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Abstract
This work studies the maximum possible sign rank of N × N sign matrices with a given VC
dimension d. For d = 1, this maximum is three. For d = 2, this maximum is Θ̃(N1/2). For d > 2,
similar but slightly less accurate statements hold. Our lower bounds improve over previous ones by
Ben-David et al. and can be interpreted as exhibiting a weakness of kernel-based classifiers. Our
upper bounds, on the other hand, can be interpreted as exhibiting the universality of kernel-based
classifiers.

The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in
real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning
trees with low stabbing number, and using the moment curve.

The upper bound technique is also used to: (i) provide estimates on the number of classes of a
given VC dimension, and the number of maximum classes of a given VC dimension – answering a
question of Frankl from ’89, and (ii) design an efficient algorithm that provides an O(N/ log(N))
multiplicative approximation for the sign rank (computing the sign rank is equivalent to the exis-
tential theory of the reals).

We also observe a general connection between sign rank and spectral gaps which is based on
Forster’s argument. Consider the N × N adjacency matrix of a ∆ regular graph with a second
eigenvalue of absolute value λ and ∆ ≤ N/2. We show that the sign rank of the signed version
of this matrix is at least ∆/λ. We use this connection to prove the existence of a maximum class
C ⊆ {±1}N with VC dimension 2 and sign rank Θ̃(N1/2). This answers a question of Ben-David
et al. regarding the sign rank of large VC classes. We also describe limitations of this approach, in
the spirit of the Alon-Boppana theorem.

We further describe connections to communication complexity, geometry, learning theory, and
combinatorics.
Keywords: VC dimension, dimension complexity, sign rank, kernel machines, maximum classes,
spectral gap, communication complexity.



SIGN RANK VERSUS VC DIMENSION

1. Introduction

Boolean matrices (with 0, 1 entries) and sign matrices (with±1 entries) naturally appear in many ar-
eas of research1. We use them e.g. to represent set systems and graphs in combinatorics, hypothesis
classes in learning theory, and boolean functions in communication complexity.

This work further investigates the relation between two useful complexity measures on sign
matrices.

Definition 1 (Sign rank) For a real matrix M with no zero entries, let sign(M) denote the sign
matrix such that (sign(M))i,j = sign(Mi,j) for all i, j. The sign rank of a sign matrix S is defined
as

sign-rank(S) = min{rank(M) : sign(M) = S},

where the rank is over the real numbers. It captures the minimum dimension of a real space in which
the matrix can be embedded using half spaces through the origin 2 (see for example Lokam (2009)).

Definition 2 (Vapnik-Chervonenkis dimension) The VC dimension of a sign matrix S, denoted
V C(S), is defined as follows. A subset C of the columns of S is called shattered if each of the 2|C|

different patterns of ones and minus ones appears in some row in the restriction of S to the columns
in C. The VC dimension of S is the maximum size of a shattered subset of columns. It captures the
size of the minimum ε-net for the underlying set system (Haussler and Welzl, 1987; Komlós et al.,
1992).

The VC dimension and the sign rank appear in various areas of computer science and math-
ematics. One important example is learning theory, where the VC dimension captures the sample
complexity of learning in the PAC model (Blumer et al., 1986; Vapnik and Chervonenkis, 1971), and
the sign rank relates to the generalization guarantees of practical learning algorithms, such as sup-
port vector machines, large margin classifiers, and kernel classifiers (Linial and Shraibman, 2009;
Forster et al., 2001, 2003; Forster and Simon, 2006; Burges, 1998; Vapnik, 1998). Loosely speak-
ing, the VC dimension relates to learnability, while sign rank relates to learnability by kernel-based
methods (algorithms that embed the class in Euclidean space and use a linear classifier). Another
example is communication complexity, where the sign rank is equivalent to unbounded error ran-
domized communication complexity (Paturi and Simon, 1986), and the VC dimension relates to one
round distributional communication complexity under product distributions (Kremer et al., 1999),

The main focus of this work is how large can the sign rank be for a given VC dimension. In
learning theory, this question concerns the universality of kernel-based methods. In communica-
tion complexity, this concerns the difference between randomized communication complexity with
unbounded error and between communication complexity under product distribution with bounded
error. Previous works have studied these differences from the communication complexity perspec-
tive (Sherstov, 2010, 2008) and the learning theory perspective (Ben-David et al., 2002). In this
work we provide explicit matrices and stronger separations compared to those of Sherstov (2010,
2008) and Ben-David et al. (2002). See the discussions in Section 1.2 and Section 2.4 for more
details.

1. There is a standard transformation of a boolean matrix B to the sign matrix S = 2B−J , where J is the all 1 matrix.
The matrix S is called the signed version of B, and the matrix B is called the boolean version of S.

2. That is, the columns correspond to points in Rk and the rows to half spaces through the origin (i.e. collections of all
points x ∈ Rk so that 〈x, v〉 ≥ 0 for some fixed v ∈ Rk).
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1.1. Duality

We start by providing alternative descriptions of the VC dimension and sign rank, which demon-
strate that these notions are dual to each other. The sign rank of a sign matrix S is the maximum
number k such that

∀M such that sign(M) = S ∃ k columns j1, . . . , jk
the columns j1, . . . , jk are linearly independent in M

The dual sign rank of S is the maximum number k such that

∃ k columns j1, . . . , jk ∀M such that sign(M) = S

the columns j1, . . . , jk are linearly independent in M.

It turns out that the dual sign rank is almost equivalent to the VC dimension (the proof is in Sec-
tion E).

Proposition 1 V C(S) ≤ dual-sign-rank(S) ≤ 2V C(S) + 1.

As the dual sign rank is at most the sign rank, it follows that the VC dimension is at most the
sign rank. This provides further motivation for studying the largest possible gap between sign rank
and VC dimension; it is equivalent to the largest possible gap between the sign rank and the dual
sign rank.

It is worth noting that there are some interesting classes of matrices for which these quantities
are equal. One such example is the 2n × 2n disjointness matrix DISJ , whose rows and columns
are indexed by all subsets of [n], and DISJx,y = 1 if and only if |x ∩ y| > 0. For this matrix both
the sign rank and the dual sign rank are exactly n+ 1.

1.2. Sign rank of matrices with low VC dimension

The VC dimension is at most the sign rank. On the other hand, it is long known that the sign rank is
not bounded from above by any function of the VC dimension. Alon, Haussler, and Welzl Alon et al.
(1987) provided examples ofN×N matrices with VC dimension 2 for which the sign rank tends to
infinity with N . Ben-David et al. (2002) used ideas from Alon et al. (1985) together with estimates
concerning the Zarankiewicz problem to show that many matrices with constant VC dimension (at
least 4) have high sign rank.

We further investigate the problem of determining or estimating the maximum possible sign
rank of N ×N matrices with VC dimension d. Denote this maximum by f(N, d). We are mostly
interested in fixed d and N tending to infinity.

We observe that there is a dichotomy between the behaviour of f(N, d) when d = 1 and when
d > 1. The value of f(N, 1) is 3, but for d > 1, the value of f(N, d) tends to infinity with N . We
now discuss the behaviour of f(N, d) in more detail, and describe our results.

We start with the case d = 1. The following theorem and claim imply that for all N ≥ 4,

f(N, 1) = 3.

The following theorem which was proved by Alon et al. (1987) shows that for d = 1, matrices
with high sign rank do not exist. For completeness, we provide our simple and constructive proof
in Section B.
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Theorem 1 (Alon et al. (1987)) If the VC dimension of a sign matrix M is one then its sign rank
is at most 3.

We also note that the bound 3 is tight (see Section B for a proof).

Claim 1 For N ≥ 4, the N × N signed identity matrix (i.e. the matrix with 1 on the diagonal
and −1 off the diagonal) has VC dimension one and sign rank 3.

Next, we consider the case d > 1, starting with lower bounds on f(N, d). As mentioned above,
two lower bounds were previously known: Alon et al. (1987) showed that f(N, 2) ≥ Ω(logN).

Ben-David et al. (2002) showed that f(N, d) ≥ ω(N
1− 2

d
− 1

2d/2 ), for every fixed d, which provides
a nontrivial result only for d ≥ 4. We prove the following stronger lower bound.

Theorem 2 The following lower bounds on f(N, d) hold:

1. f(N, 2) ≥ Ω(N1/2/ logN).

2. f(N, 3) ≥ Ω(N8/15/ logN).

3. f(N, 4) ≥ Ω(N2/3/ logN).

4. For every fixed d > 4,

f(N, d) ≥ Ω(N1−(d2+5d+2)/(d3+2d2+3d)/ logN).

To understand part 4 better, notice that

d2 + 5d+ 2

d3 + 2d2 + 3d
=

1

d
+

3d− 1

d3 + 2d2 + 3d
,

which is close to 1/d for large d. The proofs are described in Section C, where we also discuss the
tightness of our arguments.

What about upper bounds on f(N, d)? It is shown in Ben-David et al. (2002) that for every
matrix in a certain class of N × N matrices with constant VC dimension, the sign rank is at most
O(N1/2). The proof uses the connection between sign rank and communication complexity. How-
ever, there is no general upper bound for the sign rank of matrices of VC dimension d in Ben-David
et al. (2002), and the authors explicitly mention the absence of such a result.

Here we prove the following upper bounds, using a concrete embedding of matrices with low
VC dimension in real space.

Theorem 3 For every fixed d ≥ 2,

f(N, d) ≤ O(N1−1/d).

In particular, this determines f(N, 2) up to a logarithmic factor:

Ω(N1/2/ logN) ≤ f(N, 2) ≤ O(N1/2).

