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Abstract

We give upper and lower bounds on the information-theoretic threshold for community detection

in the stochastic block model. Specifically, consider a symmetric stochastic block model with

q groups, average degree d, and connection probabilities cin/n and cout/n for within-group and

between-group edges respectively; let λ = (cin − cout)/(qd). We show that, when q is large, and

λ = O(1/q), the critical value of d at which community detection becomes possible—in physical

terms, the condensation threshold—is

dc = Θ

(
log q

qλ2

)
,

with tighter results in certain regimes. Above this threshold, we show that any partition of the

nodes into q groups which is as ‘good’ as the planted one, in terms of the number of within- and

between-group edges, is correlated with it. This gives an exponential-time algorithm that performs

better than chance; specifically, community detection becomes possible below the Kesten-Stigum

bound for q ≥ 5 in the disassortative case λ < 0, and for q ≥ 11 in the assortative case λ > 0
(similar upper bounds were obtained independently by Abbe and Sandon). Conversely, below this

threshold, we show that no algorithm can label the vertices better than chance, or even distinguish

the block model from an Erdős-Rényi random graph with high probability.

Our lower bound on dc uses Robinson and Wormald’s small subgraph conditioning method, and

we also give (less explicit) results for non-symmetric stochastic block models. In the symmetric

case, we obtain explicit results by using bounds on certain functions of doubly stochastic matrices

due to Achlioptas and Naor; indeed, our lower bound on dc is their second moment lower bound

on the q-colorability threshold for random graphs with a certain effective degree.

1. Introduction

The Stochastic Block Model (SBM) is a random graph ensemble with planted community struc-

ture, where the probability of a connection between each pair of vertices is a function only of the

groups or communities to which they belong. It was originally invented in sociology (Holland et al.

(1983)); it was reinvented in physics and mathematics under the name “inhomogeneous random
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graph” (Söderberg (2002); Bollobás et al. (2007)), and in computer science as the planted partition

problem (e.g. McSherry (2001)).

Given the current interest in network science, the block model and its variants have become

popular parametric models for the detection of community structure. An interesting set of questions

arise when we ask to what extent the communities, i.e., the labels describing the vertices’ group

memberships, can be recovered from the graph it generates. In the case where the average degree

grows as log n, if the structure is sufficiently strong then the underlying communities can be recov-

ered (Bickel and Chen (2009)), and the threshold at which this becomes possible has recently been

determined (Abbe et al. (2016); Abbe and Sandon (2015); Agarwal et al. (2015)). Above this thresh-

old, efficient algorithms exist that recover the communities exactly, labeling every vertex correctly

with high probability; below this threshold, exact recovery is information-theoretically impossible.

In the sparse case where the average degree is O(1), finding the communities is more difficult,

since we effectively have only a constant amount of information about each vertex. In this regime,

our goal is to label the vertices better than chance, i.e., to find a partition with nonzero correlation

or mutual information with the ground truth. This is sometimes called the detection problem to

distinguish it from exact recovery. A set of phase transitions for this problem was conjectured in the

statistical physics literature based on tools from spin glass theory (Decelle et al. (2011a,b)). Some

of these conjectures have been made rigorous, while others remain as tantalizing open problems.

Besides the detection problem, it is natural to ask whether a graph generated by the stochastic

block model can be distinguished from an Erdős-Rényi random graph with the same average degree.

This is called the distinguishability problem, and it is believed to have the same threshold as the

detection problem. Although distinguishing a graph from the stochastic block model from an Erdős-

Rényi graph seems intuitively easier than actually detecting the communities, we do not know any

rigorous proof of this statement.

1.1. The Kesten-Stigum bound, information-theoretic detection, and condensation

Although we will also deal with non-symmetric stochastic block models, in this discussion we focus

on the symmetric case where the q groups are of equal expected size, and the probability of edges

between vertices within and between groups are cin/n and cout/n respectively for constants cin, cout.
The expected average degree of the resulting graph is then

d =
cin + (q − 1)cout

q
. (1)

It is convenient to parametrize the strength of the community structure as

λ =
cin − cout

qd
. (2)

As we will see below, this is the second eigenvalue of a transition matrix describing how labels are

“transmitted” between neighboring vertices. It lies in the range

− 1

q − 1
≤ λ ≤ 1 ,

where λ = −1/(q − 1) corresponds to cin = 0 (also known as the planted graph coloring problem)

and λ = 1 corresponds to cout = 0 where vertices only connect to others in the same group. We say

that block models with λ > 0 and λ < 0 are assortative and disassortative respectively.

2



THRESHOLDS FOR SPARSE COMMUNITY DETECTION

The conjecture of Decelle et al. (2011a,b) is that efficient algorithms exist if and only if we are

above the threshold

d =
1

λ2
. (3)

This is known in information theory as the Kesten-Stigum threshold (Kesten and Stigum (1966a,b)),

and in physics as the Almeida-Thouless line (de Almeida and Thouless (1978)).

Above the Kesten-Stigum threshold, Decelle et al. (2011a,b) claimed that community detection

is computationally easy, and moreover that belief propagation—also known in statistical physics as

the cavity method—is asymptotically optimal in that it maximizes the fraction of vertices labeled

correctly (up to a permutation of the groups). For q = 2, this was proved in Mossel et al. (2014b);

very recently Abbe and Sandon (2015) showed that a type of belief propagation performs better than

chance for all q. In addition, Bordenave et al. (2015) showed that a spectral clustering algorithm

based on the non-backtracking operator succeeds all the way down to the Kesten-Stigum threshold

(proving a conjecture of Krzakala et al. (2013), who introduced the algorithm).

What happens below the Kesten-Stigum threshold is more complicated. Decelle et al. (2011a,b)

conjectured that for sufficiently small q, community detection is information-theoretically impossi-

ble when d < 1/λ2. Mossel et al. (2012) proved this in the case q = 2: first, they showed that the

ensemble of graphs produced by the stochastic block model becomes contiguous with that produced

by Erdős-Rényi graphs of the same average degree, making it impossible even to tell whether or not

communities exist with high probability. Secondly, by relating community detection to the Kesten-

Stigum reconstruction problem on trees (Evans et al. (2000)), they showed that for most pairs of

vertices the probability, given the graph, that they are in the same group asymptotically approaches

1/2. Thus it is impossible, even if we could magically compute the true posterior probability distri-

bution, to label the vertices better than chance.

On the other hand, Decelle et al. (2011a,b) conjectured that for sufficiently large q, namely

q ≥ 5 in the assortative case cin > cout and q ≥ 4 in the disassortative case cin < cout, there is a

“hard but detectable” regime where community detection is information-theoretically possible, but

computationally hard. One indication of this is the extreme case where cin = 0: this is equivalent to

the planted graph coloring problem where we choose a uniformly random coloring of the vertices,

and then choose dn/2 edges uniformly from all pairs of vertices with different colors. In this case,

we have λ = −1/(q − 1) and (3) becomes d > (q − 1)2. However, while graphs generated by this

case of the block model are q-colorable by definition, the q-colorability threshold for Erdős-Rényi

graphs grows as 2q ln q (Achlioptas and Naor (2005)), and falls below the Kesten-Stigum threshold

for q ≥ 5. In between these two thresholds, we can at least distinguish the two graph ensembles by

asking whether a q-coloring exists; however, finding one might take exponential time.

