

⇤ =

2

664

1 0 0 0
0 1 0 0
�1 �p2 1 0

p2 � 1� p2

p3
�p2 0 � 1�p2

p3

3

775

which is full rank. So rank(F⇤) = rank(F̂).
If rank(F2

4)  3, then there is at least one column in F2
4 dependent of the other

columns. As all rows in F̂ are linear combinations of rows in F2
4, there is also at least

one column in F̂ dependent of the other columns. Therefore we have rank(F̂)  3.
Further we have rank(F⇤)  3. Therefore, there exists a nonzero row vector ~t =
[t1, t2, t3, t4], s.t.

~

tF⇤ = 0

Namely, for all r  4,

t1 + t2er +
t3

1� e

r

+
t4

e

r

= 0

Let

f(x) = t1 + t2x+
t3

1� x

+
t4

x

= 0

g(x) = x(1� x)f(x) = x(1� x)(t1 + t2) + t3x+ t4(1� x)

If any of the coefficients in f(x) is nonzero, then g(x) is a polynomial of degree at
most 3. There will be a maximum of 3 different roots. Since this equation holds for e

r

where r = 1, 2, 3, 4, there exists s 6= t s.t. e
s

= e

t

. Otherwise g(x) = f(x) = 0 for all
x. We have

g(0) = t4 = 0

g(1) = t3 = 0

Substitute t3 = t4 = 0 into f(x), we have f(x) = t1 + t2x = 0 for all x. So
t1 = t2 = 0. This contradicts the nonzero requirement of ~t. Therefore there exists
s 6= t s.t. e

s

= e

t

. From (5)(6)(7) we have ~

✓

(s) = ~

✓

(t), which is a contradition.
If p2 = 1, from the assumption of Case 1.2 q2 = 0. So b

r

= e

r

for r = 1, 2, 3, 4.
Then from (8) we have p4 = �p3 � 2 and from (9) we have q4 = 0. Since p4 and q4

satisfy one of the four conditions in Claim 3, we can show it must satisfy Condition
4. (q4 = 0 violates Condition 2. If it satisfies Condition 1 or 3, then p4 = 0. Then
d

r

= p4ar + q4 = 0, which is impossible.) So p4 = 1, and p3 = �3. This is the case
where ~!

(1) = ~!

(2) = ~!

(4) and ~!

(3) = 1� 3~!(1). For this case, we use a3 as a1. After

7



the transformation, we have ~!

(2) = ~!

(3) = ~!

(4) = 1�~!

(1)

3 . We claim that this lemma
holds for a more general case where p

i

+ q

i

= 0 for i = 2, 3, 4. It is easy to check that
p

i

= � 1
3 and q

i

= 1
3 belongs to this case.

Claim 4 For all r = 1, 2, 3, 4, if

~

✓

(r) =

2

664

e

r

b

r

c

r

d

r

3

775 =

2

664

e

r

p2er � p2

p3er � p3

�(1 + p2 + p3)er + (1 + p2 + p3)

3

775 (11)

The model is identifiable.

Proof: We first show a claim, which is useful to the proof.

Claim 5 Under the settings of (11), �1 < p2, p3 < 0, �1 < p2 + p3 < 0.

Proof: From the definition of Plackett-Luce model, 0 < e

r

, b

r

, c

r

, d

r

< 1. From
(11), we have p2 = br

er�1 . Since b

r

> 0 and e

r

< 1, p2 < 0. Similarly we have p3 < 0
and �(1 + p2 + p3) < 0. So �1 < p2 + p3 < 0. Then we have p2 > �1 � p3. So
�1� p3 < p2 < 0, p3 > �1. Similarly we have p2 > �1.

⌅
In this case, we construct F̂ in the following way.

F̂ Moments
2

664

1 1 1 1
e1 e2 e3 e4
e1b1
1�b1

e2b2
1�b2

e3b3
1�b3

e4b4
1�b4

e1b1c1
(1�b1)(1�b1�c1)

e2b2c2
(1�b2)(1�b2�c2)

e3b3c3
(1�b3)(1�b3�c3)

e4b4c4
(1�b4)(1�b4�c4)

3

775

~1
a1 � others

a2 � a1 � others
a2 � a3 � a1 � a4

Define ~

✓

(b) the same way as in Case 1.1

~

✓

(b) = [
1

1� b1
,

1

1� b2
,

1

1� b3
,

1

1� b4
]

= [
1

1� p2e1 + p2
,

1

1� p2e2 + p2
,

1

1� p2e3 + p2
,

1

1� p2e4 + p2
]

And define

~

✓

(bc) =[
1

1� (p2 + p3)e1 + p2 + p3
,

1

1� (p2 + p3)e2 + p2 + p3
,

1

1� (p2 + p3)e3 + p2 + p3
,

1

1� (p2 + p3)e4 + p2 + p3
]

Further define

F⇤ =

2

664

~1
~!