The above results imply existence of sign matrices with high sign rank. However, their proofs
use counting arguments and hence do not provide a method of certifying high sign rank for explicit
matrices. In the next section we show how one can derive a lower bound for the sign rank of many
explicit matrices.
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1.3. Sign rank and spectral gaps

Spectral properties of boolean matrices are known to be deeply related to their combinatorial struc-
ture. Perhaps the best example is Cheeger’s inequality which relates spectral gaps to combinatorial
expansion (Dodziuk, 1984; Alon and Milman, 1984, 1985; Alon, 1986a; Hoory et al., 2006). Here,
we describe connections between spectral properties of boolean matrices and the sign rank of their
signed versions.

Proving strong lower bounds on the sign rank of sign matrices turned out to be a difficult task.
Alon et al. (1985) were the first to prove that there are sign matrices with high sign rank, but
they have not provided explicit examples. Later on, a breakthrough of Forster (2002) showed how
to prove lower bounds on the sign rank of explicit matrices, proving, specifically, that Hadamard
matrices have high sign rank. Razborov and Sherstov (2010) proved that there is a function that is
computed by a small depth three boolean circuit, but with high sign rank. It is worth mentioning
that no explicit matrix whose sign rank is significantly larger than N

1
2 is known.

We focus on the case of regular matrices, but a similar discussion can be carried more generally.
A boolean matrix is ∆ regular if every row and every column in it has exactly ∆ ones, and a sign
matrix is ∆ regular if its boolean version is ∆ regular.

An N × N real matrix M has N singular values σ1 ≥ σ2 ≥ . . . ≥ σN ≥ 0. The largest
singular value of M is also called its spectral norm ‖M‖ = σ1 = max{‖Mx‖ : ‖x‖ ≤ 1}, where
‖x‖2 = 〈x, x〉 with the standard inner product. If the ratio σ2(M)/‖M‖ is bounded away from one,
or small, we say that M has a spectral gap.

We prove that if B has a spectral gap then the sign rank of S is high.

Theorem 4 Let B be a ∆ regular N ×N boolean matrix with ∆ ≤ N/2, and let S be its signed
version. Then,

sign-rank(S) ≥ ∆

σ2(B)
.

In many cases a spectral gap for B implies that it has pseudorandom properties. This theorem is
another manifestation of this phenomenon since random sign matrices have high sign rank (see Alon
et al. (1985)).

The theorem above provides a non trivial lower bound on the sign rank of S. There is a non
trivial upper bound as well. The sign rank of a ∆ regular sign matrix is at most 2∆ + 1. Here is
a brief explanation of this upper bound (see Alon et al. (1985) for a more detailed proof). Every
row i in S has at most 2∆ sign changes (i.e. columns j so that Si,j 6= Si,j+1). This implies that for
every i, there is a real univariate polynomial Gi of degree at most 2∆ so that Gi(j)Si,j > 0 for all
j ∈ [N ] ⊂ R. To see how this corresponds to sign rank at most 2∆ + 1, recall that evaluating a
polynomial G of degree 2∆ on a point x ∈ R corresponds to an inner product over R2∆+1 between
the vector of coefficients of G, and the vector of powers of x.

Our proof of Theorem 4 and its limitations are discussed in detail in Section A.
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2. Applications

2.1. Learning theory

UNIVERSALITY OF KERNEL BASED METHODS

Hyperplanes and halfspaces have been central in the study of machine learning since the intro-
duction of the Perceptron algorithm in the 50’s (Rosenblatt, 1957) and Support Vector Machines
(SVM) in the 90’s (Boser et al., 1992; Cortes and Vapnik, 1995). The rising of kernel methods in
the 90’s (Boser et al., 1992; Schölkopf et al., 1998) enabled reducing many learning problems to the
framework of SVM, making it a central algorithmic tool.

These methods use the following two-step approach. First, embed the hypothesis class3 in
halfspaces of an Euclidean space (each point corresponds to a vector and for every hypothesis h,
the vectors corresponding to h−1(1) and the vectors corresponding to h−1(−1) are separated by a
hyperplane). Second, apply a learning algorithm for halfspaces.

If the embedding is to a low dimensional space then a good generalization rate is implied.
For embeddings to large dimensional spaces, SVM theory offers an alternative parameter, namely
the margin4. Indeed, a large margin also implies a good generalization rate. On the other hand,
any embedding with a large margin can be projected to a low dimensional space using standard
dimension reduction arguments (Johnson and Lindenstrauss, 1984; Arriaga and Vempala, 2006;
Ben-David et al., 2002).

Ben-David, Eiron, and Simon (Ben-David et al., 2002) utilized it to argue that “. . . any universal
learning machine, which transforms data to a Euclidean space and then applies linear (or large mar-
gin) classification, cannot preserve good generalization bounds in general.” Formally, they showed
that: For any fixed d > 1, most hypothesis classes C ⊆ {±1}N of VC dimension d have sign-rank
of NΩ(1). As discussed in Section 1.2, Theorem 2 quantitatively improves over their results.

In practice, kernel machines are widely used in a variety of applications including handwriting
recognition, image classification, medical science, bioinformatics, and more. The practical useful-
ness of SVM methods and the argument of Ben-David, Eiron, and Simon manifest a gap between
practice and theory that seems worth studying. We next discuss how Theorem 3, which provides
a non-trivial upper bound on the sign rank, can be interpreted as a theoretical evidence which sup-
ports the practical usefulness of SVM based algorithms. Let C ⊆ {±1}X be a hypothesis class,
and let γ > 0. We say that C is γ-weakly represented by halfspaces if for every finite Y ⊆ X ,
the sign rank of C|Y is at most O(|Y |1−γ). In other words, there exists an embedding of Y in Rk
with k = O(|Y |1−γ) such that each hypothesis in C|Y corresponds to a halfspace in the embedding.
Theorem 3 shows that any class C is γ-weakly represented by halfspaces where γ depends only on
its VC dimension. The universality of kernel-based methods is demonstrated in that every γ-weakly
represented class C is learnable; indeed, the VC dimension of C is bounded from above by some
function of of γ. While these quantitative relations between the VC dimension and γ may be rather
loose, they show that in principle, any learnable class has a weak representation by halfspaces which
certifies its learnability.

3. In this context we use the more common term “class” instead of “matrix.”
4. The margin of the embedding is the minimum over all hypotheses h of the distance between the convex hull of the

vectors corresponding to h−1(1) and the convex hull of the vectors corresponding to h−1(−1)
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Figure 1: An arrangement of lines in the planes and the corresponding cells.

MAXIMUM CLASSES WITH LARGE SIGN RANK

Let C ⊆ {±1}N be a class with VC dimension d. The class C is called maximum if it meets
the Sauer-Shelah’s bound (Sauer, 1972) with equality5. That is, |C| =

∑d
i=0

(
N
i

)
. Maximum

classes were studied in different contexts such as machine learning, geometry, and combinatorics
(e.g. Bollobás and Radcliffe (1995); Floyd and Warmuth (1995); Gärtner and Welzl (1994); Bandelt
et al. (2006); Anstee et al. (2002); Kuzmin and Warmuth (2007); Moran (2012); Rubinstein and
Rubinstein (2012); Rubinstein et al. (2014)).

There are several known examples of maximum classes. A fairly simple one is the hamming
ball of radius d, i.e., the class of all vectors with weight at most d. Another set of examples relates to
the sign rank: Let H an arrangement of hyperplanes in Rd. These hyperplanes cut Rd into cells; the
connected components of Rd \

(⋃
h∈H h

)
. Each cell c is associated with a sign vector vc ∈ {±1}H

which describes the location of the cell relative to each of the hyperplanes. See Figure 2.1 for a
planar arrangement. The sign rank of such a class is at most d+ 1. It is known (see e.g. Gärtner and
Welzl (1994)) that if the hyperplanes are in general position then the sign vectors of the cells form
a maximum class of VC dimension d.

Gärtner and Welzl (1994) gave a combinatorial characterization of maximum classes constructed
using generic halfspaces. As an application of their characterization they note that hamming ball of
radius d is a maximum class that can not be realized this way. By Lemma 18, however, the hamming
ball of radius d has sign rank at most 2d + 1 (it is in fact exactly 2d + 1). It is therefore natural to
ask whether every maximum class has sign rank which depends only on d. A similar question was
also asked by Ben-David et al. (2002). Theorem 6 in Section 2.2.1 gives a negative answer to this
question, even when d = 2 (when d = 1, by Theorem 1 the sign rank is at most 3).

In machine learning, maximum classes were studied extensively in the context of sample com-
pression schemes. A partial list of works in this context includes Floyd and Warmuth (1995);
Kuzmin and Warmuth (2007); Rubinstein and Rubinstein (2012); Rubinstein et al. (2014); Moran
and Warmuth (2015); Doliwa et al. (2010). Rubinstein and Rubinstein (2012) constructed an unla-
beled sample compression scheme for maximum classes. Their scheme uses an approach suggested
by Kuzmin and Warmuth (2007) and their analysis resolved a conjecture from Kuzmin and War-

5. Maximum classes are distinguished from maximal classes: A maximum class has the largest possible size among all
classes of VC dimension d, and a maximal class is such that for every sign vector v /∈ C, if v is added to C then the
VC dimension is increased.
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muth (2007). A crucial part in their work is establishing the existence of an embedding of any
maximum class of VC dimension d in an arrangement of piecewise-linear hyperplanes in Rd. The-
orem 6 below shows that even for VC dimension 2, there are maximum classes C ⊆ {±1}N of
sign rank Ω(N1/2/ logN). Thus, in order to make the piecewise-linear arrangement in R2 linear
the dimension of the space must significantly grow to Ω(N1/2/ logN).

2.2. Explicit examples

The spectral lower bound on sign rank gives many explicit examples of matrices with high sign
rank, which come from known constructions of expander graphs and combinatorial designs. A
rather simple such family of examples is finite projective geometries.