More generally, planted ensembles where some combinatorial structure is built into the graph,

and un-planted ensembles such as Erdős-Rényi graphs where these structures occur by chance, are

believed to become distinguishable at a phase transition called condensation (Krzakala et al. (2007)).

Below this point, the two ensembles are contiguous; above it, the posterior distribution of the parti-

tion or coloring conditioned on the graph—in physical terms, the Gibbs distribution—is dominated

by a cluster of states surrounding the planted state. For instance, in random constraint satisfaction

problems, the uniform distribution on solutions becomes dominated by those near the planted one; in

our setting, the posterior distribution of partitions becomes dominated by those close to the ground

truth (although, in the sparse case, with a Hamming distance that is still linear in n). Thus the con-

densation threshold is believed to be the threshold for information-theoretic community detection.
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Below it, even optimal Bayesian inference will do no better than chance, while above it, typical

partitions chosen from the posterior will be fairly accurate (though finding these typical partitions

might take exponential time).

We note that some previous results show that community detection is possible below the Kesten-

Stigum threshold when the sizes of the groups are unequal (Zhang et al. (2016)). In addition, even

a vanishing amount of initial information can make community detection possible if the number of

groups grows with the size of the network (Kanade et al. (2014)).

1.2. Our contribution

We give rigorous upper and lower bounds on the condensation threshold. Our bounds are most

explicit in the case of symmetric stochastic block models, in which case we give upper and lower

bounds for the condensation threshold as a function of q and λ. First, we use a first-moment argu-

ment to show that if

d > dupperc =
2q log q

(1 + (q − 1)λ) log(1 + (q − 1)λ) + (q − 1)(1 − λ) log(1− λ)
, (4)

then, with high probability, the only partitions that are as good as the planted one—that is, which

have the expected number of edges within and between groups—have a nonzero correlation with

the planted one. As a result, there is a simple exponential-time algorithm for labeling the vertices

better than chance: simply test all partitions, and output the first good one.

We note that dupperc < 1/λ2 for q ≥ 5 when λ is sufficiently negative, including the case λ =
−1/(q−1) corresponding to graph coloring discussed above. Moreover, for q ≥ 11, there also exist

positive values of λ for dupperc < 1/λ2. Thus for sufficiently large q, detectability is information-

theoretically possible below the Kesten-Stigum threshold, in both the assortative and disassortative

case. Similar (and somewhat tighter) results were obtained independently by Abbe and Sandon

(2016).

We then show that community detection is information-theoretically impossible if

d < dlowerc =
2 log(q − 1)

q − 1

1

λ2
. (5)

Using the small subgraph conditioning method, we show that the block model and the Erdős-Rényi

graph are contiguous whenever the second moment of the ratio between their probabilities—roughly

speaking, the number of good partitions in an Erdős-Rényi graph—is appropriately bounded. We

also show that this second moment bound implies non-detectability, in that the posterior distribution

on any finite collection of vertices is asymptotically uniform. This reduces the proof of contiguity

and non-detectability to a second moment argument; in the case of a symmetric stochastic block

model, this consists of maximizing a certain function of doubly stochastic matrices.

Happily, this latter problem was largely solved by Achlioptas and Naor (2005), who used the

second moment method to give nearly tight lower bounds on the q-colorability threshold. Our

bound (5) corresponds to their lower bound on q-colorability forG(n, d′/n) where d′ = dλ2(q−1)2.

Intuitively, d′ is the degree of a random graph in which the correlations between vertices in the q-

colorability problem are as strong as those in the stochastic block model with average degree d and

eigenvalue λ.
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Our bounds are tight in some regimes, and rather loose in others. Let µ denote (cin − cout)/d.

If µ is constant and q is large, we have

lim
q→∞

dupperc

dlowerc

=
µ2

(1 + µ) log(1 + µ)− µ
.

In the limit µ = −1, corresponding to graph coloring, this ratio is 1, inheriting the tightness of

previous upper and lower bounds on q-colorability. For other values of µ, our bounds match up to a

multiplicative constant. In particular, when q is constant and |λ| is small, they are about a factor of

2 apart:
2 log(q − 1)

q − 1
≤ dcλ

2 ≤ 4 log q

q − 1
(1 +O(qλ)) .

When λ ≥ 0 is constant and q is large, we have

dupperc =
2

λ
(1 +O(1/ log q)) .

Thus, in the limit of large q, detectability is possible below the Kesten-Stigum threshold whenever

λ < 1/2.

2. Definitions and results

A stochastic block model with q ≥ 2 communities is parametrized by two quantities: the distribution

π ∈ ∆q of vertex classes and the symmetric matrix M ∈ Rq×q of edge probabilities. Given these

two parameters, a random graph from the block model G(n,M/n, π) is generated as follows: for

each vertex v, sample a label σv in [q] = {1, . . . , q} independently with distribution π. Then, for

each pair (u, v), include the edge (u, v) in the graph independently with probability n−1Mσu,σv .

Since we will worq with a fixed M and π throughout, we denote G(n,M/n, π) by Pn. Note that

according to the preceding description, we have the following explicit form for the density of Pn:

Pn(G,σ) =
∏

v∈V (G)

πσv

∏

(u,v)∈E(G)

Mσu,σv

n

∏

(u,v)6∈E(G)

(
1− Mσu,σv

n

)
.

We will assume throughout that every vertex in G ∼ Pn has the same expected degree. (In terms of

M and π, this means that
∑

j Mijπj does not depend on i.) Without this assumption, reconstruction

and distinguishability – at least in the way that we will define them – are trivial, since we gain non-

trivial information on the class of a vertex just by considering its degree.

With the preceding assumption in mind, let d =
∑

j Mijπj be the expected degree of an ar-

bitrary vertex. In order to discuss distinguishability, we will compare Pn with the Erdős-Rényi

distribution Qn := G(n, d/n).
Throughout this work, we will make use of the matrix T defined by

Tij =
1

d
πiMij ,

or in other words, T = 1
d diag(π)M . Note that T is a stochastic matrix, in the sense that it has

non-negative elements and all its rows sum to 1. The Perron-Frobenius eigenvectors of T are π on

the right, and 1 on the left (where 1 denotes the vector of ones), and the corresponding eigenvalue
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is 1. We let λ1, . . . , λq be the eigenvalues of T , arranged in order of decreasing absolute value (so

that λ1 = 1 and |λ2| ≤ 1). The second of these turns out to be the most important for us; therefore,

set λ = λ2.

There is an important probabilistic interpretation of the matrix T relating to the local structure of

G ∼ Pn; although we will not rely on this interpretation in the current work, it played an important

role in Mossel et al. (2014a). Indeed, one can show that for any fixed radius R, the R-neighborhood

of a vertex in G ∼ Pn has almost the same distribution as a Galton-Watson tree with radius R
and offspring distribution Poisson(d). Then, the class labels on the neighborhood can be generated

by first choosing the label of the root according to π and then, conditioned on the root’s label

being i, choosing its children’s labels independently to be j with probability Tij . This procedure

continues down the tree: any vertex with parent u has probability Tσuj to receive the label j. Thus,

T is the transition matrix of a certain Markov process that describes a procedure for approximately

generating the class labels on a local neighborhood in G.