(1)

~

✓

(b)

~

✓

(bc)

3

775

8



We will show F̂ = T

⇤ ⇥ F⇤ where T

⇤ has full rank.
The last two rows of F̂

e

r

b

r

1� b

r

= �e

r

� 1

p2
+

1 + p2

p2(1� p2er + p2)

e

r

b

r

c

r

(1� b

r

)(1� b

r

� c

r

)
=

e

r

(p2er � p2)(p3er � p3)

(1� p2er + p2)(1� (p2 + p3)er + p2 + p3)

=
p2p3er(er � 1)2

(1� p2er + p2)(1� (p2 + p3)er + p2 + p3)

=
p3(2p2 + p3)

p2(p2 + p3)2
+

p3

p2 + p3
e

r

� (1 + p2)

p2(1� p2er + p2)

+
p2(1 + p2 + p3)

(1� (p2 + p3)er + p2 + p3)(p2 + p3)2

So

F̂ =

2

6664

~1
~!

(1)

� 1
p2
~1� ~!

(1) + 1+p2

p2

~

✓

(b)

p3(2p2+p3)
p2(p2+p3)2

~1 + p3

p2+p3
~!

(1) � 1+p2

p2

~

✓

(b) + p2(1+p2+p3)
(p2+p3)2

~

✓

(bc)

3

7775

Then we have F̂ = T

⇤ ⇥ F⇤ where

T

⇤ =

2

6664

1 0 0 0
0 1 0 0

� 1
p2

�1 1+p2

p2
0

p3(2p2+p3)
p2(p2+p3)2

p3

p2+p3
� 1+p2

p2

p2(1+p2+p3)
(p2+p3)2

3

7775

From Claim 5, we have �1 < p2 < 0 and �1 < p2 + p3 < 0, so 1+p2

p2
6= 0 and

p2(1+p2+p3)
(p2+p3)2

6= 0. So T has full rank. Then rank(F⇤) = rank(F̂).
If rank(F2

4)  3, then there is at least one column in F2
4 dependent of other

columns. As all rows in F̂ are linear combinations of rows in F2
4, rank(F̂)  3. Since

rank(F⇤) = rank(F̂), we have rank(F⇤)  3. Therefore, there exists a nonzero row
vector ~t = [t1, t2, t3, t4], s.t.

~

tF⇤ = 0

Namely, for all r  4,

t1 + t2er +
t3

1� p2ar + p2
+

t4

1� (p2 + p3)er + p2 + p3
= 0

Let

f(x) = t1 + t2x+
t3

1� p2x+ p2
+

t4

1� (p2 + p3)x+ p2 + p3

g(x) = (1� p2x+ p2)(1� (p2 + p3)x+ p2 + p3)(t1 + t2x)

+ t3(1� (p2 + p3)x+ p2 + p3) + t4(1� p2x+ p2)

9



If any of the coefficients of g(x) is nonzero, then g(x) is a polynomial of degree at
most 3. There will be a maximum of 3 different roots. As the equation holds for all e

r

where r = 1, 2, 3, 4. There exists s 6= t s.t. e
s

= e

t

. Otherwise g(x) = f(x) = 0 for
all x. We have

g(
1 + p2

p2
) =

�t3p3

p2
= 0

g(
1 + p2 + p3

p2 + p3
) =

t4p3

p2 + p3
= 0

From Claim 5 we know p2, p3 < 0 and p2 + p3 < 0. So t3 = t4 = 0. Substitute it
into f(x) we have f(x) = t1 + t2x = 0 for all x. So t1 = t2 = 0. This contradicts
the nonzero requirement of ~t. Therefore there exists s 6= t s.t. e

s

= e

t

. According to
(5)(6)(7) we have ~

✓

(s) = ~

✓

(t), which is a contradition.
⌅

Case 1.3. p2 + q2 = 0.
If there exists i such that p

i

+ q

i

= 1, then we can use a

i

as a2 and the proof is
done in Case 1.2. It may still be possible to find another i such that p

i

, q

i

satisfy the
following two conditions:

1. p

i

6= 0 and q

i

6= 1;

2. p

i

+ q

i

6= 0.