Let d ≥ 2 and n ≥ 3. Let P be the set of points in a d dimensional projective space of order
n, and let H be the set of hyperplanes in the space. For d = 2, this is just a projective plane with
points and lines. It is known (see, e.g., Beutelspacher and Rosenbaum (1998)) that

|P | = |H| = Nn,d := nd + nd−1 + . . .+ n+ 1 =
nd+1 − 1

n− 1
.

Let A ∈ {±1}P×H be the signed point-hyperplane incidence matrix:

Ap,h =

{
1 p ∈ h,
−1 p 6∈ h.

Theorem 5 The matrix A is N × N with N = Nn,d, its VC dimension is d, and its sign rank is
larger than

nd − 1

n
d−1
2 (n− 1)

≥ N
1
2
− 1

2d .

The theorem follows from known properties of projective spaces (see Section D). A slightly
weaker (but asymptotically equivalent) lower bound on the sign rank of A was given by Forster
et al. (2001).

The sign rank of A is at most 2Nn,d−1 + 1 = O(N1− 1
d ), due to the observation in Alon et al.

(1985) mentioned above. To see this, note that every point in the projective space is incident to
Nn,d−1 hyperplanes.

Other explicit examples come from spectral graph theory. Here is a brief description of matrices
that are even more restricted than having VC dimension 2 but have high sign rank; no 3 columns in
them have more than 6 distinct projections. An (N,∆, λ)-graph is a ∆ regular graph on N vertices
so that the absolute value of every eigenvalue of the graph besides the top one is at most λ. There are
several known constructions of (N,∆, λ)-graphs for which λ ≤ O(

√
∆), that do not contain short

cycles. Any such graph with ∆ ≥ NΩ(1) provides an example with sign rank at least NΩ(1), and if
there is no cycle of length at most 6 then in the sign matrix we have at most 6 distinct projections
on any set of 3 columns.

2.2.1. MAXIMUM CLASSES

Let P be the set of points in a projective plane of order n and let L be the set of lines in it. Let
N = Nn,2 = |P | = |L|. For each line ` ∈ L, fix some linear order on the points in `. A set T ⊂ P
is called an interval if T ⊆ ` for some line ` ∈ L, and T forms an interval with respect to the order
we fixed on `.

7
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Theorem 6 The class R of all intervals is a maximum class of VC dimension 2. Moreover,
there exists a choice of linear orders for the lines in L such that the resulting R has sign rank
Ω(N1/2/ logN).

The proof of Theorem 6 is given in Section D. The proof does not follow directly from The-
orem 2 since it is not clear that the classes with VC dimension 2 and large sign rank which are
guaranteed to exist by Theorem 2 can be extended to a maximum class.

2.3. Computing the sign rank

Linear Programming (LP) is one of the most famous and useful problems in the class P. As a decision
problem, an LP problem concerns determining the satisfiability of a system

`i(x) ≥ 0, i = 1, . . . ,m

where each `i is an affine function defined over Rn (say with integer coefficients). A natural ex-
tension of LP is to consider the case in which each `i is a multivariate polynomial. Perhaps not
surprisingly, this problem is much harder than LP. In fact, satisfiability of a system of polynomial
inequalities is known to be a complete problem for the class ∃R. The class ∃R is known to lie
between PSPACE and NP (see Matousek (2014) and references within).

Consider the problem of deciding whether the sign rank of a givenN×N sign matrix is at most
k. A simple reduction shows that to solve this problem it is enough to decide whether a system of
real polynomial inequalities is satisfiable. Thus, this problem belongs to the class ∃R. Basri et al.
(2009)6, and Bhangale and Kopparty (2015) showed that deciding if the sign rank is at most 3 is NP-
hard, and that deciding if the sign rank is at most 2 is in P. Both Basri et al. (2009), and Bhangale
and Kopparty (2015) established the NP-hardness of deciding whether the sign-rank is at most 3
by a reduction from the problem of determining stretchacility of pseudo-line arrangements. This
problem concerns whether a given combinatorial description of an arrangement of pseudo-lines
can be realized (“stretched”) by an arrangement of lines. Matousek (2014), based on the works
of Mnev (1989), Shor (1990), and Richter-Gebert (1995) showed that determining stretchability of
pseudo-line arrangements is in fact ∃R-complete. Therefore, it follows7 that determining whether
the sign-rank is at most 3 is ∃R-complete.

Another related work of Lee and Shraibman (2009) concerns the problem of computing the
approximate rank of a sign matrix, for which they provide an approximation algorithm. They pose
the problem of efficiently approximating the sign rank as an open problem.

Using an idea similar to the one in the proof of Theorem 3 we derive an approximation algorithm
for the sign rank (see Section C.1.2).

Theorem 7 There exists a polynomial time algorithm that approximates the sign rank of a given
N by N matrix up to a multiplicative factor of c ·N/ log(N) where c > 0 is a universal constant.

6. Interestingly, their motivation for considering sign rank comes from image processing.
7. Matousek (2014) considers a different type of combinatorial description than Basri et al. (2009); Bhangale and Kop-

party (2015), and therefore considered a different formulation of the stretchability problem. However, it is possible
to transform between these descriptions in polynomial time.
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2.4. Communication complexity

We briefly explain the notions from communication complexity we use. For formal definitions,
background and more details, see the textbook Kushilevitz and Nisan (1997).

For a function f and a distribution µ on its inputs, defineDµ(f) as the minimum communication
complexity of a protocol that correctly computes f with error 1/3 over inputs from µ. Define
D×(f) = max{Dµ(f) : µ is a product distribution}. Define the unbounded error communication
complexity U(f) of f as the minimum communication complexity of a randomized private-coin8

protocol that correctly computes f with probability strictly larger than 1/2 on every input.
Two works of Sherstov (2010, 2008) showed that there are functions with small distributional

communication complexity under product distributions, and large unbounded error communication
complexity. In Sherstov (2010) the separation is as strong as possible but it is not for an explicit
function, and the separation in Sherstov (2008) is not as strong but the underlying function is ex-
plicit.

The matrix A with d = 2 and n ≥ 3 in our example from Section 2.2 corresponds to the
following communication problem: Alice gets a point p ∈ P , Bob gets a line ` ∈ L, and they wish
to decide whether p ∈ ` or not. Let f : P × L → {0, 1} be the corresponding function and let
m = dlog2(N)e. A trivial protocol would be that Alice sends Bob using m bits the name of her
point, Bob checks whether it is incident to the line, and outputs accordingly.

Theorem 5 implies the following consequences. Even if we consider protocols that use ran-
domness and are allowed to err with probability less than but arbitrarily close to 1

2 , then still one
cannot do considerably better than the above trivial protocol. However, if the input (p, `) ∈ P × L
is distributed according to a product distribution then there exists an O(1) protocol that errs with
probability at most 1

3 .

Corollary 8 The unbounded error communication complexity of f is9 U(f) ≥ m
4 − O(1). The

distributional communication complexity of f under product distributions is D×(f) ≤ O(1).

These two seemingly contradicting facts are a corollary of the high sign rank and the low VC
dimension of A, using two known results. The upper bound on D×(f) follows from the fact that
VCdim(A) = 2, and the work of Kremer et al. (1999) which used the PAC learning algorithm to
construct an efficient (one round) communication protocol for f under product distributions. The
lower bound on U(f) follows from that sign-rank(A) ≥ Ω(N1/4), and the result of Paturi and
Simon (1986) that showed that unbounded error communication complexity is equivalent to the
logarithm of the sign rank. See Sherstov (2010) for more details.

2.5. Geometry

Differences and similarities between finite geometries and real geometry are well known. An ex-
ample of a related problem is finding the minimum dimension of Euclidean space in which we
can embed a given finite plane (i.e. a collection of points and lines satisfying certain axioms). By
embed we mean that there are two one-to-one maps eP , eL so that eP (p) ∈ eL(`) iff p ∈ ` for
all p ∈ P, ` ∈ L. The Sylvester-Gallai theorem shows, for example, that Fano’s plane cannot be
embedded in any finite dimensional real space if points are mapped to points and lines to lines.

8. In the public-coin model, every boolean function has unbounded communication complexity at most two.
9. By taking larger values of d, the constant 1

4
may be increased to 1

2
− 1

2d
.
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How about a less restrictive meaning of embedding? One option is to allow embedding using
half spaces, that is, an embedding in which points are mapped to points but lines are mapped to half
spaces. Such embedding is always possible if the dimension is high enough: Every plane with point
set P and line set L can be embedded in RP by choosing eP (p) as the p’th unit vector, and eL(`) as
the half space with positive projection on the vector with 1 on points in ` and −1 on points outside
`. The minimum dimension for which such an embedding exists is captured by the sign rank of the
underlying incidence matrix (up to a ±1).

Corollary 9 A finite projective plane of order n ≥ 3 cannot be embedded in Rk using half spaces,
unless k > N1/4 − 1 with N = n2 + n+ 1.

Roughly speaking, the corollary says that there are no efficient ways to embed finite planes in
real space using half spaces.

2.6. Counting VC classes

Let c(N, d) denote the number of classes C ⊆ {±1}N with VC dimension d. We give the following
estimate of c(N, d) for constant d and N large enough. The proof is given in Section C.1.3.

Theorem 10 For every d > 0, there is N0 = N0(d) such that for all N > N0:

N (Ω(N/d))d ≤ c(N, d) ≤ N (O(N))d .

Let m(N, d) denote the number of maximum classes C ⊆ {±1}N of VC dimension d. The
problem of estimating m(N, d) was proposed by Frankl (1989). We provide the following estimate
(see Section C.1.3).

Theorem 11 For every d > 1, there is N0 = N0(d) such that for all N > N0:

N (1+o(1)) 1
d+1(Nd ) ≤ m(N, d) ≤ N (1+o(1))

∑d
i=1 (Ni ).