In part of this work, we will deal with the symmetric case, in which πi =
1
q for all i and

Mi,j =

{
cin if i = j

cout if i 6= j .
(6)

In this case, the expected average degree is

d =
cin + (q − 1)cout

q
,

the Markov transition matrix (which is symmetric, and hence doubly stochastic) is

T =
1

qd



cin cout

. . .

cout cin


 = λI+ (1− λ)

J

q
, (7)

where I is the identity matrix, J is the matrix of all 1s, and where

λ =
cin − cout

qd

is T ’s second eigenvalue. We can think of λ as the probability that information is transmitted from

u to v: with probability λ we copy u’s group label to v, and with probability 1 − λ we choose

v’s group uniformly from [q]. The parameter λ interpolates between the case λ = 1 where all

edges are within-group, to an Erdős-Rényi graph where λ = 0 and edges are placed uniformly at

random, to λ < 0 where edges are more likely between groups than within them. This gives a useful

reparametrization of the model in terms of c and λ, where

cin = d(1 + (q − 1)λ)

cout = d(1− λ) . (8)

For labellings σ and τ in [q]n, define their overlap by

overlap(σ, τ) =
1

n
max
ρ

q∑

i=1

(
|σ−1(i) ∩ τ−1(ρ(i))| − 1

n
|σ−1(i)||τ−1(ρ(i))|

)
,

where the supremum runs over all permutations ρ of [q]. In words, σ and τ have a positive overlap

if there is some relabelling of [q] so that they are positively correlated.
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Definition 1 We say that the block model Pn = G(n,M/n, π) is detectable if there is some δ > 0
and an algorithm A mapping graphs to labellings such that if (G,σ) ∼ Pn then

lim
n→∞

Pr(overlap(A(G), σ) > δ) > 0.

Definition 2 We say that Pn and Qn are asymptotically orthogonal if there is a sequence An of

events such that Pn(An) → 0 and Qn(An) → 1.

We say that Pn and Qn are contiguous if for every sequence An of events, Pn(An) → 0 if and

only if Qn(An) → 0.

Our main result is the following:

Theorem 3 Consider the symmetric stochastic block model Pn with q communities, average degree

d, and second-eigenvalue λ. Define

dupperc =
2q log q

(1 + (q − 1)λ) log(1 + (q − 1)λ) + (q − 1)(1 − λ) log(1− λ)
(9)

dlowerc =
2 log(q − 1)

q − 1

1

λ2
. (10)

If d > dupperc then Pn and Qn are asymptotically orthogonal, and Pn is detectable. If d < dlowerc

then Pn and Qn are contiguous, and Pn is not detectable.

The lower bound in Theorem 3 comes from a more general (but less explicit) bound that holds

also for block models that are not symmetric. In order to state the more general result, we must first

introduce some notation.

Definition 4 Let ∆m denote the probability simplex in Rm:

∆m := {p ∈ Rm : pi ≥ 0,

m∑

i=1

pi = 1}.

Define D : ∆m ×∆m → R by

D(p, p̃) =
m∑

i=1

pi log(pi/p̃i).

Note that if we interpret p, p̃ ∈ ∆m as probability distributions on a m-point set, then D(p, p̃)
is exactly the Kullback-Leibler divergence of p with respect to p̃.

Definition 5 For π ∈ ∆q, define

∆q2(π) := {(pij)qi,j=1 ∈ ∆q2 :

q∑

i=1

pij = πj and

q∑

j=1

pij = πi for all i, j}.

In other words, elements of ∆q2(π) are probability distributions on [q]2 that have π as their marginal

distributions.
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Definition 6 For π ∈ ∆q and a q× q matrix A, let p = π⊗π, where ⊗ denotes Kronecker product

and define

Q(π,A) = sup
α∈∆

q2 (π)

(α− p)⊺(A⊗A)(α− p)

D(α, p)
.

Although we do not know any simple algebraic expression for Q, one can easily compute nu-

merical approximations. For non-symmetric stochastic block models, our main result is thatQ gives

a lower bound on the detectability threshold:

Theorem 7 Let Pn = G(n,M/n, π) and Qn = G(n, d/n), where d =
∑

j Mijπj . If

Q(π, (M − dJ)/
√
2d) < 1

then Pn and Qn are contiguous and Pn is non-detectable.

For comparison with the Kesten-Stigum bound, note thatQ(π, (M−dJ)/
√
2d) < 1 implies that

λ2d < 1. This comes from comparing the second derivatives at p in the numerator and denominator

of Q: if Q < 1 then the Hessian of the numerator must be smaller (in the semidefinite order) than

that of the denominator, and this turns out to be equivalent to λ2d < 1.

We remark that while Q(π, (M −dJ)/
√
2d) < 1 is only a sufficient condition for the contiguity

of Pn and Qn, it is actually a sharp condition for a certain second moment to exist:

Proposition 8 Fix a sequence an with an = o(n) and an = ω(
√
n). Let Ωn be the event that for

all i ∈ [q], |σ−1(i)| = nπi ± an. With the notation of Theorem 7, take P̂n to be Pn conditioned on

Ωn. If Q(π, (M − dJ)/
√
2d) < 1 then

lim
n→∞

EQn

(
P̂n

Qn

)2

= (1 + o(1))

q∏

i,j=2

ψ(dλiλj) <∞, (11)

where λ1, · · · , λq are the eigenvalues of T (cf. (2)) such that 1 = λ1 ≥ |λ2| ≥ · · · ≥ |λq|, and

ψ(x) = (1− x)−1/2e−x/2−x2/4. On the other hand, if Q(π, (M − dJ)/
√
2d) > 1 then

lim
n→∞

EQn

(
P̂n

Qn

)2

= ∞.

2.1. Outline of the paper

We prove the upper bound of Theorem 3 in Section 3. In Section 4, we prove the lower bound of

Theorem 3 assuming Theorem 7. In Section 5, we prove Proposition 8. Finally, in Section 6, we

prove Theorem 7. Some auxiliary results are proved in Appendix A.

2.2. Outline of the proofs

The part of Theorem 3 regarding dupperc follows from union bounds. First, note that under Pn,

groups in the planted partition have average in-degree of about cin/k and average out-degree of

about (k − 1)cout/k. We call such partitions “good.” In order to show orthogonality, we show that

with high probabability, graphs from Qn have no good partitions. (That is, the events An witnessing
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orthogonality are An = {G has no good partitions}.) We show this by computing the probability

that a particular partition is good and comparing it to the number of all partitions. In order to

show detectability, we show that with high probability under Pn, every good partition is correlated

with the planted partition: we bound the probability that a given partition is good, and sum the

probabilities over all partitions that are uncorrelatd with the planted one.

The part of Theorem 3 regarding dlowerc follows from Theorem 7. We recognize that the opti-

mization problem in the definition of Q may be written as an optimization over the set of doubly-

stochastic matrices. Using tools due to Achlioptas and Naor (2005) (Theorem 11 and Lemma 12),

we prove that d < dlowerc implies that Q < 1, and we conclude by applying Theorem 7.

Proposition 8 is the main technical step in the proof of contiguity in Theorem 7. With Propo-

sition 8 in hand, we apply the small subgraph conditioning method (see Theorem 20) which is a

type of conditional second moment method. In order to apply it, we only need to know the lim-

iting distribution of small subgraphs under P̂n and Qn (which are already known) and (11) from

Proposition 8.

