Supplementary Materials

Lemma 2 If there exist all different $e_{1}, e_{2}, \cdots, e_{2 k}<1$ and a non-zero vector $\overrightarrow{\beta^{*}}=$ $\left[\beta_{1}^{*}, \beta_{2}^{*}, \cdots, \beta_{2 k}^{*}\right]^{\top}$, s.t.

- $\mathbf{H}^{k} \overrightarrow{\beta^{*}}=0$,
- $\overrightarrow{\beta^{*}}$ has k positive elements and k negative elements.
then k-PL for $2 k-1$ alternatives is not identifiable.
Proof: W.l.o.g. assume $\beta_{1}^{*}, \beta_{2}^{*}, \cdots, \beta_{k}^{*}>0$ and $\beta_{k+1}^{*}, \beta_{k+2}^{*}, \beta_{2 k}^{*}<0 . \mathbf{H}_{2 k-1}^{k} \overrightarrow{\beta^{*}}=0$ means that

$$
\sum_{r=1}^{k} \beta_{r}^{*} \overrightarrow{f_{r}}=-\sum_{r=k+1}^{2 k} \beta_{r}^{*} \overrightarrow{f_{r}}
$$

According to the first row in \mathbf{H}^{k}, we have $\sum_{r} \beta_{r}^{*}=0$. Let $S=\sum_{r=1}^{k} \beta_{r}^{*}$. Further let $\alpha_{r}^{*}=\beta_{r}^{*} / S$ when $r=1,2, \cdots, k$ and $\alpha_{r}^{*}=-\beta_{r}^{*} / S$ when $r=k+1, k+2, \cdots, 2 k$. We have

$$
\sum_{r=1}^{k} \alpha_{r}^{*} \vec{f}_{r}=\sum_{r=k+1}^{2 k} \alpha_{r}^{*} \overrightarrow{f_{r}}
$$

where $\sum_{r=1}^{k} \alpha_{r}^{*}=1$ and $\sum_{r=k+1}^{2 k} \alpha_{r}^{*}=1$. This means that the model is not identifiable.

Lemma $4 \sum_{s} \frac{1}{\prod_{t \neq s}\left(e_{s}-e_{t}\right)}=0$ where $\forall s \neq t, e_{s} \neq e_{t}$.
Proof: The partial fraction decomposition of the first term is

$$
\frac{1}{\prod_{q \neq 1}\left(e_{1}-e_{q}\right)}=\sum_{q \neq 1}\left(\frac{B_{q}}{e_{1}-e_{q}}\right)
$$

where $B_{q}=\frac{1}{\prod_{p \neq q, p \neq 1}\left(e_{q}-e_{p}\right)}$.
Namely,

$$
\frac{1}{\prod_{q \neq 1}\left(e_{1}-e_{q}\right)}=-\sum_{q \neq 1}\left(\frac{1}{\prod_{p \neq q}\left(e_{q}-e_{p}\right)}\right)
$$

We have

$$
\sum_{s} \frac{1}{\prod_{t \neq s}\left(e_{s}-e_{t}\right)}=\frac{1}{\prod_{q \neq 1}\left(e_{1}-e_{q}\right)}+\sum_{q \neq 1}\left(\frac{1}{\prod_{p \neq q}\left(e_{q}-e_{p}\right)}\right)=0
$$

Lemma 5 For all $\mu \leq \nu-2$, we have $\sum_{s=1}^{\nu} \frac{\left(e_{s}\right)^{\mu}}{\prod_{t \neq s}\left(e_{s}-e_{t}\right)}=0$.

Proof: Base case: When $\nu=2, \mu=0$, obviously

$$
\frac{1}{e_{1}-e_{2}}+\frac{1}{e_{2}-e_{1}}=0
$$

Assume the lemma holds for $\nu=p$ and all $\mu \leq \nu-2$, that is $\sum_{s=1}^{\nu} \frac{e_{s}^{\mu}}{\prod_{t \neq s}\left(e_{s}-e_{t}\right)}=0$. When $\nu=p+1, \mu=0$, by Lemma 4 we have

$$
\sum_{s=1}^{p+1} \frac{1}{\prod_{t \neq s}\left(e_{s}-e_{t}\right)}=0
$$

Assume $\sum_{s=1}^{p+1} \frac{e_{s}^{q}}{\prod_{t \neq s}\left(e_{s}-e_{t}\right)}=0$ for all $\mu=q, q \leq p-2$. For $\mu=q+1$,

$$
\begin{aligned}
\sum_{s=1}^{p+1} \frac{e_{s}^{q+1}}{\prod_{t \neq s}\left(e_{s}-e_{t}\right)} & =\sum_{s=1}^{p+1} \frac{e_{s}^{q} e_{p+1}}{\prod_{t \neq s}\left(e_{s}-e_{t}\right)}+\sum_{s=1}^{p+1} \frac{e_{s}^{q}\left(e_{s}-e_{p+1}\right)}{\prod_{t \neq s}\left(e_{s}-e_{t}\right)} \\
& =e_{p+1} \sum_{s=1}^{p+1} \frac{e_{s}^{q}}{\prod_{t \neq s}\left(e_{s}-e_{t}\right)}+\sum_{s=1}^{p} \frac{e_{s}^{q}}{\prod_{t \neq s}\left(e_{s}-e_{t}\right)}=0
\end{aligned}
$$

The last equality is obtained from the induction hypotheses.
Lemma 6 Let $f(x)$ be any polynomial of degree $\nu-2$, then $\sum_{s=1}^{\nu} \frac{f\left(e_{s}\right)}{\prod_{t \neq s}\left(e_{s}-e_{t}\right)}=0$.
This can be easily derived from Lemma 5.

Remaining proof for Theorem 1

Now we are ready to prove that $\mathbf{H}^{k} \overrightarrow{\beta^{*}}=0$. Note that the degree of the numerator of β_{r}^{*} is $2 k-3$ (see Equation (3)). Let $\left[\mathbf{H}^{k}\right]_{i}$ denote the i-th row of \mathbf{H}^{k}. We have the following calculations.

$$
\begin{aligned}
& {\left[\mathbf{H}^{k}\right]_{1} \overrightarrow{\beta^{*}}=\sum_{r=1}^{2 k} \frac{\prod_{p=1}^{2 k-3}\left(p e_{r}+2 k-2-p\right)}{\prod_{q \neq r}\left(e_{r}-e_{q}\right)}=0} \\
& {\left[\mathbf{H}^{k}\right]_{2} \overrightarrow{\beta^{*}}=\sum_{r=1}^{2 k} \frac{\prod_{p=1}^{2 k-3} e_{r}\left(p e_{r}+2 k-2-p\right)}{\prod_{q \neq r}\left(e_{r}-e_{q}\right)}=0}
\end{aligned}
$$

For any $2<i \leq 2 k-1$, we have

$$
\begin{aligned}
& {\left[\mathbf{H}^{k}\right]_{i} \overrightarrow{\beta^{*}} } \\
= & \sum_{r=1}^{2 k} \frac{e_{r}\left(1-e_{r}\right)^{i-2}}{\prod_{p=1}^{i-2}\left(p e_{r}+2 k-2-p\right)} \frac{\prod_{p=1}^{2 k-3}\left(p e_{r}+2 k-2-p\right)}{\prod_{q \neq r}\left(e_{r}-e_{q}\right)} \\
= & \sum_{r=1}^{2 k} \frac{e_{r}\left(1-e_{r}\right)^{i-2} \prod_{p=i-1}^{2 k-3}\left(p e_{r}+2 k-2-p\right)}{\prod_{q \neq r}\left(e_{r}-e_{q}\right)}=0
\end{aligned}
$$

The last equality is obtained by letting $v=2 k-2$ in Lemma 6. Therefore, $\mathbf{H}^{k} \overrightarrow{\beta^{*}}=0$. Note that $\overrightarrow{\beta^{*}}$ is also the solution for less than $2 k-1$ alternatives. The theorem follows after applying Lemma 2.

Theorem 2 For $k=2$, and any $m \geq 4$, the 2-PL is identifiable.
Proof: We will apply Lemma 1 to prove the theorem. That is, we will show that for all non-degenerate $\vec{\theta}^{(1)}, \vec{\theta}^{(2)}, \vec{\theta}^{(3)}, \vec{\theta}^{(4)}$ such that $\operatorname{rank}\left(\mathbf{F}_{4}^{2}\right)=4$. We recall that \mathbf{F}_{4}^{2} is a 24×4 matrix. Instead of proving $\operatorname{rank}\left(\mathbf{F}_{4}^{2}\right)=4$ directly, we will first obtain a 4×4 matrix $\mathbf{F}^{*}=T \times \mathbf{F}_{4}^{2}$ by linearly combining some row vectors of \mathbf{F}_{4}^{2} via a 4×24 matrix T. Then, we show that $\operatorname{rank}\left(\mathbf{F}^{*}\right)=4$, which implies that $\operatorname{rank}\left(\mathbf{F}_{4}^{2}\right)=4$.