The gap between our upper and lower bound is roughly a multiplicative factor of d + 1 in the
exponent. In the previous bounds given by Frankl (1989) the gap was a multiplicative factor of N
in the exponent.

2.7. Counting graphs

Here we describe an application of our method for proving Theorem 3 to counting graphs with a
given forbidden substructure.

Let G = (V,E) be a graph (not necessarily bipartite). The universal graph U(d) is defined as
the bipartite graph with two color classes A and B = 2A where |A| = d, and the edges are defined
as {a, b} iff a ∈ b. The graph G is called U(d)-free if for all two disjoint sets of vertices A,B ⊂ V
so that |A| = d and |B| = 2d, the bipartite graph consisting of all edges of G between A and B is
not isomorphic to U(d). In Theorem 24 of Alon et al. (2011), which improves Theorem 2 there, it
is proved that for d ≥ 2, the number of U(d+ 1)-free graphs on N vertices is at most

2O(N2−1/d(logN)d+2).

The proof in Alon et al. (2011) is quite involved, consisting of several technical and complicated
steps. Our methods give a different, quick proof of an improved estimate, replacing the (logN)d+2

term by a single logN term.
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Theorem 12 For every fixed d ≥ 1, the number of U(d + 1)-free graphs on N vertices is at most
2O(N2−1/d logN).

The proof of the theorem is given in Section C.1.4.

3. Concluding remarks and open problems

We have given explicit examples of N ×N sign matrices with small VC dimension and large sign
rank. However, we have not been able to prove that any of them has sign rank exceeding N1/2.
Indeed this seems to be the limit of Forster’s approach, even if we do not bound the VC dimension.
Forster’s theorem shows that the sign rank of any N × N Hadamard matrix is at least N1/2. It is
easy to see that there are Hadamard matrices of sign rank significantly smaller than linear in N .
Indeed, the sign rank of the 4 × 4 signed identity matrix is 3, and hence the sign rank of its k’th
tensor power, which is an N × N Hadamard matrix with N = 4k, is at most 3k = N log 3/ log 4 (a
similar argument was given by Forster and Simon (2006) for the Sylvester-Hadamard matrix). It
may well be, however, that some Hadamard matrices have sign rank linear in N , as do random sign
matrices, and it will be very interesting to show that this is the case for some such matrices. It will
also be interesting to decide what is the correct behavior of the sign rank of the incidence graph of
the points and lines of a projective plane with N points. We have seen that it is at least Ω(N1/4)
and at most O(N1/2).

Using our spectral technique we can give many additional explicit examples of matrices with
high sign rank, including ones for which the matrices not only have VC dimension 2, but are more
restricted than that (for example, no 3 columns have more than 6 distinct projections).

We have shown that the maximum sign rank f(N, d) of an N ×N matrix with VC dimension
d > 1 is at most O(N1−1/d), and that this is tight up to a logarithmic factor for d = 2, and close to
being tight for large d. It seems plausible to conjecture that f(N, d) = Θ̃(N1−1/d) for all d > 1.

We have also showed how to use this upper bound to get a nontrivial approximation algorithm
for the sign rank. It will be interesting to fully understand the computational complexity of comput-
ing the sign rank.

Finally we note that most of the analysis in this paper can be extended to deal with M × N
matrices, where M and N are not necessarily equal, and we restricted the attention here for square
matrices mainly in order to simplify the presentation.

Acknowledgments

We wish to thank Rom Pinchasi, Amir Shpilka, and Avi Wigderson for helpful discussions and
comments.

References

Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986a. doi: 10.1007/
BF02579166. URL http://dx.doi.org/10.1007/BF02579166.

Noga Alon. Eigenvalues, geometric expanders, sorting in rounds, and ramsey theory. Combina-
torica, 6(3):207–219, 1986b. doi: 10.1007/BF02579382. URL http://dx.doi.org/10.
1007/BF02579382.

11

http://dx.doi.org/10.1007/BF02579166
http://dx.doi.org/10.1007/BF02579382
http://dx.doi.org/10.1007/BF02579382


ALON MORAN YEHUDAYOFF

Noga Alon. A parallel algorithmic version of the local lemma. Random Struct. Algorithms, 2
(4):367–378, 1991. doi: 10.1002/rsa.3240020403. URL http://dx.doi.org/10.1002/
rsa.3240020403.

Noga Alon and V. D. Milman. Eigenvalues, expanders and superconcentrators (extended abstract).
In 25th Annual Symposium on Foundations of Computer Science, West Palm Beach, Florida,
USA, 24-26 October 1984, pages 320–322, 1984. doi: 10.1109/SFCS.1984.715931. URL http:
//dx.doi.org/10.1109/SFCS.1984.715931.

Noga Alon and V. D. Milman. lambda1, isoperimetric inequalities for graphs, and superconcentra-
tors. J. Comb. Theory, Ser. B, 38(1):73–88, 1985. doi: 10.1016/0095-8956(85)90092-9. URL
http://dx.doi.org/10.1016/0095-8956(85)90092-9.
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Appendix A. Sign rank and spectral gaps

The lower bound on the sign rank uses Forster’s argument (Forster, 2002), who showed how to
relate sign rank to spectral norm. He proved that if S is an N ×N sign matrix then

sign-rank(S) ≥ N

‖S‖
.

We would like to apply Forster’s theorem to the matrix S in our explicit examples. The spectral
norm of S, however, is too large to be useful: If S is ∆ ≤ N/3 regular and x is the all 1 vector then
Sx = (2∆−N)x and so ‖S‖ ≥ N/3. Applying Forster’s theorem to S yields that its sign rank is
Ω(1), which is not informative.

Our solution is based on the observation that Forster’s argument actually proves a stronger
statement. His proof works as long as the entries of the matrix are not too close to zero, as was
already noticed in Forster et al. (2001). We therefore use a variant of the spectral norm of a sign
matrix S which we call star norm and denote by10

‖S‖∗ = min{‖M‖ : Mi,jSi,j ≥ 1 for all i, j}.

Three comments seem in place. (i) We do not think of the star norm as a norm. (ii) It is al-
ways at most the spectral norm, ‖S‖∗ ≤ ‖S‖. (iii) Every M in the above minimum satisfies
sign-rank(M) = sign-rank(S).

Theorem 13 (Forster et al. (2001)) Let S be an N ×N sign matrix. Then,

sign-rank(S) ≥ N

‖S‖∗
.

10. The minimizer belongs to a closed subset of the bounded set {M : ‖M‖ ≤ ‖S‖}.
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For completeness, in Section A.2 we provide a short proof of this theorem (which uses the main
lemma from Forster (2002) as a black box). To get any improvement using this theorem, we must
have ‖S‖∗ � ‖S‖. It is not a priori obvious that there is a matrix S for which this holds. The
following lemma shows that spectral gaps yield such examples.

Theorem 14 Let S be a ∆ regular N ×N sign matrix with ∆ ≤ N/2, and B its boolean version.
Then,

‖S‖∗ ≤ N · σ2(B)

∆
.

In other words, every regular sign matrix whose boolean version has a spectral gap has a small
star norm. Theorem 13 and Theorem 14 immediately imply Theorem 4. In Section 2.2, we pro-
vided concrete examples of matrices with a spectral gap, that have applications in communication
complexity, learning theory and geometry.
Proof [Proof of Theorem 14] Define the matrix

M =
N

∆
B − J.

Observe that since N ≥ 2∆ it follows that Mi,jSi,j ≥ 1 for all i, j. So,

‖S‖∗ ≤ ‖M‖.

Since B is regular, the all 1 vector y is a right singular vector of B with singular value ∆. Specif-
ically, My = 0. For every x, write x = x1 + x2 where x1 is the projection of x on y and x2 is
orthogonal to y. Thus,

〈Mx,Mx〉 = 〈Mx2,Mx2〉 =
N2

∆2
〈Bx2, Bx2〉.

Note that ‖B‖ ≤ ∆ (and hence ‖B‖ = ∆). Indeed, since B is regular, there are ∆ permutation
matrices B(1), . . . , B(∆) so that B is their sum. The spectral norm of each B(i) is one. The desired
bound follows by the triangle inequality.

Finally, since x2 is orthogonal to y,

‖Bx2‖ ≤ σ2(B) · ‖x2‖ ≤ σ2(B) · ‖x‖.

So,

‖M‖ ≤ N · σ2(B)

∆
.

A.1. Limitations

It is interesting to understand whether the approach above can give a better lower bound on sign
rank. There are two parts to the argument: Forster’s argument, and the upper bound on ‖S‖∗. We
can try to separately improve each of the two parts.
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Any improvement over Forster’s argument would be very interesting, but as mentioned there is
no significant improvement over it even without the restriction induced by VC dimension, so we do
not discuss it further.

To improve the second part, we would like to find examples with the biggest spectral gap possi-
ble. The Alon-Boppana theorem (Nilli, 1991) optimally describes limitations on spectral gaps. The
second eigenvalue σ of a ∆ regular graph is not too small,

σ ≥ 2
√

∆− 1− o(1),

where the o(1) term vanishes when N tends to infinity (a similar statement holds when the diameter
is large (Nilli, 1991)). Specifically, the best lower bound on sign rank this approach can yield is
roughly

√
∆/2, at least when ∆ ≤ No(1).

But what about general lower bounds on ‖S‖∗? It is well known that any N ×N sign matrix S
satisfies ‖S‖ ≥

√
N . We prove a generalization of this statement.

Lemma 15 Let S be an N × N sign matrix. For i ∈ [N ], let γi be the minimum between the
number of 1’s and the number of −1’s in the i’th row. Let γ = γ(S) = max{γi : i ∈ [N ]}. Then,

‖S‖∗ ≥ N − γ
√
γ + 1

.