The proof of Proposition 8 itself is tedious but elementary: we expand the square and write

the result as the exponential of a quadratic form in multinomial random variables. Shifted and

renormalized, the multinomial variables have a Gaussian limit; the expectation of an exponentiated

quadratic form of Gaussian variables can be computed exactly, and gives (11). In order to apply the

central limit theorem in the above argument, one needs to check that the exponentiated quadratic

form in multinomial variables is uniformly integrable. This naturally leads to the condition onQ: we

need to compare an exponentiated quadratic form with the multinomial probability mass function,

which is essentially an exponentiated entropy. In the end, we need the entropy to dominate the

quadratic form (which is exactly what happens with Q < 1).

Finally, to prove non-detectability in Theorem 7 we compare the distribution Pn to the distribu-

tion (call it P̃n) obtained by conditioning on the labels of a constant number of vertices. If we can

show that the resulting distributions are close in total variation, it implies that the labels of those ver-

tices cannot be statistically inferred. Applying the Cauchy-Schwarz inequality to the total variation

distance, it is enough to show that

EQn1Ωn

(
Pn

Qn
− P̃n

Qn

)2

is small. This naturally leads to a computation very similar to the proof of Proposition 8. The only

difference is that we are now conditioning on the labels of a constant number of vertices, but that

has very little effect.

2.3. Conclusions and future work

We (and, independently, Abbe and Sandon (2016)) have shown that community detection is information-

theoretically possible below the Kesten-Stigum threshold. However, we have not given any evidence

that it is computationally hard. Of course, we cannot hope to prove this without knowing that

P 6= NP, but we could hope to prove that certain classes of algorithms take exponential time. In

particular, we could show that Monte Carlo algorithms or belief propagation take exponential time

to find a good partition, assuming their initial states or messages are uniformly random.

Physically, we believe this occurs because there is a free energy barrier between a “paramag-

netic” phase of partitions which are essentially random, and a “ferromagnetic” or “retrieval” phase
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which is correlated with the planted partition (Decelle et al. (2011a,b); Zhang and Moore (2014)).

Proving this seems within reach: rigorous results have been obtained in random constraint satisfac-

tion problems (Achlioptas and Coja-Oghlan (2008); Coja-Oghlan and Efthymiou (2015)) showing

that solutions become clustered with O(n) Hamming distance and O(n) energy barriers between

them. In particular, Markov chain Monte Carlo algorithms for sampling the posterior distribution,

such as Metropolis-Hastings or Glauber dynamics that update the label of one vertex at time accord-

ing to its marginal distribution conditioned on the current labels of its neighbors, take exponential

time to travel from one cluster to another. The goal in this case would be to show in a planted model

that Monte Carlo takes exponential time to find the cluster corresponding to the planted solution.

Finally, both our upper and lower bounds can be improved. Our upper bound requires that

w.h.p. all good partitions are correlated with the planted one. We could obtain better bounds by

requiring that this is true w.h.p. of most good partitions, which would require a lower bound on

the typical number of good partitions with large overlap. In the limit λ → 1 of strong assortative

structure, for instance, one can use the fact that vertices of degree 1 can be set to match their

neighbors, or set freely to give the same typical overlap as the planted partition. Using these and

other ideas, Abbe and Sandon (2016) showed that dc → 1 as λ → 1, while our bounds only give

dc ≤ 2. (For regimes where dc is large, their bounds and ours are asymptotically equivalent.)

Further improvements seem possible.

The second moment lower bound could be improved as it was for the k-colorability thresh-

old in Coja-Oghlan and Vilenchik (2013). Indeed, the condensation threshold dc for k-coloring was

determined exactly in Bapst et al. (2014) for sufficiently large k. It is entirely possible that their tech-

niques could work here. Note that constraint satisfaction problems correspond to zero-temperature

models in physics, while the block model with cin, cout 6= 0 corresponds to a spin system at posi-

tive temperature; but some rigorous results have recently been obtained here as well by Bapst et al.

(to appear).

3. Upper bound for symmetric SBMs: Proof of upper bound in Theorem 3

In this section, we prove the part of Theorem 3 relating to dupperc . Recall that Theorem 3 assumes a

symmetric block model; i.e., πi = 1/q for every i, and the connectivity matrix M is determined by

only two parameters, cin and cout.
Our upper bound on the detectability threshold hinges on the following observation. We say a

partition is balanced if it has n/q vertices in each group. With high probability, a graph generated

by the SBM has at least one balanced partition, close to the the planted one, where the number of

within-group and between-group edges min and mout are close to their expectations. That is,

|min −min| < n2/3 and |mout −mout| < n2/3 (12)

where

min =
cin
2q

n =
d(1 + (q − 1)λ)

2q
n

mout =
(q − 1)cout

2q
n =

d(q − 1)(1 − λ)

2q
n . (13)

This follows from standard concentration inequalities on the binomial distribution: the number of

vertices in each group in σ is w.h.p. n/q + o(n2/3/ log n), in which case (12) holds w.h.p. Since

10
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the maximum degree is w.h.p. less than log n, we can modify σ to make it balanced while changing

min and mout by o(n2/3).
Call such a partition good. We will show that if d > dupperc all good partitions are correlated

with the planted one. As a result, there is an exponential algorithm that performs better than chance:

simply use exhaustive search to find a good partition, and output it.

3.1. Distinguishability from G(n, d/n)

As a warm-up, we show that if d > dupperc the probability that an Erdős-Rényi graph has a good

partition is exponentially small, so the two distributions P and Q are asymptotically orthogonal.

Let G be a graph generated by G(n, d/n). We condition on the high-probability event that it

has m edges with |m−m| < n2/3 with

m = min +mout = dn/2 ,

in which case G is chosen from G(n,m). Since G is sparse, we can think of its m edges as chosen

uniformly with replacement from the n2 possible ordered pairs. With probability Θ(1) the resulting

graph is simple, with no self-loops or multiple edges, and hence uniform in G(n,m). Thus any

event that holds with high probability in the resulting model holds with high probability in G(n,m)
as well. Call this model G′(n,m).

For a given balanced partition σ, the probability in G′(n,m) that a given edge has its endpoints

in the same group is 1/q. Thus, up to subexponential terms resulting from summing over the n2/3

possible values of the error terms, the probability that a given σ is good is

Pr[Bin(m, 1/q) = min] =

(
m

min

)
(1/q)min(1− 1/q)mout .

The rate of this large-deviation event is given by the Kullback-Leibler divergence between binomial

distributions with success probability 1/q and min/m,

lim
m→∞

1

m
log Pr[Bin(m, 1/q) = min] = −min

m
log

min/m

1/q
− mout

m
log

mout/m

1− 1/q

= −cin
qd

log
cin
d

−
(
1− cin

qd

)
log

qd− cin
d(q − 1)

,

where we used min/m = cin/(qd) and mout/m = 1 − cin/(qd). Writing this in terms of d and λ
as in (8) and simplifying gives

lim
n→∞

1

n
log Pr[σ is good] = − d

2q

[
(1+(q−1)λ) log(1+(q−1)λ)+(q−1)(1−λ) log(1−λ)

]
. (14)

Now, by the union bound, since there are at most qn balanced partitions, the probability that any

good partitions exist is exponentially small whenever the function in (14) is less than − log q. This

tells us that the block model is distinguishable from an Erdős-Rényi graph whenever

d > dupperc =
2q log q

(1 + (q − 1)λ) log(1 + (q − 1)λ) + (q − 1)(1 − λ) log(1− λ)
,

As noted above, the limit λ = −1/(q − 1) corresponds to the planted graph coloring problem. In

this case dupperc is simply the first-moment upper bound on the q-colorability threshold,

dupperc =
2 log q

− log(1− 1/q)
< 2q log q .