For simplicity we use $\left[e_{r}, b_{r}, c_{r}, d_{r}\right]^{\top}$ to denote the parameter of r th Plackett-Luce component for $a_{1}, a_{2}, a_{3}, a_{4}$ respectively. Namely,

$$
\left[\begin{array}{llll}
\vec{\theta}^{(1)} & \vec{\theta}^{(2)} & \vec{\theta}^{(3)} & \vec{\theta} \\
\\
(4)
\end{array}\right]=\left[\begin{array}{llll}
e_{1} & e_{2} & e_{3} & e_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4} \\
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right]
$$

where for each $r \leq 4, \vec{\omega}^{(r)}$ is a row vector. We further let $\overrightarrow{1}=[1,1,1,1]$. For proof convenience we define 5 row vectors.

$$
\begin{aligned}
\overrightarrow{1} & =[1,1,1,1] \\
\vec{\omega}^{(1)} & =\left[e_{1}, e_{2}, e_{3}, e_{4}\right] \\
\vec{\omega}^{(2)} & =\left[b_{1}, b_{2}, b_{3}, d_{3}\right] \\
\vec{\omega}^{(3)} & =\left[c_{1}, c_{2}, c_{3}, c_{4}\right] \\
\vec{\omega}^{(4)} & =\left[d_{1}, d_{2}, d_{3}, d_{4}\right]
\end{aligned}
$$

Clearly we have $\sum_{i=1}^{4} \vec{\omega}^{(i)}=\overrightarrow{1}$. Therefore, if there exist three $\vec{\omega}$'s, for example $\left\{\vec{\omega}^{(1)}, \vec{\omega}^{(2)}, \vec{\omega}^{(3)}\right\}$, such that $\left\{\vec{\omega}^{(1)}, \vec{\omega}^{(2)}, \vec{\omega}^{(3)}\right\}$ and $\overrightarrow{1}$ are linearly independent, then $\operatorname{rank}\left(\mathbf{F}_{4}^{2}\right)=4$ because each $\vec{\omega}^{(i)}$ corresponds to the probability of a_{i} being ranked at the top, which means that $\vec{\omega}^{(i)}$ is a linear combination of rows in \mathbf{F}_{4}^{2}. Because $\vec{\theta}^{(1)}, \vec{\theta}^{(2)}, \vec{\theta}^{(3)}, \vec{\theta}^{(4)}$ is non-degenerate, at least one of $\left\{\vec{\omega}^{(1)}, \vec{\omega}^{(2)}, \vec{\omega}^{(3)}, \vec{\omega}^{(4)}\right\}$ is linearly independent of $\overrightarrow{1}$. W.l.o.g. suppose $\vec{\omega}^{(1)}$ is linearly independent of $\overrightarrow{1}$. This means that not all of $e_{1}, e_{2}, e_{3}, e_{4}$ are equal. The theorem will be proved in the following two cases.
Case 1. $\vec{\omega}^{(2)}, \vec{\omega}^{(3)}$, and $\vec{\omega}^{(4)}$ are all linear combinations of $\overrightarrow{1}$ and $\vec{\omega}^{(1)}$.
Case 2. There exists a $\vec{\omega}^{(i)}$ (where $i \in\{2,3,4\}$) that is linearly independent of $\overrightarrow{1}$ and $\vec{\omega}^{(1)}$.
Case 1. For all $i=2,3,4$ we can rewrite $\vec{\omega}^{(i)}=p_{i} \vec{\omega}^{(1)}+q_{i}$ for some constants p_{i}, q_{i}. More precisely, for all $r=1,2,3,4$ we have:

$$
\begin{align*}
b_{r} & =p_{2} e_{r}+q_{2} \tag{5}\\
c_{r} & =p_{3} e_{r}+q_{3} \tag{6}\\
d_{r} & =p_{4} e_{r}+q_{4} \tag{7}
\end{align*}
$$

Because $\vec{\omega}^{(1)}+\vec{\omega}^{(2)}+\vec{\omega}^{(3)}+\vec{\omega}^{(4)}=\overrightarrow{1}$, we have

$$
\begin{align*}
p_{2}+p_{3}+p_{4} & =-1 \tag{8}\\
q_{2}+q_{3}+q_{4} & =1 \tag{9}
\end{align*}
$$

In this case for each $r \leq 4$, the r-th column of \mathbf{F}_{4}^{2}, which is $f_{4}\left(\vec{\theta}^{(r)}\right)$, is a function of e_{r}. Because the $\vec{\theta}$'s are non-degenerate, $e_{1}, e_{2}, e_{3}, e_{4}$ must be pairwise different.

We assume $p_{2} \neq 0$ and $q_{2} \neq 1$ for all subcases of Case 1 (This will be denoted as Case 1 Assumption). The following claim shows that there exists p_{i}, q_{i} where $i \in\{2,3,4\}$ satisfying this condition. If $i \neq 2$ we can switch the row of alternatives a_{2} and a_{i}. Then the assumption holds.

Claim 2 There exists $i \in 2,3,4$ which satisfy the following conditions:

- $q_{i} \neq 1$
- $p_{i} \neq 0$

Proof: Suppose for all $i=2,3,4, q_{i}=1$ or $p_{i}=0$.
If $p_{i}=0, q_{i}$ must be positive because b_{r}, c_{r}, d_{r} are all positive. If $p_{i} \neq 0$, Then $q_{i}=1$ due to the assumption above. So $q_{i}>0$ for all $i=2,3,4$. If there exists i s.t. $q_{i}=1$, then (9) does not hold. So for all $i, q_{i} \neq 1$. Then $p_{i}=0$ holds for all $i \in\{2,3,4\}$, which violates (8).
Case 1.1. $p_{2}+q_{2} \neq 0$ and $p_{2}+q_{2} \neq 1$.
For this case we first define a 4×4 matrix $\hat{\mathbf{F}}$ as follows.

| 色 $\hat{\mathbf{F}}$ | Moments |
| :---: | :---: | :---: | :---: |
| $\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ e_{1} & e_{2} & e_{3} & e_{4} \\ \frac{e_{1} b_{1}}{1-b_{1}} & \frac{e_{2} b_{2}}{1-b_{2}} & \frac{e_{3} b_{3}}{1-b_{3}} & \frac{e_{4} b_{4}}{1-b_{4}} \\ \frac{e_{1} b_{1}}{1-e_{1}} & \frac{e_{2} b_{2}}{1-e_{2}} & \frac{e_{3} b_{3}}{1-e_{3}} & \frac{e_{4} b_{4}}{1-e_{4}}\end{array}\right]$ | $\overrightarrow{1}$ |
| $a_{1} \succ$ others | |
| $a_{2} \succ a_{1} \succ$ others | |
| $a_{1} \succ a_{2} \succ$ others | |

We use $\overrightarrow{1}$ and $\vec{\omega}^{(1)}$ as the first two rows. $\vec{\omega}^{(1)}$ corresponds to the probability that a_{1} is ranked in the top. We call such a probability a moment. Each moment is the sum of probabilities of some rankings. For example, the " $a_{1} \succ$ others" moment is the total probability for $\left\{V \in \mathcal{L}(\mathcal{A}): a_{1}\right.$ is ranked at the top of $\left.V\right\}$. It follows that there exists a 4×24 matrix \hat{T} such that $\hat{\mathbf{F}}=\hat{T} \times \mathbf{F}_{4}^{2}$.

Define

$$
\begin{aligned}
\vec{\theta}^{(b)} & =\left[\frac{1}{1-b_{1}}, \frac{1}{1-b_{2}}, \frac{1}{1-b_{3}}, \frac{1}{1-b_{4}}\right] \\
& =\left[\frac{1}{1-p_{2} e_{1}-q_{2}}, \frac{1}{1-p_{2} e_{2}-q_{2}}, \frac{1}{1-p_{2} e_{3}-q_{2}}, \frac{1}{1-p_{2} e_{4}-q_{2}}\right]
\end{aligned}
$$

and

$$
\begin{equation*}
\vec{\theta}^{(e)}=\left[\frac{1}{1-e_{1}}, \frac{1}{1-e_{2}}, \frac{1}{1-e_{3}}, \frac{1}{1-e_{4}}\right] \tag{10}
\end{equation*}
$$

And define $\mathbf{F}^{*}=\left[\begin{array}{c}\overrightarrow{1} \\ \overrightarrow{\vec{~}}^{(1)} \\ \vec{\theta}^{(b)} \\ \vec{\theta}^{(e)}\end{array}\right]$. It can be verified that $\hat{\mathbf{F}}=T^{*} \times \mathbf{F}^{*}$, where

$$
T^{*}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{p_{2}} & -1 & \frac{1-q_{2}}{p_{2}} & 0 \\
-\left(p_{2}+q_{2}\right) & -p_{2} & 0 & p_{2}+q_{2}
\end{array}\right]
$$

Because Case 1.1 assumes that $p_{2}+q_{2} \neq 0$ and by Case 1 Assumption $p_{2} \neq 0$, $q_{2} \neq 1$, we have that T^{*} is invertible. Therefore, $\mathbf{F}^{*}=\left(T^{*}\right)^{-1} \times \hat{\mathbf{F}}$, which means that $\mathbf{F}^{*}=T \times \mathbf{F}_{4}^{2}$ for some 4×24 matrix T.