This lemma provides limitations on the bound from Theorem 14. Indeed, γ(S) ≤ N
2 and N−γ√

γ+1

is a monotone decreasing function of γ, which implies ‖S‖∗ ≥ Ω(
√
N). Interestingly, Lemma 15

and Theorem 14 provide a quantitively weaker but a more general statement than the Alon-Boppana
theorem: If B is a ∆ regular N ×N boolean matrix with ∆ ≤ N/2, then

N · σ2(B)

∆
≥ N −∆√

∆ + 1
⇒ σ2(B) ≥

(
1− ∆

N

)(√
∆− 1

)
.

This bound is off by roughly a factor of two when the diameter of the graph is large. When the
diameter is small, like in the case of the projective plane which we discuss in more detail below, this
bound is actually almost tight: The second largest singular value of the boolean point-line incidence
matrix of a projective plane of order n is

√
n while this matrix is n + 1 regular (c.f., e.g., Alon

(1986b)).
It is perhaps worth noting that in fact here there is a simple argument that gives a slightly stronger

result for boolean regular matrices. The sum of squares of the singular values of B is the trace of
BtB, which is N∆. As the spectral norm is ∆, the sum of squares of the other singular values is
N∆−∆2 = ∆(N −∆), implying that

σ2(B) ≥
√

∆(N −∆)

N − 1
,

which is (slightly) larger than the bound above.
Proof [Proof of Lemma 15] Let M be a matrix so that ‖M‖ = ‖S‖∗ and Mi,jSi,j ≥ 1 for all i, j.
Assume without loss of generality11 that γi is the number of −1’s in the i’th row of S. If γ = 0,

11. Multiplying a row by −1 does not affect ‖S‖∗.
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then S has only positive entries which implies ‖M‖ ≥ N as claimed. So, we may assume γ ≥ 1.
Let t be the largest real so that

t2 =
(N − γ − t)2

γ
. (1)

That is, if γ = 1 then t = N−γ
2 and if γ > 1 then

t =
−(N − γ) +

√
(N − γ)2 + (γ − 1)(N − γ)2

γ − 1
.

In both cases,

t =
N − γ
√
γ + 1

.

We shall prove that
‖M‖ ≥ t.

There are two cases to consider. One is that for all i ∈ [N ] we have
∑

jMi,j ≥ t. In this case, if x
is the all 1 vector then

‖M‖ ≥ ‖Mx‖
‖x‖

≥ t.

The second case is that there is i ∈ [N ] so that
∑

jMi,j < t. Assume without loss of generality that
i = 1. Denote by C the subset of the columns j so that M1,j < 0. Thus,∑

j∈C
|M1,j | >

∑
j 6∈C

M1,j − t

≥ |[N ] \ C| − t (|Mi,j | ≥ 1 for all i, j)

≥ N − γ − t. (|C| ≤ γ)

Convexity of x 7→ x2 implies that∑
j∈C
|M1,j |

2

≤ |C|
∑
j∈C

M2
1,j ,

so by (1) ∑
j

M2
1,j ≥

(N − γ − t)2

γ
= t2.

In this case, if x is the vector with 1 in the first entry and 0 in all other entries then

‖(M)Tx‖ =

√∑
j

M2
1,j ≥ t = t‖x‖.

Since ‖(M)T ‖ = ‖M‖, it follows that ‖M‖ ≥ t.
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A.2. Forster’s theorem

Here we provide a proof of Forster’s theorem, that is based on the following key lemma, which he
proved.

Lemma 16 (Forster (2002)) Let X ⊂ Rk be a finite set in general position, i.e., every k vectors in
it are linearly independent. Then, there exists an invertible matrix B so that∑

x∈X

1

‖Bx‖2
Bx⊗Bx =

|X|
k
I,

where I is the identity matrix, and Bx⊗Bx is the rank one matrix with (i, j) entry (Bx)i(Bx)j .

The lemma shows that every X in general position can be linearly mapped to BX that is, in
some sense, equidistributed. In a nutshell, the proof of the lemma is by finding B1, B2, . . . so that
each Bi makes Bi−1X closer to being equidistributed, and finally using that the underlying object
is compact, so that this process reaches its goal.
Proof [Proof of Theorem 13] Let M be a matrix so that ‖M‖ = ‖S‖∗ and Mi,jSi,j ≥ 1 for all i, j.
Clearly, sign-rank(S) = sign-rank(M). Let X,Y be two subsets of size N of unit vectors in Rk
with k = sign-rank(M) so that 〈x, y〉Mx,y > 0 for all x, y. Lemma 16 says that we can assume∑

x∈X
x⊗ x =

N

k
I; (2)

If necessary replace X by BX and Y by (BT )−1Y , and then normalize (the assumption required
in the lemma that X is in general position may be obtained by a slight perturbation of its vectors).

The proof continues by bounding D =
∑

x∈X,y∈Y Mx,y〈x, y〉 in two different ways.
First, bound D from above: Observe that for every two vectors u, v, Cauchy-Schwartz inequality
implies

〈Mu, v〉 ≤ ‖Mu‖‖v‖ ≤ ‖M‖‖u‖‖v‖. (3)

Thus,

D =
k∑
i=1

∑
x∈X

∑
y∈Y

Mx,yxiyi

≤
k∑
i=1

‖M‖
√∑
x∈X

x2
i

√∑
y∈Y

y2
i ((3))

≤ ‖M‖

√√√√ k∑
i=1

∑
x∈X

x2
i

√√√√ k∑
i=1

∑
y∈Y

y2
i = ‖M‖N. (Cauchy-Schwartz)

Second, bound D from below: Since |Mx,y| ≥ 1 and |〈x, y〉| ≤ 1 for all x, y, using (2),

D =
∑
x∈X

∑
y∈Y

Mx,y〈x, y〉 ≥
∑
x∈X

∑
y∈Y

(〈x, y〉)2 =
∑
y∈Y

∑
x∈X
〈y, (x⊗ x)y〉 =

N

k

∑
y∈Y
〈y, y〉 =

N2

k
.
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Appendix B. VC dimension one

Our goal in this section is to show that sign matrices with VC dimension one have sign rank at most
3, and that 3 is tight. Before reading this section, it may be a nice exercise to prove that the sign
rank of the N ×N signed identity matrix is exactly three (for N ≥ 4).

Let us start by recalling a geometric interpretation of sign rank. Let M by an R × C sign
matrix. A d-dimensional embedding of M using half spaces consists of two maps eR, eC so that
for every row r ∈ [R] and column c ∈ [C], we have that eR(r) ∈ Rd, eC(c) is a half space in Rd,
and Mr,c = 1 iff eR(r) ∈ eC(c). The important property for us is that if M has a d-dimensional
embedding using half spaces then its sign rank is at most d + 1. The +1 comes from the fact that
the hyperplanes defining the half spaces do not necessarily pass through the origin.

Our goal in this section is to embed M with VC dimension one in the plane using half spaces.
The embedding is constructive and uses the following known claim (see, e.g., Theorem 11 in Doliwa
et al. (2014)).

Claim 2 (Doliwa et al. (2014)) Let M be an R×C sign matrix with VC dimension one so that no
row appears twice in it, and every column c is shattered (i.e. the two values ±1 appear in it). Then,
there is a column c0 ∈ [C] and a row r0 ∈ [R] so that Mr0,c0 6= Mr,c0 for all r 6= r0 in [R].

Proof For every column c, denote by onesc the number of rows r ∈ [R] so that Mr,c = 1, and let
mc = min{onesc, R − onesc}. Assume without loss of generality that m1 ≤ mc for all c, and that
m1 = ones1. Since all columns are shattered, m1 ≥ 1. To prove the claim, it suffices to show that
m1 ≤ 1.

Assume towards a contradiction that m1 ≥ 2. For b ∈ {1,−1}, denote by M (b) the submatrix
of M consisting of all rows r so that Mr,1 = b. The matrix M (1) has at least two rows. Since all
rows are different, there is a column c 6= 1 so that two rows in M (1) differ in c. Specifically, column
c is shattered in M (1). Since VCdim(M) = 1, it follows that c is not shattered in M (−1), which
means that the value in column c is the same for all rows of the matrixM (−1). Therefore,mc < m1,
which is a contradiction.

The embedding we construct has an extra structure which allows the induction to go through:
The rows are mapped to points on the unit circle (i.e. set of points x ∈ R2 so that ‖x‖ = 1).

Lemma 17 Let M be an R× C sign matrix of VC dimension one so that no row appears twice in
it. Then, M can be embedded in R2 using half spaces, where each row is mapped to a point on the
unit circle.

The lemma immediately implies Threorem 1 due to the connection to sign rank discussed above.
Proof The proof follows by induction on C. If C = 1, the claim trivially holds.

The inductive step: If there is a column that is not shattered, then we can remove it, apply
induction, and then add a half space that either contains or does not contain all points, as necessary.
So, we can assume all columns are shattered. By Claim 2, we can assume without loss of generality
that M1,1 = 1 but Mr,1 = −1 for all r 6= 1.

Denote by r0 the row of M so that Mr0,c = M1,c for all c 6= 1, if such a row exists. Let M ′ be
the matrix obtained from M by deleting the first column, and row r0 if it exists, so that no row in
M ′ appears twice. By induction, there is an appropriate embedding of M ′ in R2.
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The following is illustrated in Figure 1. Let x ∈ R2 be the point on the unit circle to which the
first row in M ′ was mapped to (this row corresponds to the first row of M as well). The half spaces
in the embedding of M ′ are defined by lines, which mark the borders of the half spaces. The unit
circle intersects these lines in finitely many points. Let y, z be the two closest points to x among
all these intersection points. Let y′ be the point on the circle in the middle between x, y, and let z′

be the point on the circle in the middle between x, z. Add to the configuration one more half space
which is defined by the line passing through y′, z′. If in addition row r0 exists, then map r0 to the
point x0 on the circle which is right in the middle between y, y′.

y

y′
x

z′
z

x0

Figure 2: An example of a neighbourhood of x. All other points in embedding of M ′ are to left of
y and right of z on the circle. The half space defined by the line through y′, z′ is coloured
light gray.