11
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3.2. All good partitions are accurate

Next we show that, if d > dupperc , with high probability any good partition is correlated with

the planted one. Essentially, the previous calculation for G(n,m) corresponds to counting good

partitions τ which are uncorrelated with σ, i.e., which have overlap(σ, τ) = 0. We will show that

in order for a good partition to exist, its overlap with σ is strictly greater than 0.

Given a balanced partition τ , let min and mout denote the number of edges (u, v) with τu = τv
and τu 6= τv respectively. As in the previous section, we say that τ is good if (12) holds, i.e.,

|min−min|, |mout−mout| < n2/3 where min and mout are given by (13). Note that the right-hand

side of (15) is an increasing function of β, and that it coincides with dupperc when β = 0.

Theorem 9 Let G be generated by the stochastic block model with parameters cin and cout, and

let d and λ be defined as in (1) and (2). If d > dupperc then, with high probability, any good partition

has overlap at least β > 0 with the planted partition σ, where β is the smallest root of

d =
2q
(
h(β + 1

q ) + (1− 1
q − β) log(q − 1)

)

(1 + (q − 1)λ) log 1+(q−1)λ
1+qβλ + (q − 1)(1 − λ) log (q−1)(1−λ)

q−1−qβλ

(15)

where h = −
(
β + 1

q

)
log
(
β + 1

q

)
−
(
1− 1

q − β
)
log
(
1− 1

q − β
)

is the entropy function. Therefore,

an exponential-time algorithm exists that w.h.p. achieves overlap at least β.

Proof We start by conditioning on the high-probability event that G has m edges, where |m −
m| < n2/3 and m = dn/2. Call the resulting model GSBM(n,m) (with the matrix of parameters

M implicit). It consists of the distribution over all simple graphs with m edges, with probability

proportional to P(G | σ).
In analogy with the model G′(n,m) defined above, we consider another version of the block

model where the m edges are chosen independently as follows. For each edge, we first choose an

ordered pair of groups r, s with probability proportional to Mrs, i.e., with probability Trs/q where

T = M/(qd) is the doubly stochastic matrix defined in (7). We then choose the endpoints u and v
uniformly from σ−1(r) and σ−1(s) (with replacement if r = s). Call this model G′

SBM(n,m). In

the sparse case d = O(1/n), the resulting graph is simple with probability Θ(1), in which event it

is generated by GSBM(n,m). Thus any event that holds with high probability in G′
SBM(n,m) holds

with high probability in GSBM(n,m) as well.

Now fix a balanced partition τ . Let θ denote the probability that an edge (u, v) chosen in this

way is within-group with respect to τ . Define the q × q matrix α by

αst =
q

n
|σ−1(s) ∩ τ−1(t)|;

in other words, αst is the probability that τu = t if u is chosen uniformly from those with σu = s.
Up to O(1/n) terms, the events that τu = t and τv = t are independent. Thus in the limit n→ ∞,

θ := Pr[τu = τv] =
∑

r,s,t

Pr[σu = r ∧ σv = s ∧ τu = τv = t]

=
1

q

∑

r,s,t

Trsαrtαst

=
1

q
trα⊺Tα ,

12
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where ⊺ denotes the matrix transpose. Since T = λI+ (1− λ)Jq and Jα = αJ = J, this gives

θ =
1 + (|α|2 − 1)λ

q
,

where |α| denotes the Frobenius norm,

|α|2 = trα⊺α =
∑

r,s

α2
rs .

When τ and σ are uncorrelated and α = J/q, we have θ = 1/q as in the previous section. When

σ = τ and α = I, we have θ = cin/(qd) = (1 + (q − 1)λ)/q.

For τ to be good, we need |min −min| < n2/3. Since |m−m| < n2/3 as well, up to subexpo-

nential terms the probability that τ is good is

Pr[Bin(m, θ) = min] =

(
m

min

)
θmin(1− θ)mout .

The rate at which this occurs is again a Kullback-Leibler divergence, between binomial distributions

with success probabilities θ and min/m = cin/(qd). Following our previous calculations gives

lim
n→∞

1

n
log Pr[Bin(m, θ) = min] (16)

= −d
2

(
cin
qd

log
cin
θqd

+

(
1− cin

qd

)
log

1− cin/qd

1− θ

)

= − d

2q

[
(1 + (q − 1)λ) log

1 + (q − 1)λ

θq
+ (q − 1)(1 − λ) log

(q − 1)(1 − λ)

q(1− θ)

]

= − d

2q

[
(1 + (q − 1)λ) log

1 + (q − 1)λ

1 + (|α|2 − 1)λ
+ (q − 1)(1 − λ) log

(q − 1)(1 − λ)

q − 1− (|α|2 − 1)λ

]
.

We pause to prove a lemma which relates the Frobenius norm to the overlap. This bound is far

from tight except in the extreme cases α = J/q and α = I, but it lets us derive an explicit lower

bound on the overlap of a good partition.

Lemma 10 |α|2 ≤ 1 + q overlap(σ, τ).

Proof Since α is doubly stochastic, Birkhoff’s theorem tells us it can be expressed as a convex

combination of permutation matrices,

α =
∑

π

aππ where
∑

π

aπ = 1 .

Thus

|α|2 = trα⊺α = tr

(
∑

π

aππ
−1

)
α =

∑

π

aπ trπ
−1α ≤ max

π
trπ−1α = 1 + q overlap(σ, τ),

13
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where the last step follows from the fact that, for balanced partitions σ and τ , the overlap is a

maximum, over all permutations π:

overlap(σ, τ) =
1

n
max
π

q∑

i=1

(
|σ−1(i) ∩ τ−1(π(i))| − 1

n
|σ−1(i)||τ−1(π(i))|

)

=
1

q
max
π

trπ−1α− 1

q
,

completing the proof.

The function in (16) is an increasing function of λ, since as λ increases the distributions Bin[m, q]
and Bin[m, cin/(qd)] become closer in Kullback-Leibler distance. Thus if τ has overlap β, Lemma 10

implies

lim
n→∞

1

n
Pr[τ is good]

≤ − d

2q

[
(1 + (q − 1)λ) log

1 + (q − 1)λ

1 + qβλ
+ (q − 1)(1 − λ) log

(q − 1)(1 − λ)

q − 1− qβλ

]
. (17)

For fixed σ, the number of balanced partitions τ with overlap matrix α is the number of ways to

partition each group σ−1(r) so that there are αrsn/q vertices in σ−1(r) ∩ τ−1(s):

q∏

r=1

(
n/q

{αrsn/q | 1 ≤ s ≤ q}

)
=

q∏

r=1

(n/q)!∏
s(αr,sn/q)!

≤ enH(α) ,

where H(α) is the average entropy of the rows of αrs/q,

H(α) = −1

q

∑

r,s

αrs logαrs . (18)

By the union bound, the probability that there are any good partitions with overlap matrix α is

exponentially small whenever the sum of H(α) and the right-hand side of (17) is negative. For a

fixed overlap β, maximized by the permutation π, the entropy H(α) is maximized when

αrs =

{
1
q + β if s = π(r)
1
q −

β
q−1 if s 6= π(r) ,

so we have

H(α) ≤ h

(
1

q
+ β

)
+

(
1− 1

q
− β

)
log(q − 1) . (19)

Combining the bounds (17) and (19), and requiring that their sum is at least zero, completes the

proof.