We now prove that $\operatorname{rank}\left(\mathbf{F}^{*}\right)=4$. For the sake of contradiction, suppose that $\operatorname{rank}\left(\mathbf{F}^{*}\right)<4$. It follows that there exist a nonzero row vector $\vec{t}=\left[t_{1}, t_{2}, t_{3}, t_{4}\right]$, such that $\vec{t} \mathbf{F}^{*}=0$. This means that for all $r \leq 4$,

$$
t_{1}+t_{2} e_{r}+\frac{t_{3}}{1-p_{2} e_{r}-q_{2}}+\frac{t_{4}}{1-e_{r}}=0
$$

Let

$$
f(x)=t_{1}+t_{2} x+\frac{t_{3}}{1-p_{2} x-q_{2}}+\frac{t_{4}}{1-x}
$$

Let $g(x)=\left(1-p_{2} x-q_{2}\right)(1-x) f(x)$. We recall that $e_{1}, e_{2}, e_{3}, e_{4}$ are four roots of $f(x)$, which means that they are also the four roots of $g(x)$. Now we will verify that not all coefficients of $f(x)$ are zero. Suppose all coefficients of x in $f(x)$ are zero, then $g(x)=0$ holds for all x. By assigning x to different values, we have

$$
\begin{aligned}
g(1) & =t_{4}\left(1-p_{2}-q_{2}\right)=0 \\
g\left(\frac{1-q_{2}}{p_{2}}\right) & =\frac{t_{3}\left(p_{2}+q_{2}-1\right)}{p_{2}}=0
\end{aligned}
$$

By Case 1.1 assumption $p_{2}+q_{2} \neq 1$, we have $t_{3}=t_{4}=0$. Then from $f(x)=$ $t_{1}+t_{2} x=0$ holds for all x, we have $t_{1}=t_{2}=0$, which is a contradiction.

We note that the degree of $g(x)$ is 3 . Therefore, due to the Fundamental Theorem of Algebra, $g(x)$ has at most three different roots. This means that $e_{1}, e_{2}, e_{3}, e_{4}$ are not pairwise different, which is a contradiction. Therefore, $\operatorname{rank}\left(\mathbf{F}^{*}\right)=4$, which means that $\operatorname{rank}\left(\mathbf{F}_{4}^{2}\right)=4$.
Case 1.2. $p_{2}+q_{2}=1$.
If we can find an alternative a_{i}, such that p_{i} and q_{i} satisfy the following conditions:

- $p_{i} \neq 0$
- $q_{i} \neq 1$
- $p_{i}+q_{i} \neq 0$
- $p_{i}+q_{i} \neq 1$

Then we can use a_{i} as a_{2}, which belongs to Case 1.1. Otherwise we have the following claim.

Claim 3 Iffor $i \in\{3,4\}, p_{i}$ and q_{i} satisfy one of the following conditions

1. $p_{i}=0$
2. $p_{i} \neq 0, q_{i}=1$
3. $p_{i}+q_{i}=0$
4. $p_{i}+q_{i}=1$

We claim that there exists $i \in\{3,4\}$ s.t. p_{i}, q_{i} satisfy condition 2 , namely $p_{i} \neq 0$, $q_{i}=1$.

Proof: Suppose $p_{i}=0$, then $q_{i}>0$ because $p_{i} e_{1}+q_{i}$ is a parameter in a PlackettLuce component. If for $i=3,4, p_{i}$ and q_{i} satisfy any of conditions 1,3 or 4 , then $q_{i} \geq-p_{i}\left(q_{i}>0\right.$ for condition $1, q_{i}=-p_{i}$ for condition $3, q_{i}=1-p_{i}>-p_{1}$ for condition 4). As $\sum_{i=2}^{4} p_{i}=-1, \sum_{i=2}^{4} q_{i} \geq 1-\sum_{i=2}^{4} p_{i}=2$, which contradicts that $\sum_{i=2}^{4} q_{i}=1$.

Without loss of generality we let $p_{3} \neq 0$ and $q_{3}=1$. We now construct $\hat{\mathbf{F}}$ as is shown in the following table.

| 金 | | Moments |
| :---: | :---: | :---: | :---: |
| $\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ e_{1} & e_{2} & e_{3} & e_{4} \\ \frac{e_{1} b_{1}}{1-e_{1}} & \frac{e_{2} b_{2}}{1-e_{2}} & \frac{e_{3} b_{3}}{1-e_{3}} & \frac{e_{4} b_{4}}{1-e_{4}} \\ \frac{c_{1} b_{1}}{1-c_{1}} & \frac{c_{2} b_{2}}{1-c_{2}} & \frac{c_{3} b_{3}}{1-c_{3}} & \frac{c_{4} b_{4}}{1-c_{4}}\end{array}\right]$ | $a_{1} \succ$ others | |
| $a_{1} \succ a_{2} \succ$ others | | |
| $a_{3} \succ a_{2} \succ$ others | | |

We define $\vec{\theta}^{(b)}$ the same way as in Case 1.1, and define

$$
\vec{\theta}^{(c)}=\left[\frac{1}{e_{1}}, \frac{1}{e_{2}}, \frac{1}{e_{3}}, \frac{1}{e_{4}}\right]
$$

Define

$$
\mathbf{F}^{*}=\left[\begin{array}{c}
\overrightarrow{1} \\
\vec{\omega}^{(1)} \\
\vec{\theta}^{(e)} \\
\vec{\theta}^{(c)}
\end{array}\right]
$$

We will show that $\hat{\mathbf{F}}=T^{*} \times \mathbf{F}^{*}$ where T^{*} has full rank.
For all $r=1,2,3,4$

$$
\frac{c_{r} b_{r}}{1-c_{r}}=\frac{\left(p_{3} e_{r}+q_{3}\right)\left(p_{2} e_{r}+q_{2}\right)}{1-p_{3} e_{r}-q_{3}}=\frac{\left(p_{3} e_{r}+1\right)\left(p_{2} e_{r}+1-p_{2}\right)}{-p_{3} e_{r}}=-p_{2} e_{r}+\left(p_{2}-1-\frac{p_{2}}{p_{3}}\right)-\frac{1-p_{2}}{p_{3} e_{r}}
$$

So

$$
\hat{\mathbf{F}}=\left[\begin{array}{c}
\overrightarrow{1} \\
\vec{\omega}^{(1)} \\
-\overrightarrow{1}-p_{2} \vec{\omega}^{(1)}+\vec{\theta}^{(e)} \\
\left(p_{2}-1-\frac{p_{2}}{p_{3}}\right) \overrightarrow{1}-p_{2} \vec{\omega}^{(1)}-\frac{1-p_{2}}{p_{3}} \vec{\theta}^{(c)}
\end{array}\right]
$$

Suppose $p_{2} \neq 1$, we have $\hat{\mathbf{F}}=T^{*} \times \mathbf{F}^{*}$ where

$$
T^{*}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & -p_{2} & 1 & 0 \\
p_{2}-1-\frac{p_{2}}{p_{3}} & -p_{2} & 0 & -\frac{1-p_{2}}{p_{3}}
\end{array}\right]
$$

which is full rank. So $\operatorname{rank}\left(\mathbf{F}^{*}\right)=\operatorname{rank}(\hat{\mathbf{F}})$.
If $\operatorname{rank}\left(\mathbf{F}_{4}^{2}\right) \leq 3$, then there is at least one column in \mathbf{F}_{4}^{2} dependent of the other columns. As all rows in $\hat{\mathbf{F}}$ are linear combinations of rows in \mathbf{F}_{4}^{2}, there is also at least one column in $\hat{\mathbf{F}}$ dependent of the other columns. Therefore we have $\operatorname{rank}(\hat{\mathbf{F}}) \leq 3$. Further we have $\operatorname{rank}\left(\mathbf{F}^{*}\right) \leq 3$. Therefore, there exists a nonzero row vector $\vec{t}=$ $\left[t_{1}, t_{2}, t_{3}, t_{4}\right]$, s.t.

