Supplementary Materials

Lemma 2 [f there exist all different eq, es, - - - , ear, < 1 and a non-zero vector B_:* =
[ﬁfa ﬁ;a e aﬁ;k]—rr s.L.
o HFB* =0,

e [3* has k positive elements and k negative elements.

then k-PL for 2k — 1 alternatives is not identifiable. .
Proof: W.Lo.g. assume 37,53, , 35 > Oand B, 1, B) 0, B3, < 0. H5, _ 8* =0

means that
k 2k
Y oBife==> Bk
r=1 r=k+1
According to the first row in H*, we have > 87 = 0. Let S = Ele B . Further let
af =p85/Swhenr=1,2,--- kand of = -3} /S whenr =k + 1,k +2,---,2k.
We have

k 2k
- Y ok
r=1 r=k+1

where Y°F_, o = 1 and Ziikﬂ a; = 1. This means that the model is not identifi-
able. n

Lemmad4 > m = 0 where Vs # t,es # 4.
Proof: The partial fraction decomposition of the first term is

1 B,

Hq;ﬁl(el —€q) a2 617 Ca

1
where B, = m———————..
q Hp¢q‘p¢1(eq*ep)

1 1
Hq;él(el - eq) a q#1 Hp;éq(eq - ep)

Namely,

We have

1 1 1
2w Mo 2 Moo "

(es)”

Lemma 5 Forall p < v —2, we have Y ,_, Moo = 0.



Proof: Base case: When v = 2, 4 = 0, obviously

1 1
+ =0
€1 — €y €2 — €1
Assume the lemma holds for v = p and all p < v — 2, thatis 370, ” ?:s -5 =0.
When v = p+ 1, u = 0, by Lemma 4 we have
s=1 Ht;és(es - et)
Assumezs 1 m =0forally=¢q,q<p—2. Forpu=q+1,
p+1
e‘”l elepr1 ep_H
+
Z Ht;&s €s — et Z Ht;ﬁs €s — et Z Ht;és - et)
s, ed u el
=€ +1 S —|— ) = O
P Z Ht#s( - et) ; Ht;ﬁs (65 et)
The last equality is obtained from the induction hypotheses. ]
Lemma 6 Let f(x) be any polynomial of degree v — 2, then y "_, % 0.

This can be easily derived from Lemma 5.
Remaining proof for Theorem 1

Now we are ready to prove that H* ﬁ_;‘ = 0. Note that the degree of the numerator
of 3 is 2k — 3 (see Equation (3)). Let [H¥]; denote the i-th row of H*. We have the
following calculations.

2k T72k—3
= H:1 (per + 2k —2 —p)
H"),6* = L =0
H"]:8 Z I, (e

r=1 - eq)

2k Hf)k 13 er(per +2k —2— )

[H") 5+ = > =0

r—=1 Hq;ﬁ'r(er eq)
For any 2 < ¢ < 2k — 1, we have
[H]; 6%
2k er(l1—eq)i2 H% d(Per +2k—-2-p)

r=1 Hp 1(pe7“ +2k—-2- p) Hq;ﬁr(e”’ eq)
—Z er(1—e)™ Qnikzgl(peT +2k—-2-p)
Hq;ﬁr(67 eq)

The last equality is obtained by letting v = 2k — 2 in Lemma 6. Therefore, H’“B_:k =0.
Note that 3* is also the solution for less than 2k — 1 alternatives. The theorem follows
after applying Lemma 2.




Theorem 2 For k = 2, and any m > 4, the 2-PL is identifiable.
Proof: We will apply Lemma 1 to prove the theorem. That is, we will show that for
all non-degenerate (1), 92 §® 64 guch that rank(F2) = 4. We recall that F2 is a
24 x 4 matrix. Instead of proving rank(F?) = 4 directly, we will first obtain a 4 x 4
matrix F* = T x F? by linearly combining some row vectors of F2 via a 4 x 24 matrix
T. Then, we show that rank(F*) = 4, which implies that rank(F?) = 4.