3.3. Detection below the Kesten-Stigum bound

In §1.2 we commented on the asymptotic behavior of dupperc in various regimes. In Table 1 we give,

for various values of q, the point λ∗ at which dupperc = 1/λ2; then dupperc < 1/λ2 for λ < λ∗. As

stated above, in the limit q → ∞ we have dupperc = 2/λ, so λ∗ tends to 1/2.

14



THRESHOLDS FOR SPARSE COMMUNITY DETECTION

q 5 6 7 8 9 10 11 20 100 1000 104

λ∗ −0.239 −0.166 −0.112 −0.070 −0.036 −0.08 0.014 0.127 0.286 0.372 0.410

Table 1: For λ < λ∗ we have dupperc < 1/λ2, so that community detection is information-

theoretically possible below the Kesten-Stigum bound. For q ≥ 5, this holds in the suffi-

ciently disassortative case, including planted graph coloring where λ = −1/(q − 1). For

q ≥ 11, it occurs throughout the disassortative range λ < 0, and in some assortative cases.

4. Lower bound for symmetric SBMs: Proof of lower bound in Theorem 3

In this section we use the general bound of Theorem 7 to prove the part of Theorem 3 involving

dlowerc . In particular, we study the quantity Q—defined in Definition 6—in the case of symmet-

ric stochastic block models. Note that Q is defined as the maximum of a certain function over

the set of doubly stochastic matrices. This kind of maximization problem was studied extensively

by Achlioptas and Naor (2005) on the way to proving their lower bound on the q-colorability thresh-

old, allowing us to relate this problem to theirs.

First, note that Q(π, (M −dJ)/
√
2d) simplifies considerably in the symmetric case, when πi =

1
q for all i and M is determined by only two parameters. In this case, ∆q2(π) is (up to scaling) the

set of doubly stochastic matrices, while

M − dJ = λd



q − 1 −1

. . .

−1 q − 1


 .

Going back to Definition 6, we see that Q(π, (M − dJ)/
√
2d) < 1 if and only if Φ(α) < 0 for all

doubly stochastic α, where

Φ(α) = H(α)− log q +
dλ2

2

(
|α|2 − 1

)
, (20)

|α| denoting the Frobenius norm and H(·) the average row entropy of α/q as in (18). By Theorem 7,

if Φ(α) < 0 for all doubly stochastic α then (i) Pn and Qn are contiguous, and (ii) Pn is non-

detectable.

4.1. Maximizing Φ

Achlioptas and Naor (2005), in the process of proving a lower bound on the q-coloring threshold

for Erdős-Rényi graphs, develop substantial machinery for optimizing Φ-like functions over the

polytope of doubly stochastic matrices. Specifically, they relax the problem to maximizing over all

row-stochastic matrices, and show that the maximizer is then a mixture of uniform rows and rows

where all but one of the entries are identical. Although their bound is quite general, we quote here

their results for the entropy. (Note that their definition of H(α) and ours differ by a factor of q.)

15
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Theorem 11 (Achlioptas and Naor, 2005, Theorem 9) Let α be doubly stochastic with |α|2 = ρ.

Then

H(α) ≤ max
m∈

[
0,

q(q−ρ)
q−1

]

{
m

q
log q +

(
1− m

q

)
f

(
qρ−m

q(q −m)

)}
, (21)

where

f(r) = g

(
1 +

√
(q − 1)(qr − 1)

q

)
+ (q − 1) g


1− 1+

√
(q−1)(qr−1)

q

q − 1




and g(x) = −x log x.

With this result in hand and using f(1/q) = q g(1/q) = log q, we know that for all α with

|α|2 = ρ,

Φ(α) ≤ max
m∈
[
0,q(q−ρ)/(q−1)

]
(
1− m

q

)(
f

(
qρ−m

q(q −m)

)
− f(1/q)

)
+
dλ2

2
(ρ− 1).

Achlioptas and Naor determined the value of dλ2/2 for which the right-hand side is less than or

equal to zero for all m ∈ [0, q(q − ρ)/(q − 1)] and all ρ ∈ [1, q].

Lemma 12 (Achlioptas and Naor, 2005, Proof of Theorem 7) When δ < (q − 1) log(q − 1),

δ(ρ− 1)

(q − 1)2
≤
(
1− m

q

)(
f(1/q)− f

(
qρ−m

q(q −m)

))

for all m ∈ [0, q(q − ρ)/(q − 1)] and all ρ ∈ [1, q].

Our lower bound is an immediate corollary of this lemma. Substituting δ = dλ2(q − 1)2/2 and

solving for d gives

dlowerc =
2 log(q − 1)

q − 1

1

λ2
. (22)

As we commented in §1.2, this corresponds to the lower bound on the q-colorability threshold

of G(n, d′/n) where d′ = 2δ = dλ2(q − 1)2, scaling the eigenvalue on each edge to λ from its

value −1/(q − 1) for q-coloring. This fits with the Kesten-Stigum threshold as well, since the

amount of information (appropriately defined) transmitted along each edge is proportional to λ2

(Janson and Mossel (2004)).

5. The second moment argument: Proof of Proposition 8

In this section, we will prove Proposition 8, thereby showing the link between the conditionQ(π, (M−
dJ)/

√
2d) < 1 and the boundedness of certain second moments. Our first lemma expresses the sec-

ond moment in question in terms of (centered and normalized) multinomial random variables. In

order to state the lemma, we make the following notation. Given two assignments σ, τ ∈ [q]n, let

Nij := Nij(σ, τ) := |{v : σv = i, τv = j}|, and Xij := Xij(σ, τ) := n−1/2 (Nij − nπiπj). Recall

that Ωn is the event that the label frequencies are approximately their expected values, and let Yn
denote the restricted density 1Ωn

dPn

dQn
. With a slight overloading of notation, we write σ ∈ Ωn if for

all i ∈ [q], |{u : σu = i}| = nπi ± an. Set A :=M − dJ.
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Lemma 13 We have:

EQnY
2
n = (1 +O(n−1))

∑

σ,τ∈Ωn

Pn(σ)Pn(τ) exp


 1

2d

∑

ijkℓ

XijXkℓAikAjℓ + ν1 + ν2 + ξn


 ,

where

ν1 = − 1

2d

∑

ij

AiiAjjπiπj,

ν2 = − 1

2d2

∑

ijkℓ

A2
ikA

2
jℓπiπjπkπℓ, and

ξn = O(n−1/2)
∑

ij

|Xij |+O(n−1)



∑

ij

|Xij |




2

.

Proof For a graph G and assignment σ, define

Wuv(G,σ) =





Mσu,σv

d if (u, v) ∈ E(G)

1−Mσu,σv
n

1− d
n

if (u, v) 6∈ E(G).

Then we may write out

Yn =
∑

σ∈Ωn

Pn(G,σ)

Qn(G)

=
∑

σ∈Ωn

Pn(σ)
∏

u,v

Wuv(G,σ).

Squaring both sides and taking expectations,

EQnY
2
n = EQn

∑

σ,τ∈Ωn

Pn(σ)Pn(τ)
∏

u,v

Wuv(G,σ)Wuv(G, τ)

=
∑

σ,τ∈Ωn

Pn(σ)Pn(τ)
∏

u,v

EQn [Wuv(G,σ)Wuv(G, τ)], (23)

where the last equality holds because under Qn, and for any fixed σ, the variables Wuv(G,σ) are

independent as u and v vary.