$$
\vec{t} \mathbf{F}^{*}=0
$$

Namely, for all $r \leq 4$,

$$
t_{1}+t_{2} e_{r}+\frac{t_{3}}{1-e_{r}}+\frac{t_{4}}{e_{r}}=0
$$

Let

$$
\begin{aligned}
& f(x)=t_{1}+t_{2} x+\frac{t_{3}}{1-x}+\frac{t_{4}}{x}=0 \\
& g(x)=x(1-x) f(x)=x(1-x)\left(t_{1}+t_{2}\right)+t_{3} x+t_{4}(1-x)
\end{aligned}
$$

If any of the coefficients in $f(x)$ is nonzero, then $g(x)$ is a polynomial of degree at most 3 . There will be a maximum of 3 different roots. Since this equation holds for e_{r} where $r=1,2,3,4$, there exists $s \neq t$ s.t. $e_{s}=e_{t}$. Otherwise $g(x)=f(x)=0$ for all x. We have

$$
\begin{aligned}
& g(0)=t_{4}=0 \\
& g(1)=t_{3}=0
\end{aligned}
$$

Substitute $t_{3}=t_{4}=0$ into $f(x)$, we have $f(x)=t_{1}+t_{2} x=0$ for all x. So $t_{1}=t_{2}=0$. This contradicts the nonzero requirement of \vec{t}. Therefore there exists $s \neq t$ s.t. $e_{s}=e_{t}$. From (5)(6)(7) we have $\vec{\theta}^{(s)}=\vec{\theta}^{(t)}$, which is a contradition.

If $p_{2}=1$, from the assumption of Case $1.2 q_{2}=0$. So $b_{r}=e_{r}$ for $r=1,2,3,4$. Then from (8) we have $p_{4}=-p_{3}-2$ and from (9) we have $q_{4}=0$. Since p_{4} and q_{4} satisfy one of the four conditions in Claim 3, we can show it must satisfy Condition 4. $\left(q_{4}=0\right.$ violates Condition 2. If it satisfies Condition 1 or 3 , then $p_{4}=0$. Then $d_{r}=p_{4} a_{r}+q_{4}=0$, which is impossible.) So $p_{4}=1$, and $p_{3}=-3$. This is the case where $\vec{\omega}^{(1)}=\vec{\omega}^{(2)}=\vec{\omega}^{(4)}$ and $\vec{\omega}^{(3)}=1-3 \vec{\omega}^{(1)}$. For this case, we use a_{3} as a_{1}. After
the transformation, we have $\vec{\omega}^{(2)}=\vec{\omega}^{(3)}=\vec{\omega}^{(4)}=\frac{1-\vec{\omega}^{(1)}}{3}$. We claim that this lemma holds for a more general case where $p_{i}+q_{i}=0$ for $i=2,3,4$. It is easy to check that $p_{i}=-\frac{1}{3}$ and $q_{i}=\frac{1}{3}$ belongs to this case.

Claim 4 For all $r=1,2,3,4$, if

$$
\vec{\theta}^{(r)}=\left[\begin{array}{c}
e_{r} \tag{11}\\
b_{r} \\
c_{r} \\
d_{r}
\end{array}\right]=\left[\begin{array}{c}
e_{r} \\
p_{2} e_{r}-p_{2} \\
p_{3} e_{r}-p_{3} \\
-\left(1+p_{2}+p_{3}\right) e_{r}+\left(1+p_{2}+p_{3}\right)
\end{array}\right]
$$

The model is identifiable.
Proof: We first show a claim, which is useful to the proof.
Claim 5 Under the settings of (11), $-1<p_{2}, p_{3}<0,-1<p_{2}+p_{3}<0$.
Proof: From the definition of Plackett-Luce model, $0<e_{r}, b_{r}, c_{r}, d_{r}<1$. From (11), we have $p_{2}=\frac{b_{r}}{e_{r}-1}$. Since $b_{r}>0$ and $e_{r}<1, p_{2}<0$. Similarly we have $p_{3}<0$ and $-\left(1+p_{2}+p_{3}\right)<0$. So $-1<p_{2}+p_{3}<0$. Then we have $p_{2}>-1-p_{3}$. So $-1-p_{3}<p_{2}<0, p_{3}>-1$. Similarly we have $p_{2}>-1$.

In this case, we construct $\hat{\mathbf{F}}$ in the following way.
\(\left.\begin{array}{|cccc|c|}\hline \& \hat{\mathbf{F}} \& \& Moments

\hline 1 \& 1 \& 1 \& 1

e_{1} \& e_{2} \& e_{3} \& e_{4}

\frac{e_{1} b_{1}}{1-b_{1}} \& \frac{e_{2} b_{2}}{1-b_{2}} \& \frac{e_{3} b_{3}}{1-b_{3}} \& \frac{e_{4} b_{4}}{1-b_{4}}

\frac{e_{1} b_{1} c_{1}}{\left(1-b_{1}\right)\left(1-b_{1}-c_{1}\right)} \& \frac{e_{2} b_{2} c_{2}}{\left(1-b_{2}\right)\left(1-b_{2}-c_{2}\right)} \& \frac{e_{3} b_{3} c_{3}}{\left(1-b_{3}\right)\left(1-b_{3}-c_{3}\right)} \& \frac{e_{4} b_{4} c_{4}}{\left(1-b_{4}\right)\left(1-b_{4}-c_{4}\right)}\end{array}\right] \quad\)| $a_{1} \succ$ others |
| :---: |
| $a_{2} \succ a_{1} \succ$ others |
| $a_{2} \succ a_{3} \succ a_{1} \succ a_{4}$ |

Define $\vec{\theta}^{(b)}$ the same way as in Case $\mathbf{1 . 1}$

$$
\begin{aligned}
\vec{\theta}^{(b)} & =\left[\frac{1}{1-b_{1}}, \frac{1}{1-b_{2}}, \frac{1}{1-b_{3}}, \frac{1}{1-b_{4}}\right] \\
& =\left[\frac{1}{1-p_{2} e_{1}+p_{2}}, \frac{1}{1-p_{2} e_{2}+p_{2}}, \frac{1}{1-p_{2} e_{3}+p_{2}}, \frac{1}{1-p_{2} e_{4}+p_{2}}\right]
\end{aligned}
$$

And define

$$
\begin{aligned}
\vec{\theta}^{(b c)}= & {\left[\frac{1}{1-\left(p_{2}+p_{3}\right) e_{1}+p_{2}+p_{3}}, \frac{1}{1-\left(p_{2}+p_{3}\right) e_{2}+p_{2}+p_{3}},\right.} \\
& \left.\frac{1}{1-\left(p_{2}+p_{3}\right) e_{3}+p_{2}+p_{3}}, \frac{1}{1-\left(p_{2}+p_{3}\right) e_{4}+p_{2}+p_{3}}\right]
\end{aligned}
$$

Further define

$$
\mathbf{F}^{*}=\left[\begin{array}{c}
\overrightarrow{1} \\
\vec{\omega}^{(1)} \\
\vec{\theta}^{(b)} \\
\vec{\theta}^{(b c)}
\end{array}\right]
$$

We will show $\hat{\mathbf{F}}=T^{*} \times \mathbf{F}^{*}$ where T^{*} has full rank.
The last two rows of $\hat{\mathbf{F}}$

$$
\begin{aligned}
\frac{e_{r} b_{r}}{1-b_{r}} & =-e_{r}-\frac{1}{p_{2}}+\frac{1+p_{2}}{p_{2}\left(1-p_{2} e_{r}+p_{2}\right)} \\
\frac{e_{r}\left(p_{2} e_{r}-p_{2}\right)\left(p_{3} e_{r}-p_{3}\right)}{\left(1-b_{r}\right)\left(1-b_{r}-c_{r}\right)} & =\frac{p_{2} c_{r}}{\left(1-p_{2} e_{r}+p_{2}\right)\left(1-\left(p_{2}+p_{3}\right) e_{r}+p_{2}+p_{3}\right)} \\
& =\frac{p_{r}\left(e_{r}-1\right)^{2}}{\left(1-p_{2} e_{r}+p_{2}\right)\left(1-\left(p_{2}+p_{3}\right) e_{r}+p_{2}+p_{3}\right)} \\
& =\frac{p_{3}\left(2 p_{2}+p_{3}\right)}{p_{2}\left(p_{2}+p_{3}\right)^{2}}+\frac{p_{3}}{p_{2}+p_{3}} e_{r}-\frac{\left(1+p_{2}\right)}{p_{2}\left(1-p_{2} e_{r}+p_{2}\right)} \\
& +\frac{p_{2}\left(1+p_{2}+p_{3}\right)}{\left(1-\left(p_{2}+p_{3}\right) e_{r}+p_{2}+p_{3}\right)\left(p_{2}+p_{3}\right)^{2}}
\end{aligned}
$$