For simplicity we use [e, by, ¢y, dr]T to denote the parameter of rth Plackett-Luce
component for a1, as, as, ay respectively. Namely,

€1 €2 €3 €4

[é(n 7o G g by by by by
C1 Co Cc3 C4
dl d2 dg d4

where for each r < 4, (") is a row vector. We further let 1 = [1,1,1,1]. For proof
convenience we define 5 row vectors.

I=01,1,1,1]
(1)

€1, €2, €3, 64]

C1,C2,C3, C4]

[
[
G2 = [by, ba, b, ds]
[
=

GW = [dy, da, d3, dy]

Clearly we have Zle @@ = 1. Therefore, if there exist three s, for example
(&M, 5@ G531, such that {&M), 53, G} and T are linearly independent, then
rank(F3) = 4 because each &(*) corresponds to the probability of a; being ranked
at the top, which means that @@ is a linear combination of rows in Fﬁ. Because
6 6 613 614 is non-degenerate, at least one of {&™1), 3@, F® G} is linearly
independent of 1. Wlo. g. suppose &) is linearly independent of 1. This means that
not all of e, eq, e3,e4 are equal. The theorem will be proved in the following two
cases.

Case 1. 3@, 33 and 3@ are all linear combinations of T and &),

Case 2. There exists a (") (where i € {2,3,4}) that is linearly independent of T and
oM,

Case 1. For all i = 2,3, 4 we can rewrite (") = p;&(V) 4 ¢; for some constants p;, g;.
More precisely, for all » = 1, 2, 3,4 we have:

br = paer + q2 (5)
=Dps3er +q3 6)
d, = Pa€r + q4 @)

Because &M + @@ + 3G + 3 =1, we have

p2+p3+ps=—1 (8)
G+e@a+a=1 9



In this case for each r < 4, the r-th column of F2, which is f4(§(r)), is a function of
e,. Because the 0’s are non-degenerate, e, e, €3, e4 must be pairwise different.

We assume py # 0 and g # 1 for all subcases of Case 1 (This will be denoted
as Case 1 Assumption). The following claim shows that there exists p;,q; where
i € {2,3,4} satisfying this condition. If i # 2 we can switch the row of alternatives
ag and a;. Then the assumption holds.

Claim 2 There exists i € 2, 3,4 which satisfy the following conditions:
°q #1
*pi#0

Proof: Suppose foralli =2,3,4,q; =1orp;, =0.

If p; = 0, ¢; must be positive because b,., ¢, d,- are all positive. If p; # 0, Then
q; = 1 due to the assumption above. So ¢; > 0 for all ¢ = 2, 3,4. If there exists ¢
s.t. ¢; = 1, then (9) does not hold. So for all 4, ¢; # 1. Then p; = 0 holds for all
i € {2, 3,4}, which violates (8). [ ]
Case 1.1. ps + g2 # 0 and py + g2 # 1.

For this case we first define a 4 x 4 matrix F' as follows.

F Moments
1 1 1 1 1
e (D) es €4 ay > others
e1by eobo e3bs eabs
T TR Tn i ag > a1 > others
erby  ezby  esbs  eabs ay > ag > others
l—eq l—e2 l—e3 l—ey

We use T and &) as the first two rows. (1) corresponds to the probability that a;
is ranked in the top. We call such a probability a moment. Each moment is the sum
of probabilities of some rankings. For example, the “a; > others” moment is the total
probability for {V € L(.A) : a; is ranked at the top of V'}. It follows that there exists
a4 x 24 matrix T such that F' = T x F2,

Define

1 1 1 1 ]

T—b 10y 1—b; 1 by

- 1 1 1 1
1—poer —q2’ 1 —poes —q2’ 1 —poes —q2” 1 — poes — qo

o) — [

and

oy 1 1 1 1
B 1—6171—62,1—63,1—64

(10)



—

1

=(1) R
And define F* = ogi(b) . It can be verified that F = T™* x F*, where
ge)
1 0 0 0
. 0 1 0 0
T = _ 1 -1 1—go 0
p2 p2

—(p2 +q2) —p2 0 p2ta

Because Case 1.1 assumes that ps + g2 # 0 and by Case 1 Assumption py # 0,
g2 # 1, we have that T* is invertible. Therefore, F* = (T*)*1 X f‘ which means that
F* =T x F? for some 4 x 24 matrix 7.