This is the construction. Its correctness follows by induction, by the choice of the last added
half space which separates x from all other points, and since if x0 exists it belongs to the same cell
as x in the embedding of M ′.

We conclude the section by showing that the bound 3 above cannot be improved.
Proof [Proof of Claim 1] One may deduce the claim from Forster’s argument, but we provide a
more elementary argument. It suffices to consider the caseN = 4. Consider an arrangement of four
half planes in R2. These four half planes partition R2 to eight cones with different sign signatures,
as illustrated in Figure 2. Let M be the 8× 4 sign matrix whose rows are these sign signatures. The
rows of M form a distance preserving cycle (i.e. the distance along cycle is hamming distance) of
length eight in the discrete cube of dimension four12.

Finally, the signed identity matrix is not a submatrix of M . To see this, note that the four rows
of the signed identity matrix have pairwise hamming distance two, but there are no such four points
(not even three points) on this cycle of length eight.

12. The graph with vertex set {±1}4 where every two vectors of hamming distance one are connected by an edge.
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+ + +−

+ +−−
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−−−+
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−+ ++

Figure 3: Four lines defining four half planes, and the corresponding eight sign signatures.

Appendix C. Sign rank and VC dimension

In this section we study the maximum possible sign rank of N × N matrices with VC dimension
d, presenting the proofs of Proposition 1 and Theorems 3 and 2. We also show that the arguments
supply a new, short proof and an improved estimate for a problem in asymptotic enumeration of
graphs studied by Alon et al. (2011).

C.1. The upper bound

In this subsection we prove Theorem 3. The proof is short, but requires several ingredients. The
first one has been mentioned already, and appears in Alon et al. (1985). For a sign matrix S, let
SC(S) denote the maximum number of sign changes (SC) along a column of S. Define SC∗(S) =
minSC(M) where the minimum is taken over all matrices M obtained from S by a permutation of
the rows.

Lemma 18 (Alon et al. (1985)) For any sign matrix S, sign-rank(S) ≤ SC∗(S) + 1.

Of course we can replace here rows by columns, but for our purpose the above version will do.
The second result we need is a theorem of Welzl (1988) (see also Chazelle and Welzl (1989)). As
observed, for example, in Matousek et al. (1993), plugging in its proof a result of Haussler (1995)
improves it by a logarithmic factor, yielding the result we describe next. For a function g mapping
positive integers to positive integers, we say that a sign matrix S satisfies a primal shatter function g
if for any integer t and any set I of m columns of S, the number of distinct projections of the rows
of S on I is at most g(t). The result of Welzl (after its optimization following Haussler (1995)) can
be stated as follows13.

Lemma 19 (Welzl (1988), see also Chazelle and Welzl (1989); Matousek et al. (1993)) Let S be
a sign matrix with N rows that satisfies the primal shatter function g(t) = ctd for some constants
c ≥ 0 and d > 1. Then SC∗(S) ≤ O(N1−1/d).

13. The statement in Welzl (1988) and the subsequent papers is formulated in terms of somewhat different notions, but it
is not difficult to check that it is equivalent to the statement below.
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Proof [Proof of Theorem 3] Let S be an N × N sign matrix of VC dimension d > 1. By Sauer’s
lemma (Sauer, 1972), it satisfies the primal shatter function g(t) = td. Hence, by Lemma 19,
SC∗(S) ≤ O(N1−1/d). Therefore, by Lemma 18, sign-rank(S) ≤ O(N1−1/d).

C.1.1. ON THE TIGHTNESS OF THE ARGUMENT

The proof of Theorem 3 works, with essentially no change, for a larger class of sign matrices than
the ones with VC dimension d. Indeed, the proof shows that the sign rank of any N × N matrix
with primal shatter function at most ctd for some fixed c and d > 1 is at most O(N1−1/d). In this
statement the estimate is sharp for all integers d, up to a logarithmic factor. This follows from the
construction in Alon et al. (1999), which supplies N × N boolean matrices so that the number of
1 entries in them is at least Ω(N2−1/d), and they contain no d by D = (d − 1)! + 1 submatrices
of 1’s. These matrices satisfy the primal shatter function g(t) = D

(
t
d

)
+
∑d−1

i=0

(
t
i

)
(with room to

spare). Indeed, if we have more than that many distinct projections on a set of t columns, we can
omit all projections of weight at most d− 1. Each additional projection contains 1’s in at least one
set of size d, and the same d-set cannot be covered more than D times. Plugging this matrix in
the counting argument that gives a lower bound for the sign rank using Lemma 24 proven below
supplies an Ω(N1−1/d/ logN) lower bound for the sign rank of many N ×N matrices with primal
shatter function O(td).

We have seen in Lemma 18 that sign rank is at most of order SC∗. Moreover, for a fixed r,
many of the N × N sign matrices with sign rank at most r also have SC∗ at most r: Indeed, a
simple counting argument shows that the number of N ×N sign matrices M with SC(M) < r is(

2 ·
r−1∑
i=0

(
N − 1

i

))N
= 2Ω(rN logN),

so, the set of N ×N sign matrices with SC∗(M) < r is a subset of size 2Ω(rN logN) of all N ×N
sign matrices with sign rank at most r.

How many N ×N matrices of sign rank at most r are there? by Lemma 24 proved in the next
section, this number is at most 2O(rN logN). So, the set of matrices with SC∗ < r is a rather large
subset of the set of matrices with sign rank at most r.

It is reasonable, therefore, to wonder whether an inequality in the other direction holds. Namely,
whether all matrices of sign rank r have SC∗ order of r. We now describe an example which shows
that this is far from being true, and also demonstrates the tightness of Lemma 19. Namely, for every
constant d > 1, there areN×N matrices S, which satisfy the primal shatter function g(t) = ctd for
a constant c, and on the other hand SC∗(S) ≥ Ω(N1−1/d). Consider the grid of points P = [n]d

as a subset of Rd. Denote by e1, . . . , ed the standard unit vectors in Rd. For i ∈ [n − 1] and
j ∈ [d], define the hyperplane hi,j = {x : 〈x, ej〉 > i + (1/2)}. Denote by H the set of these
d(n − 1) axis parallel hyperplanes. Let S be the P ×H sign matrix defined by P and H . That is,
Sp,h = 1 iff p ∈ h. First, the matrix S satisfies the primal shatter function ctd, since every family of
t hyperplanes partition Rd to at most ctd cells. Second, we show that

SC∗(S) ≥ nd − 1

d(n− 1)
≥ |P |

1−1/d

d
.
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Indeed, fix some order on the rows of S, that is, order the points P = {p1, . . . , pN} with N = |P |.
The key point is that one of the hyperplanes h0 ∈ H is so that the number of i ∈ [N − 1] for which
Spi,h0 6= Spi+1,h0 is at least (nd − 1)/(d(n− 1)): For each i there is at least one hyperplane h that
separates pi and pi+1, that is, for which Spi,h 6= Spi+1,h. The number of such pairs of points is
nd − 1, and the number of hyperplanes is just d(n− 1).

C.1.2. AN ALGORITHM APPROXIMATING THE SIGN RANK

In this section we describe an efficient algorithm that approximates the sign rank (Theorem 7).
The algorithm uses the following notion. Let V be a set. A pair v, u ∈ V is crossed by a

vector c ∈ {±1}V if c(v) 6= c(u). Let T be a tree with vertex set V = [N ] and edge set E. Let
S be a V × [N ] sign matrix. The stabbing number of T in S is the largest number of edges in
T that are crossed by the same column of S. For example, if T is a path then T defines a linear
order (permutation) on V and the stabbing number is the largest number of sign changes among all
columns with respect to this order.

Welzl Welzl (1988) gave an efficient algorithm for computing a path T with a low stabbing
number for matrices S with VC dimension d. The analysis of the algorithm can be improved by a
logarithmic factor using a result of Haussler (1995).

Theorem 20 (Welzl (1988); Haussler (1995)) There exists a polynomial time algorithm such that
given a V × [N ] sign matrix S with |V | = N , outputs a path on V with stabbing number at most
200N1−1/d where d = V C(S).

For completeness, and since to the best of our knowledge no explicit proof of this theorem appears in
print, we provide a description and analysis of the algorithm. We assume without loss of generality
that the rows of S are pairwise distinct.

We start by handling the case14 d = 1. In this case, we directly output a tree that is a path
(i.e., a linear order on V ). If d = 1, then Claim 2 implies that there is a column with at most 2
sign changes with respect to any order on V . The algorithm first finds by recursion a path T for the
matrix obtained from S by removing this column, and outputs the same path T for the matrix S as
well. By induction, the resulting path has stabbing number at most 2 (when there is a single column
the stabbing number can be made 1).

For d > 1, the algorithm constructs a sequence of N forests F0, F1, . . . , FN−1 over the same
vertex set V . The forest Fi has exactly i edges, and is defined by greedily adding an edge ei to Fi−1.
As we prove below, the tree FN−1 has a stabbing number at most 100N1−1/d. The tree FN−1 is
transformed to a path T as follows. Let v1, v2, . . . , v2N−1 be an eulerian path in the graph obtained
by doubling every edge in FN−1. This path traverses each edge of FN−1 exactly twice. Let S′ be
the matrix with 2N − 1 rows and N columns obtained from S be putting row vi in S as row i, for
i ∈ [2N − 1]. The number of sign changes in each column in S′ is at most 2 · 100N1−1/d. Finally,
let T be the path obtained from the eulerian path by leaving a single copy of each row of S. Since
deleting rows from S′ cannot increase the number of sign changes, the path T is as stated.