So

$$
\hat{\mathbf{F}}=\left[\begin{array}{c}
\overrightarrow{1} \\
\vec{\omega}^{(1)} \\
-\frac{1}{p_{2}} \overrightarrow{1}-\vec{\omega}^{(1)}+\frac{1+p_{2}}{p_{2}} \vec{\theta}^{(b)} \\
\frac{p_{3}\left(2 p_{2}+p_{3}\right)}{p_{2}\left(p_{2}+p_{3}\right)^{2}} \overrightarrow{1}+\frac{p_{3}}{p_{2}+p_{3}} \vec{\omega}^{(1)}-\frac{1+p_{2}}{p_{2}} \vec{\theta}^{(b)}+\frac{p_{2}\left(1+p_{2}+p_{3}\right)}{\left(p_{2}+p_{3}\right)^{2}} \vec{\theta}^{(b c)}
\end{array}\right]
$$

Then we have $\hat{\mathbf{F}}=T^{*} \times \mathbf{F}^{*}$ where

$$
T^{*}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{p_{2}} & -1 & \frac{1+p_{2}}{p_{2}} & 0 \\
\frac{p_{3}\left(2 p_{2}+p_{3}\right)}{p_{2}\left(p_{2}+p_{3}\right)^{2}} & \frac{p_{3}}{p_{2}+p_{3}} & -\frac{1+p_{2}}{p_{2}} & \frac{p_{2}\left(1+p_{2}+p_{3}\right)}{\left(p_{2}+p_{3}\right)^{2}}
\end{array}\right]
$$

From Claim 5, we have $-1<p_{2}<0$ and $-1<p_{2}+p_{3}<0$, so $\frac{1+p_{2}}{p_{2}} \neq 0$ and $\frac{p_{2}\left(1+p_{2}+p_{3}\right)}{\left(p_{2}+p_{3}\right)^{2}} \neq 0$. So T has full rank. Then $\operatorname{rank}\left(\mathbf{F}^{*}\right)=\operatorname{rank}(\hat{\mathbf{F}})$.

If $\operatorname{rank}\left(\mathbf{F}_{4}^{2}\right) \leq 3$, then there is at least one column in \mathbf{F}_{4}^{2} dependent of other columns. As all rows in $\hat{\mathbf{F}}$ are linear combinations of rows in $\mathbf{F}_{4}^{2}, \operatorname{rank}(\hat{\mathbf{F}}) \leq 3$. Since $\operatorname{rank}\left(\mathbf{F}^{*}\right)=\operatorname{rank}(\hat{\mathbf{F}})$, we have $\operatorname{rank}\left(\mathbf{F}^{*}\right) \leq 3$. Therefore, there exists a nonzero row vector $\vec{t}=\left[t_{1}, t_{2}, t_{3}, t_{4}\right]$, s.t.

$$
\vec{t} \mathbf{F}^{*}=0
$$

Namely, for all $r \leq 4$,

$$
t_{1}+t_{2} e_{r}+\frac{t_{3}}{1-p_{2} a_{r}+p_{2}}+\frac{t_{4}}{1-\left(p_{2}+p_{3}\right) e_{r}+p_{2}+p_{3}}=0
$$

Let

$$
\begin{aligned}
f(x) & =t_{1}+t_{2} x+\frac{t_{3}}{1-p_{2} x+p_{2}}+\frac{t_{4}}{1-\left(p_{2}+p_{3}\right) x+p_{2}+p_{3}} \\
g(x) & =\left(1-p_{2} x+p_{2}\right)\left(1-\left(p_{2}+p_{3}\right) x+p_{2}+p_{3}\right)\left(t_{1}+t_{2} x\right) \\
& +t_{3}\left(1-\left(p_{2}+p_{3}\right) x+p_{2}+p_{3}\right)+t_{4}\left(1-p_{2} x+p_{2}\right)
\end{aligned}
$$

If any of the coefficients of $g(x)$ is nonzero, then $g(x)$ is a polynomial of degree at most 3. There will be a maximum of 3 different roots. As the equation holds for all e_{r} where $r=1,2,3,4$. There exists $s \neq t$ s.t. $e_{s}=e_{t}$. Otherwise $g(x)=f(x)=0$ for all x. We have

$$
\begin{aligned}
g\left(\frac{1+p_{2}}{p_{2}}\right) & =\frac{-t_{3} p_{3}}{p_{2}}=0 \\
g\left(\frac{1+p_{2}+p_{3}}{p_{2}+p_{3}}\right) & =\frac{t_{4} p_{3}}{p_{2}+p_{3}}=0
\end{aligned}
$$

From Claim 5 we know $p_{2}, p_{3}<0$ and $p_{2}+p_{3}<0$. So $t_{3}=t_{4}=0$. Substitute it into $f(x)$ we have $f(x)=t_{1}+t_{2} x=0$ for all x. So $t_{1}=t_{2}=0$. This contradicts the nonzero requirement of \vec{t}. Therefore there exists $s \neq t$ s.t. $e_{s}=e_{t}$. According to (5)(6)(7) we have $\vec{\theta}^{(s)}=\vec{\theta}^{(t)}$, which is a contradition.

Case 1.3. $p_{2}+q_{2}=0$.
If there exists i such that $p_{i}+q_{i}=1$, then we can use a_{i} as a_{2} and the proof is done in Case 1.2. It may still be possible to find another i such that p_{i}, q_{i} satisfy the following two conditions:

1. $p_{i} \neq 0$ and $q_{i} \neq 1$;
2. $p_{i}+q_{i} \neq 0$.

If we can find another i to satisfy the two conditions, then the proof is done in Case 1.1. Then we can proceed by assuming that the two conditions are not satisfied by any i. We will prove that the only possibility is $p_{i}+q_{i}=0$ for $i=2,3,4$.

Suppose for $i=3,4, p_{i}$ and q_{i} violate Condition 1. If $p_{i}=0$, then $q_{i}>0$. If at least one of them has $q_{i}=1$, then $e_{r}+b_{r}+c_{r}+d_{r}>1$, which is impossible. If both alternatives violates Condition 1 and $p_{3}=p_{4}=0$, then $0<q_{3}, q_{4}<1$. According to (8) $p_{2}=-1$. As $p_{2}+q_{2}=0$, we have $q_{2}=1$. From (9), $q_{3}+q_{4}=2$, which is impossible. So there exists $i \in\{3,4\}$ such that $p_{i}+q_{i}=0$. Then from $\sum_{i} \theta_{i}^{r}=1$ we obtain the only case we left out, which is

$$
\begin{aligned}
& e_{r} \\
& b_{r}=p_{2} e_{r}-p_{2} \\
& c_{r}=p_{3} e_{r}-p_{3} \\
& d_{r}=-\left(1+p_{2}+p_{3}\right) e_{r}+\left(1+p_{2}+p_{3}\right)
\end{aligned}
$$

This case has been proved in Claim 4.
Case 2: There exists $\vec{\omega}^{(i)}$ that is linearly independent of $\overrightarrow{1}$ and $\vec{\omega}^{(1)}$. W.l.o.g. let it be $\vec{\omega}^{(2)}$. Define matrix

$$
\mathbf{G}=\left[\begin{array}{c}
\overrightarrow{1} \\
\vec{\omega}^{(1)} \\
\vec{\omega}^{(2)}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
e_{1} & e_{2} & e_{3} & e_{4} \\
b_{1} & b_{2} & b_{3} & b_{4}
\end{array}\right]
$$

The rank of \mathbf{G} is 3 . Since \mathbf{G} is constructed using linear combinations of rows in \mathbf{F}_{4}^{2}, the rank of \mathbf{F}_{4}^{2} is at least 3 .

If $\vec{\omega}^{(3)}$ or $\vec{\omega}^{(4)}$ is independent of rows in \mathbf{G}, then we can append it to \mathbf{G} as the fourth row so that the rank of the new matrix is 4 . Then \mathbf{F}_{4}^{2} is full rank. So we only need to consider the case where $\vec{\omega}^{(3)}$ and $\vec{\omega}^{(4)}$ are linearly dependent of $\overrightarrow{1}, \vec{\omega}(1)$, and $\vec{\omega}^{(2)}$. Let

$$
\begin{align*}
& \vec{\omega}^{(3)}=x_{3} \vec{\omega}^{(1)}+y_{3} \vec{\omega}^{(2)}+z_{3} \overrightarrow{1} \tag{12}\\
& \vec{\omega}^{(4)}=x_{4} \vec{\omega}^{(1)}+y_{4} \vec{\omega}^{(2)}+z_{4} \overrightarrow{1} \tag{13}
\end{align*}
$$

where $x_{3}+x_{4}=-1, y_{3}+y_{4}=-1, z_{3}+z_{4}=1$.
Claim 6 There exists $i \in\{3,4\}$ such that $x_{i}+z_{i} \neq 0$.
Proof: If in the current setting $\exists i \in\{3,4\}$ s.t. $x_{i}+z_{i} \neq 0$, then the proof is done. If in the current setting $x_{3}+z_{3}=x_{4}+z_{4}=0$, but $\exists i \in\{3,4\}$ s.t. $y_{i}+z_{i}=0$, then we can switch the role of e_{r} and b_{r}, namely

$$
\begin{aligned}
& \vec{\omega}^{(3)}=y_{3} \vec{\omega}^{(1)}+x_{3} \vec{\omega}^{(2)}+z_{3} \overrightarrow{1} \\
& \vec{\omega}^{(4)}=y_{4} \vec{\omega}^{(1)}+x_{4} \vec{\omega}^{(2)}+z_{4} \overrightarrow{1}
\end{aligned}
$$