We now prove that rank(F*) = 4. For the sake of contradiction, suppose that
rank(F*) < 4. It follows that there exist a nonzero row vector = [t1,t2, t3, t4], such
that £F* = 0. This means that for all r < 4,

t3 ty

tl —+ tger + + = 0
1- b2€r — Q2 1—e,

Let
t3 ty

17p2x7q2+17x

flx) =t1 +tax +

Let g(z) = (1 — pox — ¢2)(1 — x) f(x). We recall that eq, e2, e3, e4 are four roots
of f(z), which means that they are also the four roots of g(x). Now we will verify that
not all coefficients of f(z) are zero. Suppose all coefficients of z in f(z) are zero, then
g(z) = 0 holds for all . By assigning x to different values, we have

g(1) =t4(1 —p2 —q2) =0
g(l—Q2): ts(pe +q2 — 1) -0
D2 D2

By Case 1.1 assumption py + ¢2 # 1, we have t3 = t4 = 0. Then from f(x) =
t1 + tox = 0 holds for all x, we have t; = ¢t = 0, which is a contradiction.

We note that the degree of g(z) is 3. Therefore, due to the Fundamental Theorem
of Algebra, g(x) has at most three different roots. This means that e1, e3, e3, €4 are not
pairwise different, which is a contradiction. Therefore, rank(F*) = 4, which means
that rank(F%) = 4.

Case 1.2. po + ¢ = 1.
If we can find an alternative a;, such that p; and g; satisfy the following conditions:

e p; #0
°* ¢ 71
*pi+qi #0

*pit+q#1



Then we can use a; as as, which belongs to Case 1.1. Otherwise we have the following
claim.

Claim 3 Iffori € {3,4}, p; and g; satisfy one of the following conditions

1. p;=0
2.pi#0,¢,=1
3 pitq=0
4 pita=1

We claim that there exists i € {3,4} s.t. p;, q; satisfy condition 2, namely p; # 0,
g =1

Proof: Suppose p; = 0, then g; > 0 because p;e; + ¢; is a parameter in a Plackett-
Luce component. If for ¢ = 3,4, p; and ¢; satisfy any of conditions 1, 3 or 4, then
q; > —p; (g; > 0 for condition 1, ¢; = —p; for condition 3, ¢; = 1 — p; > —p; for
condition 4). As Z?:z p; = —1, Z?:z g >1- Z?:z p; = 2, which contradicts that

Z;’L:Q q; = 1. .
Without loss of generality we let ps # 0 and g3 = 1. We now construct F as is
shown in the following table.

F Moments
1 1 1 1 1
€1 €9 es3 €4 a1 > others
e1by eabo e3bs eqby
e e T2 s a1 = ao = others
c1bi cpby c3bs cabs as > ag > others
1761 1762 1763 1704

We define () the same way as in Case 1.1, and define

g 1 1
9(0) = [ ) [ 7]
€1 €9 €3 €4
Define R
1
51
. |@
F' =140
gl

We will show that F' = T* x F* where T* has full rank.
Forallr =1,2,3,4

crby (pser + q3)(p2er +q2)  (p3er +1)(p2er + 1 — pa)

= = = -—paer+(p2—1-—=)—

1- Cr 1- bs3€r — Q3 —P3€ér

D2
b3

1—po
p3ér



So .
1

<@

- pod® + e

(p2 — 1 — 2)T — ppis(®) — 12 gl)

=51
I

Suppose pa # 1, we have F = T* x F* where

1 0 0 0
) 0 1 0 0
= 1 pe 10
_1_Pp2 _ _1=po
p2—1 =2 p2 0 s

A,

which is full rank. So rank(F*) = rank(F).