If we can find another i to satisfy the two conditions, then the proof is done in Case

1.1. Then we can proceed by assuming that the two conditions are not satisfied by any
i. We will prove that the only possibility is p

i

+ q

i

= 0 for i = 2, 3, 4.
Suppose for i = 3, 4, p

i

and q

i

violate Condition 1. If p
i

= 0, then q

i

> 0. If at
least one of them has q

i

= 1, then e

r

+ b

r

+ c

r

+ d

r

> 1, which is impossible. If both
alternatives violates Condition 1 and p3 = p4 = 0, then 0 < q3, q4 < 1. According
to (8) p2 = �1. As p2 + q2 = 0, we have q2 = 1. From (9), q3 + q4 = 2, which is
impossible. So there exists i 2 {3, 4} such that p

i

+ q

i

= 0. Then from
P

i

✓

r

i

= 1 we
obtain the only case we left out, which is

e

r

b

r

= p2er � p2

c

r

= p3er � p3

d

r

= �(1 + p2 + p3)er + (1 + p2 + p3)

This case has been proved in Claim 4.
Case 2: There exists ~!(i) that is linearly independent of ~1 and ~!

(1). W.l.o.g. let it be
~!

(2). Define matrix

G =

2

4
~1

~!

(1)

~!

(2)

3

5 =

2

4
1 1 1 1
e1 e2 e3 e4

b1 b2 b3 b4

3

5

10



The rank of G is 3. Since G is constructed using linear combinations of rows in F2
4,

the rank of F2
4 is at least 3.

If ~!(3) or ~!(4) is independent of rows in G, then we can append it to G as the
fourth row so that the rank of the new matrix is 4. Then F2

4 is full rank. So we only
need to consider the case where ~!

(3) and ~!

(4) are linearly dependent of ~1, ~!(1), and
~!

(2). Let

~!

(3) = x3~!
(1) + y3~!

(2) + z3~1 (12)

~!

(4) = x4~!
(1) + y4~!

(2) + z4~1 (13)

where x3 + x4 = �1, y3 + y4 = �1, z3 + z4 = 1.

Claim 6 There exists i 2 {3, 4} such that x
i

+ z

i

6= 0.

Proof: If in the current setting 9i 2 {3, 4} s.t. x
i

+ z

i

6= 0, then the proof is done. If
in the current setting x3 + z3 = x4 + z4 = 0, but 9i 2 {3, 4} s.t. y

i

+ z

i

= 0, then we
can switch the role of e

r

and b

r

, namely

~!

(3) = y3~!
(1) + x3~!

(2) + z3~1

~!

(4) = y4~!
(1) + x4~!

(2) + z4~1

Then the proof is done. If for all i 2 {3, 4} we have x

i

+ z

i

= 0 and y

i

+ z

i

= 0, then
we switch the role of e

r

and c

r

and get

~!

(3) =
1

x3
(~!(1) � y3~!

(2) � z3~1)

~!

(4) =
1

x4
(~!(1) � y4~!

(2) � z4~1)

If 1�z3
x3

6= 0, namely z3 6= 1, the proof is done. Suppose z3 = 1, then x3 = y3 = �1.
We have ~!

(3) = 1� ~!

(1) � ~!

(2). Then ~!

(4) = ~0, which is impossible. ⌅
Without loss of generality let x3 + z3 6= 0. Similar to the previous proofs, we want

to construct a matrix G0 using linear combinations of rows from F2
4. Let the first 3

rows for G0 to be G. Then rank(G0) � 3. Since rank(F2
4)  3 and all rows in G0 are

linear combinations of rows in F2
4, we have rank(G0)  3. So rank(G0) = 3. This

means that any linear combinations of rows in F2
4 is linearly dependent of rows in G.

Consider the moment where a1 is ranked at the top and a2 is ranked at the second
position. Then [ e1b11�e1

,

e2b2
1�e2

,

e3b3
1�e3

,

e4b4
1�e4

] is linearly dependent of G. Adding ~!