Then the proof is done. If for all $i \in\{3,4\}$ we have $x_{i}+z_{i}=0$ and $y_{i}+z_{i}=0$, then we switch the role of e_{r} and c_{r} and get

$$
\begin{aligned}
& \vec{\omega}^{(3)}=\frac{1}{x_{3}}\left(\vec{\omega}^{(1)}-y_{3} \vec{\omega}^{(2)}-z_{3} \overrightarrow{1}\right) \\
& \vec{\omega}^{(4)}=\frac{1}{x_{4}}\left(\vec{\omega}^{(1)}-y_{4} \vec{\omega}^{(2)}-z_{4} \overrightarrow{1}\right)
\end{aligned}
$$

If $\frac{1-z_{3}}{x_{3}} \neq 0$, namely $z_{3} \neq 1$, the proof is done. Suppose $z_{3}=1$, then $x_{3}=y_{3}=-1$. We have $\vec{\omega}^{(3)}=1-\vec{\omega}^{(1)}-\vec{\omega}^{(2)}$. Then $\vec{\omega}^{(4)}=\overrightarrow{0}$, which is impossible.

Without loss of generality let $x_{3}+z_{3} \neq 0$. Similar to the previous proofs, we want to construct a matrix \mathbf{G}^{\prime} using linear combinations of rows from \mathbf{F}_{4}^{2}. Let the first 3 rows for \mathbf{G}^{\prime} to be \mathbf{G}. Then $\operatorname{rank}\left(\mathbf{G}^{\prime}\right) \geq 3$. Since $\operatorname{rank}\left(\mathbf{F}_{4}^{2}\right) \leq 3$ and all rows in \mathbf{G}^{\prime} are linear combinations of rows in \mathbf{F}_{4}^{2}, we have $\operatorname{rank}\left(\mathbf{G}^{\prime}\right) \leq 3$. So $\operatorname{rank}\left(\mathbf{G}^{\prime}\right)=3$. This means that any linear combinations of rows in \mathbf{F}_{4}^{2} is linearly dependent of rows in \mathbf{G}.

Consider the moment where a_{1} is ranked at the top and a_{2} is ranked at the second position. Then $\left[\frac{e_{1} b_{1}}{1-e_{1}}, \frac{e_{2} b_{2}}{1-e_{2}}, \frac{e_{3} b_{3}}{1-e_{3}}, \frac{e_{4} b_{4}}{1-e_{4}}\right]$ is linearly dependent of \mathbf{G}. Adding $\vec{\omega}^{(2)}$ to it, we have

$$
\vec{\theta}^{(e b)}=\left[\frac{b_{1}}{1-e_{1}}, \frac{b_{2}}{1-e_{2}}, \frac{b_{3}}{1-e_{3}}, \frac{b_{4}}{1-e_{4}}\right]
$$

which is linearly dependent of \mathbf{G}.
Similarly consider the moment that a_{1} is ranked at the top and a_{3} is ranked at the second position. We obtain $\left[\frac{e_{1} c_{1}}{1-e_{1}}, \frac{e_{2} c_{2}}{1-e_{2}}, \frac{e_{3} c_{3}}{1-e_{3}}, \frac{e_{4} c_{4}}{1-e_{4}}\right]$. Add $\vec{\omega}^{(3)}$ to it, we get

$$
\vec{\theta}^{(e c)}=\left[\frac{c_{1}}{1-e_{1}}, \frac{c_{2}}{1-e_{2}}, \frac{c_{3}}{1-e_{3}}, \frac{c_{4}}{1-e_{4}}\right]
$$

which is linearly dependent of G.
Recall from (10)

$$
\vec{\theta}^{(e)}=\left[\frac{1}{1-e_{1}}, \frac{1}{1-e_{2}}, \frac{1}{1-e_{3}}, \frac{1}{1-e_{4}}\right]
$$

Then

$$
\begin{aligned}
\vec{\theta}^{(e c)} & =\left[\frac{x_{3} e_{1}+y_{3} b_{1}+z_{3}}{1-e_{1}}, \frac{x_{3} e_{2}+y_{3} b_{2}+z_{3}}{1-e_{2}}, \frac{x_{3} e_{3}+y_{3} b_{3}+z_{3}}{1-e_{3}}, \frac{x_{3} e_{4}+y_{3} b_{4}+z_{3}}{1-e_{4}}\right] \\
& =\left(x_{3}+z_{3}\right) \vec{\theta}^{(e)}+y_{3} \vec{\theta}^{(e b)}-x_{3} \overrightarrow{1}
\end{aligned}
$$

Because both $\vec{\theta}(e b)$ and $\vec{\theta}{ }^{(e c)}$ are linearly dependent of $\mathbf{G}, \vec{\theta}(e)$ is also linearly dependent of \mathbf{G}. Make it the 4 th row of \mathbf{G}^{\prime}. Suppose the rank of \mathbf{G}^{\prime} is still 3 . We will first prove this lemma under the assumption below, and then discuss the case where the assumption does not hold.

Assumption 1: Suppose $\overrightarrow{1}, \vec{\omega}^{(1)}, \vec{\theta}^{(e)}$ are linearly independent.
Then $\vec{\omega}^{(2)}$ is a linear combination of $\overrightarrow{1}, \vec{\omega}^{(1)}$ and $\vec{\theta}^{(e)}$. We write $\vec{\omega}^{(2)}=s_{1}+$ $s_{2} \vec{\omega}^{(1)}+s_{3} \vec{\theta}^{(e)}$ for some constants s_{1}, s_{2}, s_{3}. We have $s_{3} \neq 0$ because $\vec{\omega}^{(2)}$ is linearly independent of $\overrightarrow{1}$ and $\vec{\omega}^{(1)}$. Elementwise, for $r=1,2,3$, 4 we have

$$
\begin{equation*}
b_{r}=s_{1}+s_{2} e_{r}+\frac{s_{3}}{1-e_{r}} \tag{14}
\end{equation*}
$$

Let

$$
\mathbf{G}^{\prime \prime}=\left[\begin{array}{c}
\mathbf{G} \\
\vec{\theta}^{(e b)}
\end{array}\right]
$$

$\vec{\theta}^{(e b)}$ is linearly dependent of \mathbf{G}. There exists a non-zero vector $\vec{h}=\left[h_{1}, h_{2}, h_{3}, h_{4}\right]$ such that $\vec{h} \cdot \mathbf{G}^{\prime \prime}=0$. Namely $h_{1} \overrightarrow{1}+h_{2} \vec{\omega}^{(1)}+h_{3} \vec{\omega}^{(2)}+h_{4} \vec{\theta}^{(e b)}=0$. Elementwise, for all $r=1,2,3,4$

$$
\begin{equation*}
h_{1}+h_{2} e_{r}+h_{3} b_{r}+h_{4} \frac{b_{r}}{1-e_{r}}=0 \tag{15}
\end{equation*}
$$

where $h_{4} \neq 0$ because otherwise $\operatorname{rank}(\mathbf{G})=2$. Substitute (14) into (15), and multiply both sides of it by $\left(1-e_{r}\right)^{2}$, we get

$$
\left(h_{1}+h_{2} e_{r}+h_{3} b_{r}\right)\left(1-e_{r}\right)^{2}+h_{4}\left(s_{1}+s_{2} e_{r}\right)\left(1-e_{r}\right)+h_{4} s_{3}=0
$$

Let

$$
f(x)=\left(h_{1}+h_{2} e_{r}+h_{3} b_{r}\right)\left(1-e_{r}\right)^{2}+h_{4}\left(s_{1}+s_{2} e_{r}\right)\left(1-e_{r}\right)+h_{4} s_{3}
$$

We claim that not all coefficients of x are zero, because $f(1)=h_{4} s_{3} \neq 0\left(s_{3} \neq 0\right.$ and $h_{4} \neq 0$ by assumption). Then there are a maximum of 3 different roots, each of which uniquely determines b_{r} by (14). This means that there are at least two identical components. Namely $\exists s \neq t$ s.t. $\vec{\theta}^{(s)}=\vec{\theta}^{(t)}$.