The edge ei is chosen as follows. The algorithm maintains a probability distribution pi on [N ].
The weight wi(e) of the pair e = {v, u} is the probability mass of the columns e crosses, that
is, wi(e) = pi({j ∈ [N ] : Su,j 6= Sv,j}). The algorithm chooses ei as an edge with minimum
wi-weight among all edges that are not in Fi−1 and do not close a cycle in Fi−1.

14. This analysis also provides an alternative proof for Lemma 17.

26



SIGN RANK VERSUS VC DIMENSION

The distributions p1, . . . , pN are chosen iteratively as follows. The first distribution p1 is the
uniform distribution on [N ]. The distribution pi+1 is obtained from pi by doubling the relative mass
of each column that is crossed by ei. That is, let xi = wi(ei), and for every column j that is crossed
by ei define pi+1(j) = 2pi(j)

1+xi
, and for every other column j define pi+1(j) = pi(j)

1+xi
.

This algorithm clearly produces a tree on V , and the running time is indeed polynomial in N .
It remains to prove correctness. We claim that each column is crossed by at most O(N1−1/d) edges
in T . To see this, let j be a column in S, and let k be the number of edges crossing j. It follows that

pN (j) =
1

N
· 2k · 1

(1 + x1)(1 + x2) . . . (1 + xN−1)
.

To upper bound k, we use the following claim.

Claim 3 For every i we have xi ≤ 4e2(N − i)−1/d.

The claim completes the proof of Theorem 20: Since pN (j) ≤ 1 and d > 1,

k ≤ logN + log (1 + x1) + . . .+ log (1 + xN−1)

≤ log(N) + 2 (ln(1 + x1) + ...+ ln(1 + xN−1)) (∀x : log(x) ≤ 2 ln(x))

≤ log(N) + 2(x1 + ...+ xN−1)

≤ logN + 8e2N1−1/d ≤ 100N1−1/d.

The claim follows from the following theorem of Haussler.

Theorem 21 (Haussler (1995)) Let p be a probability distribution on [N ], and let ε > 0. Let
S ∈ {±1}V×[N ] be a sign matrix of VC dimension d so that the p-distance between every two
distinct rows u, v is large:

p({j ∈ [N ] : Sv,j 6= Su,j}) ≥ ε.

Then, the number of distinct rows in S is at most

e(d+ 1) (2e/ε)d ≤
(
4e2/ε

)d
.

Proof [Proof of Claim 3] Haussler’s theorem states that if the number of distinct rows is M , then
there must be two distinct rows of pi-distance at most 4e2M−1/d. There are N − i connected
components in Fi. Pick N − i rows, one from each component. Therefore, there are two of these
rows whose distance is at most 4e2M−1/d = 4e2(N − i)−1/d. Now, observe that the wi-weight of
the pair {u, v} equals the pi-distance between u, v. Since ei is chosen to have minimum weight,
xi ≤ 4e2(N − i)−1/d

We now describe the approximation algorithm. Let S be anN×N sign matrix of VC dimension
d. Run Welzl’s algorithm on S, and get a permutation of the rows of S that yield a low stabbing
number. Let s be the maximum number of sign changes among all columns of S with respect to this
permutation. Output s+ 1 as the approximation to the sign rank of S.

We now analyze the approximation ratio. By Lemma 18 the sign rank of S is at most s + 1.
Therefore, the approximation factor s+1

sign-rank(S) is at least 1. On the other hand, Proposition 1 implies

27



ALON MORAN YEHUDAYOFF

that d ≤ sign-rank(S). Thus, by the guarantee of Welzl’s algorithm,

s+ 1

sign-rank(S)
≤ O

(
N1−1/d

sign-rank(S)

)
≤ O

(
N1−1/d

d

)
.

This factor is maximized for d = Θ(logN) and is therefore at most O(N/ logN).

C.1.3. COUNTING VC CLASSES

Here we prove Theorems 10 and 11. It is convenient for both to set

f =

d∑
i=0

(
N

i

)
.

Proof [Proof of Theorem 10] We start with the upper bound. Enumerate the members of each such
class C as follows. Start with the (lexicographically) first member c ∈ C, call it c1. Assuming
c1, c2, . . . , ci have already been chosen, let ci+1 be the member c among the remaining vectors in
C whose hamming distance from the set {c1, . . . , ci} is minimum (in case of equalities we take
the first one lexicographically). This gives an enumeration c1, . . . , cm of the members of C, and
m ≤ f .

We now upper bound the number of possible families. There are at most 2N ways to choose c1.
If the distance of ci+1 from the previous sets is h = hi+1, then we can determine ci+1 by giving the
index j ≤ i so that the distance between ci+1 and cj is h, and by giving the symmetric difference
of ci+1 and cj . There are less than m ≤ f ways to choose the index, and at most

(
n
h

)
< (eN/h)h

options for the symmetric difference. The crucial point is that by Theorem 21 the number of i for
which hi ≥ D is less than e(d + 1)(2eN/D)d. Hence the number of i for which hi is between 2`

and 2`+1 is at most e(d+ 1)(2eN/2`)d. This upper bounds c(N, d) by at most

2Nmf
∏
`

(
(eN/2`)2`+1

)e(d+1)(2eN/2`)d

≤ 2NffN (O(N))d = N (O(N))d .

We now present a lower bound on the number of (maximum) classes with VC dimension d. Take
a family F of

(
N
d

)
/(d+ 1) subsets of [N ] of size (d+ 1) so that every subset of size d is contained

in exactly one of them. Such families exist by a recent breakthrough result of Keevash Keevash
(2014), provided the trivial divisibility conditions hold and N > N0(d). His proof also gives that
there are N (1+o(1))(Nd )/(d+1) such families.

Now, construct a class C by taking all subsets of cardinality at most d− 1, and for each (d+ 1)-
subset in the family F take it and all its subsets of cardinality d besides one. The VC dimension of
C is indeed d. The number of possible Cs that can be constructed this way is at least the number of
families F . Therefore, the number of classes of VC dimension d is at least the number of F s:

N (1+o(1))(Nd )/(d+1) = N (Ω(N/d))d .

Proof [Proof of Theorem 11] For the upper bound we use the known fact that every maximum
class is a connected subgraph of the boolean cube Gärtner and Welzl (1994). Thus, to upper bound
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the number of maximum classes of VC dimension d it is enough to upper bound the number of
connected subgraphs of the N -dimensional cube of size f . It is known (see, e.g., Lemma 2.1
in Alon (1991)) that the number of connected subgraphs of size k in a graph with m vertices and
maximum degree D is at most m(eD)k. In our case, plugging k = f , m = 2N , D = N yields the
desired bound 2N (eN)f = N (1+o(1))f .

For the lower bound, note that in the proof of Theorem 10 the constructed classes were of size f ,
and therefore maximum classes. Therefore, there are at least N (1+o(1))(Nd )/(d+1) maximum classes
of VC dimension d.

C.1.4. AN APPLICATION: COUNTING GRAPHS

Proof [Proof of Theorem 12] The key observation is that whenever we split the vertices of a U(d+
1)-free graph into two disjoint sets of equal size, the bipartite graph between them defines a matrix
of VC dimension at most d. Hence, the number of such bipartite graphs is at most

T (N, d) = 2O(N2−1/d logN).

By a known lemma of Shearer (Chung et al., 1986), this implies that the total number of U(d+ 1)-
free graphs on N vertices is less than T (N, d)2 = 2O(N2−1/d logN). For completeness, we include
the simple details. The lemma we use is the following.

Lemma 22 (Chung et al. (1986)) Let F be a family of vectors in S1 × S2 · · · × Sn. Let G =
{G1, . . . , Gm} be a collection of subsets of [n], and suppose that each element i ∈ [n] belongs to at
least k members of G. For each 1 ≤ i ≤ m, let Fi be the set of all projections of the members of F
on the coordinates in Gi. Then

|F|k ≤
m∏
i=1

|Fi|.

In our application, n =
(
N
2

)
and S1 = . . . = Sn = {0, 1}. The vectors represent graphs on N

vertices, each vector being the characteristic vector of a graph on N labeled vertices. The set [n]
corresponds to the set of all

(
N
2

)
potential edges. The family F represents all U(d+ 1)-free graphs.

The collection G is the set of all complete bipartite graphs with N/2 vertices in each color class.
Each edge i ∈ [n] belongs to at least (in fact a bit more than) half of them, i.e., k ≥ m/2. Hence,

|F| ≤

(
m∏
i=1

|Fi|

)2/m

≤ ((T (N, d))m)2/m ,

as desired.

C.2. The lower bound

In this subsection we prove Theorem 2. Our approach follows the one of Alon et al. (1985), which is
based on known bounds for the number of sign patterns of real polynomials. A similar approach has
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been subsequently used by Ben-David et al. (2002) to derive lower bounds for f(N, d) for d ≥ 4,
but here we do it in a slightly more sophisticated way and get better bounds.

Although we can use the estimate in Alon et al. (1985) for the number of sign matrices with a
given sign rank, we prefer to describe the argument by directly applying a result of Warren (1968),
described next.

Let P = (P1, P2, . . . , Pm) be a list of m real polynomials, each in ` variables. Define the
semi-variety

V = V (P ) = {x ∈ R` : Pi(x) 6= 0 for all 1 ≤ i ≤ m}.

For x ∈ V , the sign pattern of P at x is the vector

(sign(P1(x)), sign(P2(x)), . . . , sign(Pm(x))) ∈ {−1, 1}m.

Let s(P ) be the total number of sign patterns of P as x ranges over all of V . This number is bounded
from above by the number of connected components of V .

Theorem 23 (Warren (1968)) Let P = (P1, P2, . . . , Pm) be a list of real polynomials, each in `
variables and of degree at most k. If m ≥ ` then the number of connected components of V (P )
(and hence also s(P )) is at most (4ekm/`)`.