Let us compute the inner expectation in (23). Recall that under Qn, (u, v) ∈ E(G) with proba-

bility d
n . Writing (for brevity) s for Mσuσv and t for Mτuτv , we have

EQnWuv(G,σ)Wuv(G, τ) =
st

d2
· d
n
+

(1− s
n)(1 − t

n)

(1− d
n)

2
(1− d

n
)

=
st

nd
+
(
1− s

n

)(
1− t

n

)(
1 +

d

n
+
d2

n2
+O(n−3)

)

= 1 +
(s− d)(t− d)

nd
+

(s− d)(t− d)

n2
+O(n−3)

17
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Setting r = (s− d)(t− d), and using the fact that 1 + x = exp(x− x2/2 +O(x3)), we have

EQnWuv(G,σ)Wuv(G, τ) = exp

(
r

dn
+

r

n2
− r2

2d2n2
+O(n−3)

)
.

Now, if (σu, τu, σv, τv) = (i, j, k, ℓ) then (s− d)(t− d) = (Mik − d)(Mjℓ − d) = AikAjℓ. Hence,

EQnWuv(G,σ)Wuv(G, τ) = exp

(
AikAjℓ

dn
+
AikAjℓ

n2
− (AikAjℓ)

2

2d2n2
+O(n−3)

)
. (24)

Let Nijkℓ = |{{u, v} : σu = i, τu = j, σv = k, τv = ℓ}|. Plugging (24) into (23), we have

EQnY
2
n = (1 +O(n−1))

∑

σ,τ∈Ωn

Pn(σ)Pn(τ) exp




s∑

ijkℓ=1

Nijkℓ

(
AikAjℓ

dn
+
AikAjℓ

n2
− (AikAjℓ)

2

2d2n2

)


(25)

where the (1 + O(n−1)) term arises because
∑

ijkℓNijkℓ ≤ n2. Applying Lemma 14 (below) now

finishes the proof.

The last step in the proof of Lemma 13 requires us to replace Nijkℓ by its normalized version,

Xij , and then rearrange the sums in (25). We will do this step in slightly more generality, where we

allow Nijkℓ to be defined on a subset of the vertices. For the purposes of this section it suffices to

consider S = [n], but the general form will be useful when we prove Theorem 7.

Lemma 14 Let S ⊆ [n] such that |S| = n− o(n). Further, let

Nijkℓ := Nijkℓ(σ, τ) := |{{u, v} : u, v ∈ S, σu = i, τu = j, σv = k, τv = ℓ}| ,
Nij := Nij(σ, τ) := |{u : u ∈ S, σu = i, τu = j}| and,

Xij := Xij(σ, τ) := n−1/2 (Nij − nπiπj)

tijkℓ :=
AikAjℓ

dn
+
AikAjℓ

n2
− (AikAjℓ)

2

2d2n2

Then, we have:

∑

ijkℓ

Nijkℓtijkℓ =
1

2d

∑

ijkℓ

XijXkℓAikAjℓ + ν1 + ν2 + ξn,

where

ν1 = − 1

2d

∑

ij

AiiAjjπiπj,

ν2 = − 1

4d2

∑

ijkℓ

A2
ikA

2
jℓπiπjπkπℓ, and

ξn = O(n−1/2)
∑

ij

|Xij |+O(n−1)



∑

ij

|Xij |




2

+O(n−1).
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Proof We see that Nijkℓ = 1
2NijNkℓ unless i = k and j = ℓ, in which case Nijkℓ =

(Nij

2

)
=

1
2NijNkℓ − 1

2Nij . So, we have

∑

ijkℓ

Nijkℓtijkℓ =
1

2

∑

ijkℓ

NijNkℓtijkℓ −
1

2

∑

ij

Nijtijij (26)

Recall that
∑

i πiMik = d for any fixed k and
∑

k πkMik = d for any fixed i. It follows that∑
i πiAij =

∑
j πjAij = 0. Hence,

∑

i

πitijkℓ = −
∑

i

πi
(AikAjℓ)

2

2d2n2
.

Writing Nij =
√
nXij + nπiπj , we have

∑

ijkℓ

NijNkℓtijkℓ = n
∑

ijkℓ

XijXkℓtijkℓ −
∑

ijkℓ

(AikAjℓ)
2

2d2n2

(
n3/2Xijπkπℓ + n3/2Xkℓπiπj + n2πiπjπkπℓ

)

= n
∑

ijkℓ

XijXkℓtijkℓ −
∑

ijkℓ

(AikAjℓ)
2

2d2
πiπjπkπℓ +O(n−1/2)

∑

ij

|Xij |,

Next, note that tijkℓ =
1
dnAikAjℓ +O(n−2), and so

∑

ijkℓ

NijNkℓtijkℓ =
1

d

∑

ijkℓ

XijXkℓAikAjℓ −
1

2d2

∑

ijkℓ

(AikAjℓ)
2πiπjπkπℓ

+O(n−1/2)
∑

ij

|Xij |+O(n−1)



∑

ij

|Xij |




2

;

we recognize the second term as 2ν2, and the last two terms as being part of ξn. This takes care of

first term in (26); for the second term,

∑

ij

Nijtijij =
√
n
∑

ij

Xijtijij+n
∑

ij

πiπjtijij = O(n−1/2)
∑

ij

|Xij |+
1

d

∑

ij

AiiAjjπiπj+O(n−1);

here, the second term is 2ν1 and the others are part of ξn.

The following lemma gives a simpler form for ν1 and ν2 appearing above. In particular, this will

allow us to relate ν1 and ν2 to the eigenvalues of T . We define B := 1
d diag(π)A = T − π ⊗ 1

⊺,

where ⊤ denotes the transpose and ⊗ denotes the Kronecker product.

Lemma 15 Let ν1 and ν2 be as in Lemma 14. Then, we have:

ν1 = −d
2
tr(B)2

ν2 = −d
2

4
tr(B2)2.
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Proof Note that Aiiπi = dBii. Hence,

ν1 = − 1

2d

∑

ij

AiiAjjπiπj = −d
2

∑

ij

BiiBjj = −d
2
tr(B)2.

Similarly, since Aikπi = Bik and Aikπk = Akiπk = Bki,

ν2 = −d
2

4

∑

ijkℓ

BikBkiBjℓBℓj = −d
2

4
tr
(
(B⊗2)2

)
= −d

2

4
tr(B2)2.

The following lemma shows that ξn in Lemma 14 is very small in an appropriate sense.

Lemma 16 Let ξn be as in Lemma 14. If an = o(n1/2) then E exp(anξn) → 1.

Proof By the central limit theorem, each Xij has a limit in distribution as n→ ∞; hence anξn → 0
in probability. It is therefore enough to show that the sequence exp(anξn) is uniformly integrable,

but this follows from Hoeffding’s inequality: since Xij is a centered, renormalized sum of indepen-

dent indicator variables, Hoeffding’s inequality implies that

Pr(|Xij | ≥ t) ≤ 2e−t2/2.

Let X = X11; the definition of ξn ensures that there is a constant C such that ξn is stochastically

dominated by C(Y + Y 2 + n−1), where Y = n−1/2q2|X|. Hence,

Pr(ξn ≥ C(t+ t2 + n−1)) ≤ Pr(Y ≥ t) ≤ 2e
−nt2

2q2 .