If Assumption 1 does not hold, namely $\vec{\theta}^{(e)}$ is a linear combination of $\overrightarrow{1}$ and $\vec{\omega}^{(1)}$, let

$$
\begin{equation*}
\frac{1}{1-e_{r}}=p_{5} e_{r}+q_{5} \tag{16}
\end{equation*}
$$

Define

$$
f(x)=\frac{1}{1-x}-p_{5} x-q_{5}
$$

If $f(x)$ has only 1 root or two identical roots between 0 and 1 , then all columns of \mathbf{G} have identical e_{r}-s. This means $\vec{\omega}^{(1)}$ is dependent of $\overrightarrow{1}$, which is a contradiction. So we only consider the situation where $f(x)$ has two different roots between 0 and 1 , denoted by u_{1} and $u_{2}\left(u_{1} \neq u_{2}\right)$. Because $e_{1}, e_{2}, e_{3}, e_{4}$ are roots of $f(x)$, there must be at least two identical e_{r} 's, with the value u_{1} or u_{2}.

Substitute (16) into $\vec{\theta}^{(e b)}$, we have $\overrightarrow{\theta^{(e b)}}=\left[b_{1}\left(p_{5} e_{1}+q_{5}\right), b_{2}\left(p_{5} e_{2}+q_{5}\right), b_{3}\left(p_{5} e_{3}+\right.\right.$ $\left.\left.q_{5}\right), b_{4}\left(p_{5} e_{4}+q_{5}\right)\right]$, which is linearly dependent of \mathbf{G}. So there exists nonzero vector $\overrightarrow{\gamma_{1}}=\left[\gamma_{11}, \gamma_{12}, \gamma_{13}, \gamma_{14}\right]$ such that

$$
\gamma_{11}+\gamma_{12} e_{r}+\gamma_{13} b_{r}+\gamma_{14} b_{r}\left(p_{5} e_{r}+q_{5}\right)=0
$$

From which we get

$$
\begin{equation*}
\left(\gamma_{13}+\gamma_{14} p_{5} e_{r}+\gamma_{14} q_{5}\right) b_{r}=-\left(\gamma_{11}+\gamma_{12} e_{r}\right) \tag{17}
\end{equation*}
$$

We recall that $e_{r}=u_{1}$ or $e_{r}=u_{2}$ for $r=1,2,3,4$. Since $u_{1} \neq u_{2}$, there exists $i \in\{1,2\}$ s.t. $\gamma_{13}+\gamma_{14} p_{5} u_{i}+\gamma_{14} q_{5} \neq 0$. W.l.o.g. let it be u_{1}. If at least two of the e_{r} 's are u_{1}, without loss of generality let $e_{1}=e_{2}=u_{1}$. Then using (17) we know $b_{1}=b_{2}=\frac{-\left(\gamma_{11}+\gamma_{12} u_{1}\right)}{\left(\gamma_{13}+\gamma_{14} p_{5} u_{1}+\gamma_{14} q_{5}\right)}$. From (12)(13) we can further obtain $c_{1}=c_{2}$ and $d_{1}=d_{2}$. So $\vec{\theta}^{(1)}=\vec{\theta}^{(2)}$, which is a contradiction.

If there is only one of the e_{r} 's, which is u_{1}, w.l.o.g. let $e_{1}=u_{1}$ and $e_{2}=$ $e_{3}=e_{4}=u_{2}$. We consider the moment where a_{2} is ranked at the top and a_{1} the second, which is $\left[\frac{e_{1} b_{1}}{1-b_{1}}, \frac{e_{2} b_{2}}{1-b_{2}}, \frac{e_{3} b_{3}}{1-b_{3}}, \frac{e_{4} b_{4}}{1-b_{4}}\right]$. Add $\vec{\omega}^{(1)}$ to it and we have $\vec{\theta}^{(b e)}=$ $\left[\frac{e_{1}}{1-b_{1}}, \frac{e_{2}}{1-b_{2}}, \frac{e_{3}}{1-b_{3}}, \frac{e_{4}}{1-b_{4}}\right]$, which is linearly dependent of \mathbf{G}. So there exists nonzero vector $\overrightarrow{\gamma_{2}}=\left[\gamma_{21}, \gamma_{22}, \gamma_{23}, \gamma_{24}\right]$ such that

$$
\begin{equation*}
\gamma_{21}+\gamma_{22} e_{r}+\gamma_{23} b_{r}+\gamma_{24} \frac{e_{r}}{1-b_{r}}=0 \tag{18}
\end{equation*}
$$

Let

$$
\begin{aligned}
& f(x)=\gamma_{21}+\gamma_{22} u_{2}+\gamma_{23} x+\gamma_{24} \frac{u_{2}}{1-x} \\
& g(x)=(1-x) f(x)=(1-x)\left(\gamma_{21}+\gamma_{22} u_{2}+\gamma_{23} x\right)+\gamma_{24} u_{2}
\end{aligned}
$$

If any coefficient of $g(x)$ is nonzero, then $g(x)$ has at most 2 different roots. As $g(x)=$ 0 holds for $b_{2}, b_{3}, b_{4}, \exists s \neq t$ s.t. $b_{s}=b_{t}$. Since $e_{s}=e_{t}=u_{2}$, from (12)(13) we know $c_{s}=c_{t}$ and $d_{s}=d_{t}$. So $\vec{\theta}^{(s)}=\vec{\theta}^{(t)}$. Otherwise we have $g(x)=f(x)=0$ for all x. So

$$
g(1)=\gamma_{24} u_{2}=0
$$

Since $0<u_{2}<1$, we have $\gamma_{24}=0$. Substitute it into $f(x)$ we have $f(x)=\gamma_{21}+$ $\gamma_{22} u_{2}+\gamma_{23} x=0$ holds for all x. So we have $\gamma_{21}+\gamma_{22} u_{2}=0$ and $\gamma_{23}=0$. Substitute $\gamma_{23}=\gamma_{24}=0$ into (18) we get $\gamma_{21}+\gamma_{22} e_{r}=0$, which holds for both $e_{r}=u_{1}$ and $e_{r}=u_{2}$. As $u_{1} \neq u_{2}$, we have $\gamma_{22}=0$. Then we have $\gamma_{21}=0$. This contradicts the nonzero requirement of $\overrightarrow{\gamma_{2}}$. So there exists $s \neq t$ s.t. $\vec{\theta}^{(s)}=\vec{\theta}^{(t)}$, which is a contradiction.

Lemma 3 Given a random utility model $\mathcal{M}(\vec{\theta})$ over a set of m alternatives \mathcal{A}, let $\mathcal{A}_{1}, \mathcal{A}_{2}$ be two non-overlapping subsets of \mathcal{A}, namely $\mathcal{A}_{1}, \mathcal{A}_{2} \subset \mathcal{A}$ and $\mathcal{A}_{1} \cap \mathcal{A}_{2}=\emptyset$. Let V_{1}, V_{2} be rankings over \mathcal{A}_{1} and \mathcal{A}_{2}, respectively, then we have $\operatorname{Pr}\left(V_{1}, V_{2} \mid \vec{\theta}\right)=$ $\operatorname{Pr}\left(V_{1} \mid \vec{\theta}\right) \operatorname{Pr}\left(V_{2} \mid \vec{\theta}\right)$.
Proof: In an RUM, given a ground truth utility $\vec{\theta}=\left[\theta_{1}, \theta_{2}, \ldots, \theta_{m}\right]$ and a distribution $\mu_{i}\left(\cdot \mid \theta_{i}\right)$ for each alternative, an agent samples a random utility X_{i} for each alternative independently with probability density function $\mu_{i}\left(\cdot \mid \theta_{i}\right)$. The probability of the ranking $a_{i_{1}} \succ a_{i_{2}} \succ \cdots \succ a_{i_{m}}$ is

$$
\begin{aligned}
\operatorname{Pr}\left(a_{i_{1}} \succ \cdots \succ a_{i_{m}} \mid \vec{\theta}\right) & =\operatorname{Pr}\left(X_{i_{1}}>X_{i_{2}}>\cdots>X_{i_{m}}\right) \\
& =\int_{-\infty}^{\infty} \int_{x_{i_{m}}}^{\infty} \cdots \int_{x_{i_{2}}}^{\infty} \mu_{i_{m}}\left(x_{i_{m}}\right) \mu_{i_{m-1}}\left(x_{i_{m-1}}\right) \ldots \mu_{i_{1}}\left(x_{i_{1}}\right) d x_{i_{1}} d x_{i_{2}} \ldots d x_{i_{m}}
\end{aligned}
$$

W.l.o.g. we let $i_{1}=1, \ldots, i_{m}=m$. Let $\mathcal{S}_{X_{1}>X_{2}>\cdots>X_{m}}$ denote the subspace of \mathbb{R}^{m} where $X_{1}>X_{2}>\cdots>X_{m}$ and let $\mu(\vec{x} \mid \vec{\theta})$ denote $\mu_{m}\left(x_{m}\right) \mu_{m-1}\left(x_{m-1}\right) \ldots \mu_{1}\left(x_{1}\right)$. Thus we have

$$
\operatorname{Pr}\left(a_{1} \succ \cdots \succ a_{m} \mid \vec{\theta}\right)=\int_{\mathcal{S}_{X_{1}>x_{2}>\cdots>x_{m}}} \mu(\vec{x} \mid \vec{\theta}) d \vec{x}
$$

We first prove the following claim.
Claim 7 Given a random utility model $\mathcal{M}(\vec{\theta})$, for any parameter $\vec{\theta}$ and any $\mathcal{A}_{s} \subseteq \mathcal{A}$, we let $\vec{\theta}_{s}$ denote the components of $\vec{\theta}$ for alternatives in \mathcal{A}_{s}, and let V_{s} be a full ranking over A_{s} (which is a partial ranking over \mathcal{A}). Then we have $\operatorname{Pr}\left(V_{s} \mid \vec{\theta}\right)=\operatorname{Pr}\left(V_{s} \mid \vec{\theta}_{s}\right)$.