If rank(F%) < 3, then there is at least one column in F? dependent of the other
columns. As all rows in F' are linear combinations of rows in F2, there is also at least
one column in F dependent of the other columns. Therefore we have rank(]?‘) < 3.
Further we have rank(F*) < 3. Therefore, there exists a nonzero row vector { =
[tl, tQ, tg, t4}, S.t.

tF =0

Namely, for all » < 4,

t
tl +t2€r + 1

—er e
Let

b l_y

- x

g(@)=z(1 —2)f(z) =2(1 —z)(t; + t2) + tsz + t4(1 — x)

f(z) =t1 +tox + 1

If any of the coefficients in f(x) is nonzero, then g(z) is a polynomial of degree at
most 3. There will be a maximum of 3 different roots. Since this equation holds for e,.
where r = 1,2, 3, 4, there exists s # ¢ s.t. e; = e;. Otherwise g(x) = f(z) = 0 for all
2. We have

Substitute t35 = t4 = 0 into f(x), we have f(x) = t; + tox = 0 for all z. So
t1 = to = 0. This contradicts the nonzero requirement of f. Therefore there exists
s # ts.t es = e From (5)(6)(7) we have o) = g(t), which is a contradition.

If po = 1, from the assumption of Case 1.2 g = 0. So b, = e, forr = 1,2,3,4.
Then from (8) we have py = —p3 — 2 and from (9) we have g4 = 0. Since p4 and ¢4
satisfy one of the four conditions in Claim 3, we can show it must satisfy Condition
4. (q4 = 0 violates Condition 2. If it satisfies Condition 1 or 3, then py = 0. Then
dr = psa, + g4 = 0, which is impossible.) So p; = 1, and p3 = —3. This is the case
where ) = 3@ = 5@ and G =1 — 3™, For this case, we use as as a;. After



: - - - e ) :
the transformation, we have 3(®) = G®) = g = 1= We claim that this lemma

holds for a more general case where p; + ¢; = 0 for i = 2, 3, 4. It is easy to check that
p; = —% and ¢; = % belongs to this case.

Claim 4 Forallr =1,2,3,4, if

er er
g — |br] _ p2er — P2

Cr p3€r — P3

d, —(1+p2+p3)er + (1 + p2 +ps3)

The model is identifiable.

Proof: We first show a claim, which is useful to the proof.

Claim 5 Under the settings of (11), —1 < p2,p3 <0, =1 < p3 +p3 < 0.

an

Proof: From the definition of Plackett-Luce model, 0 < e,, b, c.,d,, < 1. From

bT
e,—1°

(11), we have ps =

Since b, > 0 and e, < 1, p2 < 0. Similarly we have p3 < 0

and —(1 + po —|—p3)T< 0. So —1 < py + p3 < 0. Then we have p, > —1 — p3. So

—1 —p3 < p2 <0, ps > —1. Similarly we have p, > —1.

|
In this case, we construct F' in the following way.
F Moments

1 1 1 1 1

el €9 €3 €4 ay > others
e1by eaby e3bs eqbs
1—by 10, T—bs T—b, az > a > others
eibicy eabaco esbzcs esbacy Qo > a3 >~ a1 > a4

(1—1)1)(1—1)1—61) (1—b2)(1—b2—02) (1—b3)(1—b3—03) (1—b4)(1—b4—04)

Define §(?) the same way as in Case 1.1

g _ (L 1 1 1
1—b"1—=by'1—b3’1—by
B 1 1 1 1
1 —poer +p2’ 1 —poes +p2’ 1 —poes+pa’ 1 —poes + po
And define
e = 1 , : ,
1—(p2+p3)er +p2+p3’ 1 — (p2+p3)ez +p2+ps3
1 1 ]
1— (p2+ps)es +p2+p3 1 — (p2 + p3)ea + p2 + p3
Further define .
1
— c2(1)
10
gve)



We will show F = T* x F* where T™ has full rank.
The last two rows of F

erby — e i 1+p2
10, " opa o pa(l—poen + o)
erbrcy er(p26r 7p2)(p36r *P3)

(1=0,)1=b, —c) (1 —p2er+p2)(1— (p2+p3)er + p2 + p3)
p2p3€7'(er - 1)2

(1 —paer +p2)(1 = (p2 + p3)er +p2 + p3)

_ p3(2p2 +ps) ps ., (1+p2)
p2(p2 +p3)?  p2+ps3 " p2(1 — paer + p2)

p2(1+ p2 + p3)

+ 2

(1= (p2 + p3)er +p2 + ps)(p2 + p3)

So .
1
. &M
F= ST ) 4 L gy
p3(2p2+p3) 7 p3 (1) _ 14pag(b) 4 p2(1+p2+p3) plbe
Pz(P2ip3§2 1+ P2+3Psw( ) P229 + 2(P2+1273)23 61
Then we have F = T* x F* where
1 0 0 0
0 1 0 0
T = _ 1 -1 1+p2 0
P2 D2
p3(2p2+p3) p3 _1+4ps  p2(l4p2+p3)
p2(p2+ps)? p2+ps3 P2 (p2+p3)?