(2) to it,
we have

~

✓

(eb) = [
b1

1� e1
,

b2

1� e2
,

b3

1� e3
,

b4

1� e4
]

which is linearly dependent of G.
Similarly consider the moment that a1 is ranked at the top and a3 is ranked at the

second position. We obtain [ e1c11�e1
,

e2c2
1�e2

,

e3c3
1�e3

,

e4c4
1�e4

]. Add ~!

(3) to it, we get

~

✓

(ec) = [
c1

1� e1
,

c2

1� e2
,

c3

1� e3
,

c4

1� e4
]

11



which is linearly dependent of G.
Recall from (10)

~

✓

(e) = [
1

1� e1
,

1

1� e2
,

1

1� e3
,

1

1� e4
]

Then

~

✓

(ec) = [
x3e1 + y3b1 + z3

1� e1
,

x3e2 + y3b2 + z3

1� e2
,

x3e3 + y3b3 + z3

1� e3
,

x3e4 + y3b4 + z3

1� e4
]

= (x3 + z3)~✓
(e) + y3

~

✓

(eb) � x3~1

Because both ~

✓

(eb) and ~

✓

(ec) are linearly dependent of G, ~✓(e) is also linearly dependent
of G. Make it the 4th row of G0. Suppose the rank of G0 is still 3. We will first
prove this lemma under the assumption below, and then discuss the case where the
assumption does not hold.

Assumption 1: Suppose ~1, ~!(1)
,

~

✓

(e) are linearly independent.
Then ~!

(2) is a linear combination of ~1, ~!(1) and ~

✓

(e). We write ~!

(2) = s1 +
s2~!

(1) + s3
~

✓

(e) for some constants s1, s2, s3. We have s3 6= 0 because ~!

(2) is linearly
independent of ~1 and ~!

(1). Elementwise, for r = 1, 2, 3, 4 we have

b

r

= s1 + s2er +
s3

1� e

r

(14)

Let

G00 =


G
~

✓

(eb)

�

~

✓

(eb) is linearly dependent of G. There exists a non-zero vector ~h = [h1, h2, h3, h4]

such that ~h ·G00 = 0. Namely h1~1 + h2~!
(1) + h3~!

(2) + h4
~

✓

(eb) = 0. Elementwise,
for all r = 1, 2, 3, 4

h1 + h2er + h3br + h4
b

r

1� e

r

= 0 (15)

where h4 6= 0 because otherwise rank(G) = 2. Substitute (14) into (15), and multiply
both sides of it by (1� e

r

)2, we get

(h1 + h2er + h3br)(1� e

r

)2 + h4(s1 + s2er)(1� e

r

) + h4s3 = 0

Let

f(x) = (h1 + h2er + h3br)(1� e

r

)2 + h4(s1 + s2er)(1� e

r

) + h4s3

We claim that not all coefficients of x are zero, because f(1) = h4s3 6= 0 (s3 6= 0
and h4 6= 0 by assumption). Then there are a maximum of 3 different roots, each of
which uniquely determines b

r

by (14). This means that there are at least two identical
components. Namely 9s 6= t s.t. ~✓(s) = ~

✓

(t).
If Assumption 1 does not hold, namely ~

✓

(e) is a linear combination of ~1 and ~!

(1),
let

1

1� e

r

= p5er + q5 (16)

12



Define
f(x) =

1

1� x

� p5x� q5

If f(x) has only 1 root or two identical roots between 0 and 1, then all columns of G
have identical e

r

-s. This means ~!

(1) is dependent of ~1, which is a contradiction. So
we only consider the situation where f(x) has two different roots between 0 and 1,
denoted by u1 and u2 (u1 6= u2). Because e1, e2, e3, e4 are roots of f(x), there must
be at least two identical e

r

’s, with the value u1 or u2.
Substitute (16) into ~

✓

(eb), we have ~✓(eb) = [b1(p5e1+q5), b2(p5e2+q5), b3(p5e3+
q5), b4(p5e4 + q5)], which is linearly dependent of G. So there exists nonzero vector
~�1 = [�11, �12, �13, �14] such that

�11 + �12er + �13br + �14br(p5er + q5) = 0

From which we get

(�13 + �14p5er + �14q5)br = �(�11 + �12er) (17)

We recall that e
r

= u1 or e
r

= u2 for r = 1, 2, 3, 4. Since u1 6= u2, there exists
i 2 {1, 2} s.t. �13 + �14p5ui