Proof: Let m_{s} be the number of alternatives in \mathcal{A}_{s}. Let $\mathcal{S}_{X_{1}>X_{2}>\cdots>X_{m_{s}}}$ denote the subspace of $\mathbb{R}^{m_{s}}$ where $X_{1}>X_{2}>\cdots>X_{m_{s}}$. W.l.o.g. let V_{s} be $a_{1} \succ a_{2} \cdots \succ a_{m_{s}}$. Then we have

$$
\begin{aligned}
\operatorname{Pr}\left(V_{s} \mid \vec{\theta}\right) & =\int_{\mathcal{S}_{X_{1}>x_{2}>\cdots>x_{m_{s}}} \times \mathbb{R}^{m-m_{s}}} \mu(\vec{x} \mid \vec{\theta}) d \vec{x} \\
& =\int_{-\infty}^{\infty} \int_{x_{m_{s}}}^{\infty} \cdots \int_{x_{2}}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mu_{m}\left(x_{m}\right) \ldots \mu_{1}\left(x_{1}\right) d x_{m_{s}+1} \cdots d x_{m} d x_{1} \ldots d x_{m_{s}} \\
& =\int_{-\infty}^{\infty} \int_{x_{m_{s}}}^{\infty} \cdots \int_{x_{2}}^{\infty} \mu_{m_{s}}\left(x_{m_{s}}\right) \mu_{m_{s}-1}\left(x_{m_{s}-1}\right) \ldots \mu_{1}\left(x_{1}\right) d x_{1} d x_{2} \ldots d x_{m_{s}} \\
& =\int_{\mathcal{S}_{X_{1}>x_{2}>\cdots>x_{m_{s}}}} \mu\left(\vec{x}_{s} \mid \vec{\theta}_{s}\right) d \vec{x}=\operatorname{Pr}\left(V_{s} \mid \vec{\theta}_{s}\right)
\end{aligned}
$$

Let $\mathcal{A}_{1}=\left\{a_{11}, a_{12}, \ldots, a_{1 m_{1}}\right\}$ and $\mathcal{A}_{2}=\left\{a_{21}, a_{22}, \ldots, a_{2 m_{2}}\right\}$. Without loss of generality we let V_{1} and V_{2} be $a_{11} \succ a_{12} \succ \cdots \succ a_{1 m_{1}}$ and $a_{21} \succ a_{22} \succ$ $\cdots \succ a_{2 m_{2}}$ respectively. For any $\vec{\theta}$, let $\vec{\theta}_{1}$ denote the subvector of $\vec{\theta}$ on \mathcal{A}_{1}. Let \mathcal{S}_{1} denote $\mathcal{S}_{X_{11}>X_{12}>\cdots>X_{1 m_{1}}} . \vec{\theta}_{2}$ and \mathcal{S}_{2} are defined similarly. According to Claim 7,
we have $\operatorname{Pr}\left(V_{1} \mid \vec{\theta}\right)=\operatorname{Pr}\left(V_{1} \mid \vec{\theta}_{1}\right)=\int_{\mathcal{S}_{1}} \mu\left(\vec{x}_{1} \mid \vec{\theta}_{1}\right) d \vec{x}_{1}$ and $\operatorname{Pr}\left(V_{2} \mid \vec{\theta}\right)=\operatorname{Pr}\left(V_{2} \mid \vec{\theta}_{2}\right)=$ $\int_{\mathcal{S}_{2}} \mu\left(\vec{x}_{2} \mid \vec{\theta}_{2}\right) d \vec{x}_{2}$. Then we have

$$
\begin{align*}
\operatorname{Pr}\left(V_{1}, V_{2} \mid \vec{\theta}\right) & =\int_{\mathcal{S}_{1} \times \mathcal{S}_{2} \times \mathbb{R}^{m-m_{1}-m_{2}}} \mu(\vec{x} \mid \vec{\theta}) d \vec{x} \\
& =\int_{\mathcal{S}_{1} \times \mathcal{S}_{2}} \mu\left(\vec{x}_{1}, \vec{x}_{2} \mid \vec{\theta}_{1}, \vec{\theta}_{2}\right) d \vec{x} \tag{Claim7}\\
& =\int_{\mathcal{S}_{1}} \int_{\mathcal{S}_{2}} \mu\left(\vec{x}_{1} \mid \vec{\theta}_{1}\right) \mu\left(\vec{x}_{2} \mid \vec{\theta}_{2}\right) d \vec{x}_{1} d \vec{x}_{2} \quad \text { (Fubini's Theorem) } \\
& =\int_{\mathcal{S}_{1}} \mu\left(\vec{x}_{1} \mid \vec{\theta}_{1}\right) d \vec{x}_{1} \int_{\mathcal{S}_{2}} \mu\left(\vec{x}_{2} \mid \vec{\theta}_{2}\right) d \vec{x}_{2} \\
& =\operatorname{Pr}\left(V_{1} \mid \vec{\theta}_{1}\right) \operatorname{Pr}\left(V_{2} \mid \vec{\theta}_{2}\right)
\end{align*}
$$

Theorem 4 Algorithm 1 is consistent w.r.t. 2-PL, where there exists $\epsilon>0$ such that each parameter is in $[\epsilon, 1]$.
Proof: We will check all assumptions in Theorem 3.1 in ?.
Assumption 3.1: Strict Stationarity: the ($n \times 1$) random vectors $\left\{v_{t} ;-\infty<t<\infty\right\}$ form a strictly stationary process with sample space $\mathcal{S} \subseteq \mathbb{R}^{n}$.

As the data are generated i.i.d., the process is strict stationary.
Assumption 3.2: Regularity Conditions for $g(\cdot, \cdot)$: the function $g: \mathcal{S} \times \Theta \rightarrow \mathbb{R}^{q}$ where $q<\infty$, satisfies: (i) it is continuous on Θ for each $P \in \mathcal{S}$; (ii) $E[g(P, \vec{\theta})]$ exists and is finite for every $\theta \in \Theta$; (iii) $E[g(P, \vec{\theta})]$ is continuous on Θ.

Our moment conditions satisfy all the regularity conditions since $g(P, \vec{\theta})$ is continuous on Θ and bounded in $[-1,1]^{9}$.

Assumption 3.3: Population Moment Condition. The random vector v_{t} and the parameter vector θ_{0} satisfy the $(q \times 1)$ population moment condition: $E\left[g\left(P, \theta_{0}\right)\right]=0$.

This assumption holds by the definition of our GMM.
Assumption 3.4 Global Identification. $E\left[g\left(P, \overrightarrow{\theta^{\prime}}\right)\right] \neq 0$ for all $\overrightarrow{\theta^{\prime}} \in \Theta$ such that $\overrightarrow{\theta^{\prime}} \neq \theta_{0}$.

This is proved in Theorem 2.
Assumption 3.7 Properties of the Weighting Matrix. W_{t} is a positive semi-definite matrix which converges in probability to the positive definite matrix of constants W.

This holds because $W=I$.
Assumption 3.8 Ergodicity. The random process $\left\{v_{t} ;-\infty<t<\infty\right\}$ is ergodic.
Since the data are generated i.i.d., the process is ergodic.
Assumption 3.9 Compactness of Θ. Θ is a compact set.
$\Theta=[\epsilon, 1]^{9}$ is compact.
Assumption 3.10 Domination of $g(P, \vec{\theta}) . E\left[\sup _{\theta \in \Theta}\|g(P, \vec{\theta})\|\right]<\infty$.
This assumption holds because all moment conditions are finite.
Theorem 3.1 Consistency of the Parameter Estimator. If Assumptions 3.1-3.4 and 3.7-3.10 hold then $\hat{\theta}_{T} \xrightarrow{p} \theta_{0}$