From Claim 5, we have —1 < p; < 0 and —1 < py + p3 < 0, so 1;% # 0 and
%ﬁ;g” # 0. So T has full rank. Then rank(F*) = rank(F).

If rank(F3) < 3, then there is at least one column in F3 dependent of other
columns. As all rows in F' are linear combinations of rows in F2, rank(F) < 3. Since
rank(F*) = rank(F), we have rank(F*) < 3. Therefore, there exists a nonzero row
vector £ = [t1,t2, t3, ta], S.t.

tF* =0

Namely, for all » < 4,

t1 + tae, + s + fa 0
er =
e 1 —poa, +p2  1—(p2+p3)er+p2+p3

Let
ts ty
+
L—pox+p2s  1—(p2+p3)r+ps+p3
g9(x) = (1 = p2x + p2)(1 — (p2 + p3)x + p2 + p3)(t1 + tox)
+ t3(1 — (p2 + p3)x + p2 + p3) + ta(1 — pax + p2)

f(z) =t1 +tox +



If any of the coefficients of g(x) is nonzero, then g(z) is a polynomial of degree at
most 3. There will be a maximum of 3 different roots. As the equation holds for all e,
where r = 1,2,3, 4. There exists s # t s.t. ¢; = e;. Otherwise g(z) = f(x) = 0 for
all . We have

1+ po —t3p3
b2 D2
(1+p2+p3 _ _laps
P2+ p3 P2+ p3

From Claim 5 we know po, p3 < 0 and ps + ps < 0. So t3 = t4 = 0. Substitute it
into f(z) we have f(x) = t; + tox = 0 for all z. So t; = ¢ = 0. This contradicts
the nonzero requirement of ¢. Therefore there exists s # ¢ s.t. e5 = e;. According to
(5)(6)(7) we have 0(*) = §®)_ which is a contradition.
|

Case 1.3. p2 + q2 = 0.

If there exists ¢ such that p; + ¢; = 1, then we can use a; as as and the proof is
done in Case 1.2. It may still be possible to find another ¢ such that p;, ¢; satisfy the
following two conditions:

1. pi#0and g; # 1;
2. pitq #0.

If we can find another ¢ to satisfy the two conditions, then the proof is done in Case
1.1. Then we can proceed by assuming that the two conditions are not satisfied by any
1. We will prove that the only possibility is p; + ¢; = 0 for ¢ = 2, 3, 4.

Suppose for ¢ = 3,4, p; and ¢; violate Condition 1. If p;, = 0, then ¢; > 0. If at
least one of them has ¢; = 1, then e, + b, + ¢, + d, > 1, which is impossible. If both
alternatives violates Condition 1 and ps = pgy = 0, then 0 < ¢3,94 < 1. According
to (8) p2 = —1. As ps + g2 = 0, we have g2 = 1. From (9), g3 + q4 = 2, which is
impossible. So there exists ¢ € {3,4} such that p; + ¢; = 0. Then from ), 07 =1 we
obtain the only case we left out, which is

er

br = p2er — p2

Cr = P3€r — D3

dr = —(1+p2+p3)er + (1 +p2 + ps3)
This case has been proved in Claim 4.

Case 2: There exists &3(*) that is linearly independent of Tand 3. W.lo. g. let it be
(). Define matrix

1 1 1 1 1
G = Q(l) = |€1 €2 €3 €4
o2 by by b3 by

10



The rank of G is 3. Since G is constructed using linear combinations of rows in Fi,
the rank of F? is at least 3.