+ �14q5 6= 0. W.l.o.g. let it be u1. If at least two of the
e

r

’s are u1, without loss of generality let e1 = e2 = u1. Then using (17) we know
b1 = b2 = �(�11+�12u1)

(�13+�14p5u1+�14q5)
. From (12)(13) we can further obtain c1 = c2 and

d1 = d2. So ~

✓

(1) = ~

✓

(2), which is a contradiction.
If there is only one of the e

r

’s, which is u1, w.l.o.g. let e1 = u1 and e2 =
e3 = e4 = u2. We consider the moment where a2 is ranked at the top and a1

the second, which is [ e1b11�b1
,

e2b2
1�b2

,

e3b3
1�b3

,

e4b4
1�b4

]. Add ~!

(1) to it and we have ~

✓

(be) =
[ e1
1�b1

,

e2
1�b2

,

e3
1�b3

,

e4
1�b4

], which is linearly dependent of G. So there exists nonzero
vector ~�2 = [�21, �22, �23, �24] such that

�21 + �22er + �23br + �24
e

r

1� b

r

= 0 (18)

Let

f(x) = �21 + �22u2 + �23x+ �24
u2

1� x

g(x) = (1� x)f(x) = (1� x)(�21 + �22u2 + �23x) + �24u2

If any coefficient of g(x) is nonzero, then g(x) has at most 2 different roots. As g(x) =
0 holds for b2, b3, b4, 9s 6= t s.t. b

s

= b

t

. Since e

s

= e

t

= u2, from (12)(13) we know
c

s

= c

t

and d

s

= d

t

. So ~

✓

(s) = ~

✓

(t). Otherwise we have g(x) = f(x) = 0 for all x.
So

g(1) = �24u2 = 0

Since 0 < u2 < 1, we have �24 = 0. Substitute it into f(x) we have f(x) = �21 +
�22u2+�23x = 0 holds for all x. So we have �21+�22u2 = 0 and �23 = 0. Substitute
�23 = �24 = 0 into (18) we get �21 + �22er = 0, which holds for both e

r

= u1 and
e

r

= u2. As u1 6= u2, we have �22 = 0. Then we have �21 = 0. This contradicts
the nonzero requirement of ~�2. So there exists s 6= t s.t. ~

✓

(s) = ~

✓

(t), which is a
contradiction.

⌅
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Lemma 3 Given a random utility model M(~✓) over a set of m alternatives A, let
A1,A2 be two non-overlapping subsets of A, namely A1,A2 ⇢ A and A1 \A2 = ;.
Let V1, V2 be rankings over A1 and A2, respectively, then we have Pr(V1, V2|~✓) =

Pr(V1|~✓) Pr(V2|~✓).
Proof: In an RUM, given a ground truth utility ~

✓ = [✓1, ✓2, . . . , ✓m] and a distribution
µ

i

(·|✓
i

) for each alternative, an agent samples a random utility X

i

for each alternative
independently with probability density function µ

i

(·|✓
i

). The probability of the ranking
a

i1 � a

i2 � · · · � a

im is

Pr(a
i1 � · · · � a

im |~✓) = Pr(X
i1 > X

i2 > · · · > X

im)

=

Z 1

�1

Z 1

xim

· · ·
Z 1

xi2

µ

im(x
im)µ

im�1(xim�1) . . . µi1(xi1)dxi1dxi2 . . . dxim

W.l.o.g. we let i1 = 1, . . . , i
m

= m. Let S
X1>X2>···>Xm denote the subspace of

Rm where X1 > X2 > · · · > X

m

and let µ(~x|~✓) denote µ
m

(x
m

)µ
m�1(xm�1) . . . µ1(x1).

Thus we have

Pr(a1 � · · · � a

m

|~✓) =
Z

SX1>X2>···>Xm

µ(~x|~✓)d~x

We first prove the following claim.

Claim 7 Given a random utility model M(~✓), for any parameter ~✓ and any A
s

✓ A,
we let ~✓

s

denote the components of ~✓ for alternatives in A
s

, and let V
s

be a full ranking
over A

s

(which is a partial ranking over A). Then we have Pr(V
s

|~✓) = Pr(V
s

|~✓
s

).