An N ×N matrix M is of rank at most r iff it can be written as a product M = M1 ·M2 of an
N×rmatrixM1 by an r×N matrixM2. Therefore, each entry ofM is a quadratic polynomial in the
2Nr variables describing the entries of M1 and M2. We thus deduce the following from Warren’s
Theorem stated above. A similar argument has been used by (Ben-David and Lindenbaum, 1998).

Lemma 24 Let r ≤ N/2. Then, the number of N × N sign matrices of sign rank at most r does
not exceed (O(N/r))2Nr ≤ 2O(rN logN).

For a fixed r, this bound for the logarithm of the above quantity is tight up to a constant factor:
As argued in Subsection C.1.1, there are at least some 2Ω(rN logN) matrices of sign rank r.

In order to derive the statement of Theorem 2 from the last lemma it suffices to show that the
number of N ×N sign matrices of VC dimension d is sufficiently large. We proceed to do so. It is
more convenient to discuss boolean matrices in what follows (instead of their signed versions).
Proof [Proof of Theorem 2] There are 4 parts as follows.
1. The case d = 2: Consider the N ×N incidence matrix A of the projective plane with N points
and N lines, considered in the previous sections. The number of 1 entries in A is (1 + o(1))N3/2,
and it does not contain J2×2 (the 2 × 2 all 1 matrix) as a submatrix, since there is only one line
passing through any two given points. Therefore, any matrix obtained from it by replacing ones by
zeros has VC dimension at most 2, since every matrix of VC dimension 3 must contain J2×2 as a
submatrix. This gives us 2(1+o(1))N3/2

distinct N × N sign matrices of VC dimension at most 2.
Lemma 24 therefore establishes the assertion of Theorem 2, part 1.
2. The case d = 3: Call a 5× 4 binary matrix heavy if its rows are the all 1 row and the 4 rows with
Hamming weight 3. Call a 5× 4 boolean matrix heavy-dominating if there is a heavy matrix which
is smaller or equal to it in every entry.

We claim that there is a boolean N ×N matrix B so that the number of 1 entries in it is at least
Ω(N23/15), and it does not contain any heavy-dominating 5× 4 submatrix. Given such a matrix B,
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any matrix obtained from B by replacing some of the ones by zeros have VC dimension at most 3.
This implies part 2 of Theorem 2, using Lemma 24 as before.

The existence of B is proved by a probabilistic argument. Let C be a random binary matrix
in which each entry, randomly and independently, is 1 with probability p = 1

2N7/15 . Let X be the
random variable counting the number of 1 entries of C minus twice the number of 5 × 4 heavy-
dominant submatrices C contains. By linearity of expectation,

E(X) ≥ N2p− 2N4+5p1·4+4·3 = Ω(N23/15).

Fix a matrix C for which the value of X is at least its expectation. Replace at most two 1 entries by
0 in each heavy-dominant 5× 4 submatrix in C to get the required matrix B.
3. The case d = 4: The basic idea is as before, but here there is an explicit construction that beats
the probabilistic one. Indeed, Brown (1966) constructed an N × N boolean matrix B so that the
number of 1 entries in B is at least Ω(N5/3) and it does not contain J3×3 as a submatrix (see also
Alon et al. (1999) for another construction). No set of 5 rows in every matrix obtained from this one
by replacing 1’s by 0’s can be shattered, implying the desired result as before.
4. The case d > 4: The proof here is similar to the one in part 2. We prove by a probabilistic
argument that there is an N ×N binary matrix B so that the number of 1 entries in it is at least

Ω(N2−(d2+5d+2)/(d3+2d2+3d))

and it contains no heavy-dominant submatrix. Here, heavy-dominant means a 1 + (d+ 1) +
(
d+1

2

)
by d+ 1 matrix that is bigger or equal in each entry than the matrix whose rows are all the distinct
vectors of length d + 1 and Hamming weight at least d − 1. Any matrix obtained by replacing 1’s
by 0’s in B cannot have VC dimension exceeding d. The result follows, again, from Lemma 24.

We start as before with a random matrix C in which each entry, randomly and independently, is
chosen to be 1 with probability

p =
1

2
·N

2−1−(d+1)−(d+1
2 )−(d+1)

1·(d+1)+(d+1)·d+(d+1
2 )·(d−1)−1 =

1

2N (d2+5d+2)/(d3+2d2+3d)
.

Let X be the random variable counting the number of 1 entries of C minus three times the number
of heavy-dominant submatrices C contains. As before, E(X) ≥ Ω(N2p), and by deleting some of
the 1’s in C we get B.

Appendix D. Projective spaces

Here we prove Theorem 5 and Theorem 6.
Proof [Proof of Theorem 5] It is well known that the VC dimension ofA is d, but we provide a brief
explanation. The VC dimension is at least d by considering any set of d independent points (i.e. so
that no strict subset of it spans it). The VC dimension is at most d since every set of d+ 1 points is
dependent in a d dimensional space.

The lower bound on the sign rank follows immediately from Theorem 4, and the following
known bound on the spectral gap of these matrices.
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Lemma 25 If B is the boolean version of A then

σ2(B)

∆
=
n

d−1
2 (n− 1)

nd − 1
≤ N−

1
2

+ 1
2d

n,d .

The proof is so short that we include it here.
Proof We use the following two known properties (see, e.g., Beutelspacher and Rosenbaum (1998))
of projective spaces. Both the number of distinct hyperplanes through a point and the number of
distinct points on a hyperplane are Nn,d−1. The number of hyperplanes through two distinct points
is Nn,d−2.

The first property implies that A is ∆ = Nn,d−1 regular. These properties also imply

BBT = (Nn,d−1 −Nn,d−2) I +Nn,d−2J = nd−1I +Nn,d−2J,

where J is the all 1 matrix. Therefore, all singular values except the maximum one are n
d−1
2 .

Proof [Proof of Theorem 6] We first show that R is indeed a maximum class of VC dimension 2.
The VC dimension ofR is 2: It is at least 2 becauseR contains the set of lines whose VC dimension
is 2. It is at most 2 because no three points p1, p2, p3 are shattered. Indeed if they all belong to a line
` then without loss of generality according to the order of ` we have p1 < p2 < p3 which implies
that the pattern 101 is missing. Otherwise, they are not co-linear and the pattern 111 is missing.

To see that R is a maximum class, note that there are exactly N + 1 intervals of size at most
one (one empty interval and N singletons). For each line ` ∈ L, the number of intervals of size at
least two which are subsets of ` is exactly

(|`|
2

)
=
(
n+1

2

)
. Since every two distinct lines intersect in

exactly one point, it follows that each interval of size at least two is a subset of exactly one line. It
follows that the number of intervals is

1 +N +N ·
(
n+ 1

2

)
= 1 +N +

(
N

2

)
.

Thus, R is indeed a maximum class of VC dimension 2.
Next we show that there exists a choice of a linear order for each line such that the resulting R

has sign rank Ω(N
1
2 / logN). By the proof of Theorem 2, case d = 2, there is a choice of a subset

for each line such that the resulting N subsets form a class of sign rank Ω(N
1
2 / logN). We can

therefore pick the linear orders in such a way that each of these N subsets forms an interval, and
the resulting maximum class (of all possible intervals with respect to these orders) has sign rank at
least as large as Ω(N

1
2 / logN).

Appendix E. Duality

Here we discuss the connection between VC dimension and dual sign rank.
We start with an equivalent definition of dual sign rank, that is based on the following notion.

We say that a set of columns C is antipodally shattered in a sign matrix S if for each v ∈ {±1}C ,
either v or −v appear as a row in the restriction of S to the columns in C.
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Claim 4 The set of columns C is antipodally shattered in S if and only if in every matrix M with
sign(M) = S the columns in C are linearly independent.

Proof First, assume C is such that there exists some M with sign(M) = S in which the columns
in C are linearly dependent. For a column j ∈ C, denote by M(j) the j’th column in M . Let
{αj : j ∈ C} be a set of real numbers so that

∑
j∈C αjM(j) = 0 and not all αj’s are zero.

Consider the vector v ∈ {±1}C such that vj = 1 if αj ≥ 0 and vj = −1 if αj < 0. The restriction
of S to C does not contain v nor −v as a row, which certifies that C is not antipodally shattered by
S.

Second, let C be a set of columns which is not antipodally shattered in S. Let v ∈ {±1}C be
such that both v,−v do not appear as a row in the restriction of S to C. Consider the subspace
U = {u ∈ RC :

∑
j∈C ujvj = 0}. For each sign vector s ∈ {±1}C so that s 6= ±v, the space U

contains some vector us such that sign(us) = s. Let M be so that sign(M) = S and in addition for
each row in S that has pattern s ∈ {±}C in S restricted to C, the corresponding row inM restricted
to C is us ∈ U . All rows in M restricted to C are in U , and therefore the set {M(j) : j ∈ C} is
linearly dependent.

Corollary 26 The dual sign rank of S is the maximum size of a set of columns that are antipodally
shattered in S.

Now, we prove Proposition 1:

V C(S) ≤ dual-sign-rank(S) ≤ 2V C(S) + 1.

The left inequality: The VC dimension of S is at most the maximum size of a set of columns
that is antipodally shattered in S, which by the above claim equals the dual sign rank of S.

The right inequality: Let C be a largest set of columns that is antipodally shattered in S. By the
claim above, the dual sign rank of S is |C|. Let A ⊆ C such that |A| = b|C|/2c. If A is shattered in
S then we are done. Otherwise, there exists some v ∈ {±1}A that does not appear in S restricted to
A. Since C is antipodally shattered by S, this implies that S contains all patterns in {±1}C whose
restriction to A is −v. In particular, S shatters C \A which is of size at least b|C|/2c.
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