If 33 or @™ is independent of rows in G, then we can append it to G as the
fourth row so that the rank of the new matrix is 4. Then F? is full rank. So we only
need to consider the case where &) and G4 are linearly dependent of f @D, and
@ Let

G®) = 23030 + y33@ 4 23T (12)
T (13)

G = 2,8M + y4d@ + 24

where x3 + x4 = —1,ys +ys = —1, 23+ 24 = 1.
Claim 6 There exists i € {3,4} such that x; + z; # 0.

Proof: If in the current setting 3i € {3, 4} s.t. x; + 2z; # 0, then the proof is done. If
in the current setting x5 + z3 = x4 + 24 = 0, but 3i € {3,4} s.t. y; + z; = 0, then we
can switch the role of e, and b,., namely

5(3) = ygﬁ(l) + x36(2) + ng
T

@ =y, + 248@ + 24

Then the proof is done. If for all ¢ € {3,4} we have x; + z; = 0 and y; + z; = 0, then
we switch the role of e, and ¢, and get

- 1 . - -
5@ = L@ _ya® _ 4T)
3

1 .
o = 7(@(1) — yad® — z41)
T4

If 1;% # 0, namely z3 # 1, the proof is done. Suppose z3 = 1, then 3 = y3 = —1.
We have &) = 1 — &1 — @ Then & = 0, which is impossible. ]

Without loss of generality let x3 + 23 # 0. Similar to the previous proofs, we want
to construct a matrix G’ using linear combinations of rows from F2. Let the first 3
rows for G’ to be G. Then rank(G’) > 3. Since rank(F%) < 3 and all rows in G’ are
linear combinations of rows in F%, we have rank(G’) < 3. So rank(G’) = 3. This
means that any linear combinations of rows in F? is linearly dependent of rows in G.

Consider the moment where a; is ranked at the top and a- is ranked at the second
position. Then [fili}l , fﬁ’g, fibez , fjbei ] is linearly dependent of G. Adding & to it,
we have

g _( b b2 by b
1—817 1—627 1—6371—64
which is linearly dependent of G.
Similarly consider the moment that a4 is ranked at the top and ag is ranked at the

second position. We obtain [fi“ell, 1636522’ fj”;g , fﬁ”et ]. Add G®) to it, we get

C1 Co C3 Cy

é’(ec):
[1—61’1—62’1—6371—64

11



which is linearly dependent of G.
Recall from (10)

1 1 1 1
l—e;’'1—ey’1—e3’1—ey

gle) — [

Then
x3e1 +ysb1 + 23 w3ea +yzba + 23 363 +Y3b3 + 23 x3€4 + Y3by + 23

i

é’(ec) _ [

]

1—61 ’ 1—62 ’ 1—63 1—84

= (xg + Zg)g(e) + ygé'(eb) — .’tgf

Because both (<) and 6(¢®) are linearly dependent of G, 61 is also linearly dependent
of G. Make it the 4th row of G’. Suppose the rank of G’ is still 3. We will first
prove this lemma under the assumption below, and then discuss the case where the
assumption does not hold.

Assumption 1: Suppose 1,1, 6(°) are linearly independent.

Then @@ is a linear combination of 1,&™) and 6(9). We write @ = s; +
so@M) + 535(6) for some constants s1, s, 53. We have s3 # 0 because (%) is linearly
independent of T and V). Elementwise, for r = 1,2, 3,4 we have

by = 51 + s9ey + —2 (14)
1—e,

G
"o_
G" = |:§(eb):|

gled) js linearly dependent of G. There exists a non-zero vector h = [h1, ha, 3, hy)
such that i - G” = 0. Namely h11 + ko™ + hg®@ + hy0(¢Y) = 0. Elementwise,
forallr =1,2,3,4

Let

by
h1+h2€r+h3br+h41_e =0 (15)
where hy # 0 because otherwise rank(G) = 2. Substitute (14) into (15), and multiply
both sides of it by (1 — e,.)%, we get

(h1 + hae, + hsb.)(1 — er)2 + ha(s1 + s2er)(1 —ep) + hys3 =0
Let
f(l’) = (hl + hoe, + hgbr)<1 — 6r)2 =+ h4(81 + Sger)(l — 67‘) + hass

We claim that not all coefficients of = are zero, because f(1) = hyss # 0 (s3 # 0
and hy # 0 by assumption). Then there are a maximum of 3 different roots, each of
which uniquely determines b, by (14). This means that there are at least two identical
components. Namely 3s # ¢ s.t. () = 6.