Proof: Let m
s

be the number of alternatives in A
s

. Let S
X1>X2>···>Xms

denote the
subspace of Rms where X1 > X2 > · · · > X

ms . W.l.o.g. let V
s

be a1 � a2 · · · � a

ms .
Then we have

Pr(V
s

|~✓) =
Z

SX1>X2>···>Xms
⇥Rm�ms

µ(~x|~✓)d~x

=

Z 1

�1

Z 1

xms

· · ·
Z 1

x2

Z 1

�1
· · ·

Z 1

�1
µ

m

(x
m

) . . . µ1(x1)dxms+1 · · · dxm

dx1 . . . dxms

=

Z 1

�1

Z 1

xms

· · ·
Z 1

x2

µ

ms(xms)µms�1(xms�1) . . . µ1(x1)dx1dx2 . . . dxms

=

Z

SX1>X2>···>Xms

µ(~x
s

|~✓
s

)d~x = Pr(V
s

|~✓
s

)

⌅
Let A1 = {a11, a12, . . . , a1m1} and A2 = {a21, a22, . . . , a2m2}. Without loss

of generality we let V1 and V2 be a11 � a12 � · · · � a1m1 and a21 � a22 �
· · · � a2m2 respectively. For any ~

✓, let ~✓1 denote the subvector of ~✓ on A1. Let S1

denote S
X11>X12>···>X1m1

. ~

✓2 and S2 are defined similarly. According to Claim 7,
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we have Pr(V1|~✓) = Pr(V1|~✓1) =
R
S1

µ(~x1|~✓1)d~x1 and Pr(V2|~✓) = Pr(V2|~✓2) =
R
S2

µ(~x2|~✓2)d~x2. Then we have

Pr(V1, V2|~✓) =
Z

S1⇥S2⇥Rm�m1�m2

µ(~x|~✓)d~x

=

Z

S1⇥S2

µ(~x1, ~x2|~✓1, ~✓2)d~x (Claim 7)

=

Z

S1

Z

S2

µ(~x1|~✓1)µ(~x2|~✓2)d~x1d~x2 (Fubini’s Theorem)

=

Z

S1

µ(~x1|~✓1)d~x1

Z

S2

µ(~x2|~✓2)d~x2

= Pr(V1|~✓1) Pr(V2|~✓2)

⌅

Theorem 4 Algorithm 1 is consistent w.r.t. 2-PL, where there exists ✏ > 0 such that
each parameter is in [✏, 1].
Proof: We will check all assumptions in Theorem 3.1 in ?.

Assumption 3.1: Strict Stationarity: the (n⇥1) random vectors {v
t

;�1 < t < 1}
form a strictly stationary process with sample space S ✓ Rn.

As the data are generated i.i.d., the process is strict stationary.
Assumption 3.2: Regularity Conditions for g(·, ·): the function g : S ⇥ ⇥ ! Rq

where q < 1, satisfies: (i) it is continuous on ⇥ for each P 2 S; (ii) E[g(P, ~✓)] exists
and is finite for every ✓ 2 ⇥; (iii) E[g(P, ~✓)] is continuous on ⇥.

Our moment conditions satisfy all the regularity conditions since g(P, ~✓) is contin-
uous on ⇥ and bounded in [�1, 1]9.

Assumption 3.3: Population Moment Condition. The random vector v

t

and the
parameter vector ✓0 satisfy the (q⇥ 1) population moment condition: E[g(P, ✓0)] = 0.

This assumption holds by the definition of our GMM.
Assumption 3.4 Global Identification. E[g(P, ~✓0)] 6= 0 for all ~✓0 2 ⇥ such that

~

✓

0 6= ✓0.
This is proved in Theorem 2.
Assumption 3.7 Properties of the Weighting Matrix. W

t

is a positive semi-definite
matrix which converges in probability to the positive definite matrix of constants W .

This holds because W = I .
Assumption 3.8 Ergodicity. The random process {v

t

;�1 < t < 1} is ergodic.
Since the data are generated i.i.d., the process is ergodic.
Assumption 3.9 Compactness of ⇥. ⇥ is a compact set.
⇥ = [✏, 1]9 is compact.
Assumption 3.10 Domination of g(P, ~✓). E[sup

✓2⇥ ||g(P, ~✓)||] < 1.
This assumption holds because all moment conditions are finite.
Theorem 3.1 Consistency of the Parameter Estimator. If Assumptions 3.1-3.4 and

3.7-3.10 hold then ✓̂

T

p! ✓0

⌅
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