If Assumption 1 does not hold, namely 0(®) is a linear combination of T and GV,
let

1 = pser + g5 (16)
e,

12



Define 1
flz) = 1_, PP

If f(z) has only 1 root or two identical roots between 0 and 1, then all columns of G
have identical e,-s. This means M s dependent of f, which is a contradiction. So
we only consider the situation where f(z) has two different roots between 0 and 1,
denoted by u; and ug (u1 # uz). Because ey, eq, e3, e4 are roots of f(x), there must
be at least two identical e,.’s, with the value u; or us.

Substitute (16) into (), we have §(<?) = [by (pse1 +qs), ba (psea + qs ), bs(pses +
gs), bs(pses + gs)], which is linearly dependent of G. So there exists nonzero vector

Y1 = [711, 712, 713, 714] Such that
Y11 + Y1285 + 7130 + Y1401 (P5Er + G5) = 0
From which we get
(713 + y14Pser +71445)br = — (711 + 112€7) a7

We recall that e, = uy or e, = us forr = 1,2,3,4. Since u; # us, there exists
i € {1,2} s.t. y13 + Y14P5u; + Y1495 # 0. W.lo.g. let it be uy. If at least two of the
e,’s are uy, without loss of generality let e; = es = u;. Then using (17) we know

by = by = (7131(’7’21117—:212‘;]";1)4115)' From (12)(13) we can further obtain ¢; = ¢ and
di1 = dy. So o) = 5(2), which is a contradiction.

If there is only one of the e,’s, which is u;, wl.o.g. let e; = u; and e; =
es = e4 = wus. We consider the moment where as is ranked at the top and a;

the second, which is [ff;)ll, fjl;;, fjl;fg , %] Add 3D to it and we have §(be) —

€1 €2 €3 eq . . : .
[1_b1 Ty Tob3 1_b4], which is linearly dependent of G. So there exists nonzero

vector 75 = [Ya1, Y22, V23, Y24 such that

e
Y21 + Y2285 + Y23br + ’Y24ﬁ =0 (18)
s
Let
U2
1—x

g(x) = (1 —2)f(z) = (1 — z)(y21 + y22u2 + Y237) + Y242

f(@) = 7y21 + y22us2 + Va3 + 24

If any coefficient of g(x) is nonzero, then g(z) has at most 2 different roots. As g(x) =
0 holds for bo, b3, by, Is # t s.t. by = b;. Since eg = e; = ug, from (12)(13) we know
cs = c; and dg = dy. So 015) = §(), Otherwise we have g(z) = f(x) = 0 for all x.
So
9(1) = Y24u2 =0

Since 0 < uz < 1, we have o4 = 0. Substitute it into f(x) we have f(x) = y21 +
Yoous +y23x = 0 holds for all z. So we have v21 4+ y2ous = 0 and 23 = 0. Substitute
Yo3 = 724 = 0 into (18) we get y21 + ~y22€, = 0, which holds for both e, = u; and
er = Ug. AS uj # ug, we have 795 = 0. Then we have 27 = 0. This contradicts
the nonzero requirement of 5. So there exists s # t s.t. 619 = ), which is a
contradiction.

[ |
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Lemma 3 Given a random utility model M(0) over a set of m alternatives A, let
Ay, As be two non-overlapping subsets of A, namely Ay, Ay C Aand A; N Ay = 0.
Let V1, V3 be rankings over Ay and As, respectively, then we have Pr(V7, %\5) =
Pr(V3|6) Pr(V2|6).

Proof: Inan RUM, given a ground truth utility § = [, 05, . . ., 6,,] and a distribution
1 (+]0;) for each alternative, an agent samples a random utility X; for each alternative
independently with probability density function z;(-|6;). The probability of the ranking
Ajy > Qjy > =00 = Ay, 18

—

Pr(a;, = -+ =a;, |0) =Pr(X;, > X;, > > X; )

/ / / i (T Wiy (T, ) - iy (i) )iy dig,y -

Wlo.g. weleti; =1,...,4, = m. Let Sx,>x,>...>x,, denote the subspace of
R™ where X1 > X5 > -+ > X,,, and let 1(Z|0) denote i, (T ) thm—1(Tm—1) - - - 1 (21)-
Thus we have

Pr(ay > -+ > ap|0) :/ ((Z|6)dz
SX1>Xo>>Xm

We first prove the following claim.

Claim 7 Given a random utility model M(), for any parameter 6 and any A, C A,

we let é; denote the components of 0 for alternatives in As, and let Vi be a full ranking
over Ag (which is a partial ranking over A). Then we have Pr(V;|0) = Pr(V;|0;).

Proof: Letm, be the number of alternatives in A;. Let Sx, > x,>...> X, denote the
subspace of R where X; > X9 > --- > X,,,_.. Wlo.g.letVibea; > az--- > an,.
Then we have

Pr(V,|0) = / e
SX1>Xg> > Xmy XRM—™Ms

Ll

2/ / / Mo (T ) me—1 (@ —1) -« - 1 (z1)dzrdas . . . dap,,

_ / 1(7]8,)dF = Pr(Vi|d)
SX1>X>>Xmyg

|
Let ./41 = {all, a1, .. alml} and AQ = {a21,a22, ey ang}. Without loss
of generality we let V; and V5 be an > @iz > -+ > Qim, and ag1 > age >

- > agm, respectively. For any 0 let 01 denote the subvector of § on Ai. Let S;
denote Sx;> X555 X1, - 0, and S, are defined similarly. According to Claim 7,
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— —

we have Pr(V1]0) = Pr(Vi|fh) = [s u(Z1|01)dd) and Pr(Va|f) = Pr(V3|fs) =
fs a:2|92 )dZ>. Then we have

—

Pr(VA, Vo) = / u(#6)dz
81 XSy xRmM—m1—m2

= / (T, @211, 02)d (Claim 7)
51 ><82

2/ / (1(Z1|01) 11(Z2] 02 dE 1 d o (Fubini’s Theorem)
S1 /8>

=/ M(fl\gl)dfl/ 1(2]02)dT
51 52
= Pr(V4]6) Pr(V3|62)

Theorem 4 Algorithm 1 is consistent w.r.t. 2-PL, where there exists € > 0 such that
each parameter is in [e, 1].
Proof: We will check all assumptions in Theorem 3.1 in 2.

Assumption 3.1: Strict Stationarity: the (nx 1) random vectors {v;; —00 < t < 0o}
form a strictly stationary process with sample space S C R".

As the data are generated i.i.d., the process is strict stationary.

Assumption 3.2: Regularity Conditions for g(-,-): the function g : S x © — R?
where ¢ < oo, satisfies: (i) it is continuous on © for each P € S; (ii) E[g(P, 5)} exists
and is finite for every 6 € O (iii) E[g(P, 0)] is continuous on ©.

Our moment conditions satisfy all the regularity conditions since g(P, _') is contin-
uous on © and bounded in [-1, 1]°.

Assumption 3.3: Population Moment Condition. The random vector v; and the
parameter vector 6 satisfy the (¢ x 1) population moment condition: E[g(P, 6y)] =

This assumption holds by the definition of our GMM.

Assumption 3.4 Global Identification. E[g(P,6")] # 0 for all # € © such that
0" + 0.

This is proved in Theorem 2.

Assumption 3.7 Properties of the Weighting Matrix. W, is a positive semi-definite
matrix which converges in probability to the positive definite matrix of constants V.

This holds because W = I.

Assumption 3.8 Ergodicity. The random process {v;; —00 < ¢ < oo} is ergodic.

Since the data are generated i.i.d., the process is ergodic.

Assumption 3.9 Compactness of ©. O is a compact set.

O = [¢, 1] is compact.

Assumption 3.10 Domination of g(P, ). Elsupyee ||g(P, 0)|]] < oo.

This assumption holds because all moment conditions are finite.

Theorem 3.1 Consistency of the Parameter Estimator. If Assumptions 3.1-3.4 and
3.7-3.10 hold then 67 % 6,

|
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