Since q is a constant, this may be rearranged to state that

Pr(ξn ≥ t) ≤ 2e−cnmin{t,t2} (27)

for some constant c and all t ≥ 0. Finally, for any M ≥ 0

E[eanξn1{eanξn≥M}] = Pr(eanξn ≥M) +

∫ ∞

M
Pr(eanξn ≥ t) dt

= Pr

(
ξn ≥ logM

an

)
+

∫ ∞

M
Pr

(
ξn ≥ log t

an

)
dt

If an = o(n1/2) then (27) implies that both terms above converge to zero (uniformly in n) as

M → ∞.

We now state the following three results before we prove the main result of this section. The

following proposition characterizes when the exponential of a quadratic form of a sequence of

multinomial random variables is uniformly integrable. Its proof can be found in Section A.
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Proposition 17 Define Xij as in Lemma 14. Then

exp

(
1

2d

∑
XijXkℓAikAjℓ

)

is uniformly integrable ifQ(π,A/
√
2d) < 1, and fails to be uniformly integrable ifQ(π,A/

√
2d) >

1.

Using Hölder’s inequality, it is fairly straightforward to introduce the ξn term:

Lemma 18 Define Xij as in Lemma 14. Then

exp

(
1

2d

∑
XijXkℓAikAjℓ + ξn

)

is uniformly integrable ifQ(π,A/
√
2d) < 1, and fails to be uniformly integrable ifQ(π,A/

√
2d) >

1.

Proof Supposing that Q(π,A/
√
2d) < 1, we find some ǫ > 0 such that Q(π,

√
1 + ǫA/

√
2d) < 1.

Set an = n1/3 and bn = an
an−1 to be the Hölder conjugate of an. Setting

W := vec(X) ∈ Rq2 , (28)

Hölder’s inequality and Lemma 16 give

Eσ,τ exp


(1 +

ǫ

2
)


 1

2d

∑

ijkℓ

XijXkℓAikAjℓ + ξn






≤
(
Eσ,τ exp

(
(1 + ǫ

2)bn

2d
W T (A⊗2)W

))1/bn (
E exp((1 +

ǫ

2
)anξn)

)1/an

≤
(
Eσ,τ exp

(
(1 + ǫ

2)bn

2d
W T (A⊗2)W

))1/bn

.

To check uniform integrability, we apply Proposition 17. For sufficiently large n, we have bn ≤ 1+ǫ
1+ ǫ

2

and

exp

(
(1 + ǫ

2)bn

2d
W TA⊗2W

)
≤ max

{
1, exp

(
(1 + ǫ)

2d
W TA⊗2W

)}
.

We see from the fact that Q(π,
√
1 + ǫA/

√
2d) < 1 and Proposition 17 that the right hand side

above has a finite expectation.

To summarize, we have shown that if Z = exp( 1
2d

∑
XijXkℓAikAjℓ+ξn) then EZ(1+ǫ/2) <∞

for some ǫ > 0. It follows that Z is uniformly integrable, as claimed.

To show that Q(π,A/
√
2d) > 1 implies non-uniform integrability, requires an almost identical

argument, but using the reverse Hölder inequality instead of the usual Hölder inequality. We omit

the details.

The following lemma calculates the expected value of the exponential of a quadratic form of a

Gaussian random vector.
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Lemma 19 Take Z ∼ N (0,Σ), where Σ = diag(π)⊗2 −
(
π ⊗ π

)⊗2
, where a ⊗ b denotes the

Kronecker product of a and b, and a⊗2 denotes the outer product of a with itself. Recall that λi
denote the eigenvalues of T , with 1 = λ1 ≥ |λ2| ≥ · · · ≥ |λq|. If dλ22 < 1 then

E exp

(
1

2d
ZTA⊗2Z

)
=

q∏

i,j=2

1√
1− dλiλj

.

Otherwise, E exp
(

1
2dZ

TA⊗2Z
)
= ∞.

Proof A standard computation (see, e.g. Mathai and Provost (1992)) shows that if µ1, . . . , µs denote

the eigenvalues of ΣÃ then E exp(ZT ÃZ/2) =
∏

i
1√
1−µi

. Now,

ΣA⊗2 =
(
diag(π)⊗2 −

(
π ⊗ π

)⊗2)
A⊗2 = (diag(π)A)⊗2 − (ππ⊺A)⊗2.

Recall, however, that Aπ = 0. Hence, we are interested in the eigenvalues of (diag(π)A)⊗2 =
(dB)⊗2. Since the top eigenvalue of T is 1 (with 1 as its right-eigenvector and π as its left-

eigenvector), we see that if λ1, · · · , λq are the eigenvalues of T with λ1 = 1, then

{dλiλj : i, j = 2, . . . , q}

are the eigenvalues of 1
dΣ(A⊗A).

Proof [Proof of Proposition 8] First of all, note that

dP̂n(G,σ)

dQn
=

Yn
Pn(Ωn)

= (1 + o(1))Yn.

Hence, it suffices to compute the limit of EQnY
2
n .

From Lemma 13, we see that we need to calculate the limit of the quantity

Eσ,τ∈Ωn exp


 1

2d

∑

ijkℓ

XijXkℓAikAjℓ + ξn


 .

Lemma 18 establishes that the above sequence is uniformly integrable.

Now, note that (Nij)
q
i,j=1 is distributed as a multinomial random vector with n trials and proba-

bilities πiπj . In particular, 1
nENij = πiπj ,

1
n Var(Nij) = πiπj − (πiπj)

2, and 1
n Cov(NijNkℓ) =

−πiπjπkπℓ if {i, j} 6= {k, ℓ}. Since Xij = n−
1
2 (Nij − nπiπj), central limit theorem implies that

W := vec(X) ∈ Rk2 converges in distribution to a Gaussian random vector, Z with mean 0 and

covariance matrix diag(π)⊗2 − π⊗4. Using Lemma 19 now gives us

EQnY
2
n → exp(ν1 + ν2)

q∏

i,j=2

1√
1− dλiλj

. (29)

Going back to Lemma 15, we have

ν1 = −d
2
tr(B)2 = −1

2

q∑

i,j=2

dλiλj
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and

ν2 = −d
2

4
tr(B2)2 = −1

4

q∑

i,j=2

(dλiλj)
2.

Hence, the right hand side of (29) is equal to

∏

i,j

ψ(dλiλj),

as claimed.

6. Proof of Theorem 7

6.1. Non-distinguishability

In this section, we use Proposition 8 to the contiguity claim in Theorem 7. Our main tool is the

conditional second moment method, which was originally developed by Robinson and Wormald

(1992) in their study of Hamiltonian cycles in d-regular graphs. Janson (1995) was the first to apply

this method for proving contiguity. We use a formulation from (Wormald, 1999, Theorem 4.1):

Theorem 20 Consider two sequences Pn,Qn of probability distributions on a sequence Ωn of

probability spaces. Suppose that there exist random variables {Xm,n : m ≥ 3}, where Xm,n is

defined on Ωn, such that for every m,

Xm,n
d→ Pois(µm) under Qn as n→ ∞; and (30)

Xm,n
d→ Pois(µm(1 + δm)) under Pn as n→ ∞. (31)

Suppose also that for any m∗, the collection X3,n, . . . ,Xm∗,n are asymptotically independent as

n→ ∞ under both Pn and Qn, in the sense that every joint moment of X3,n, . . . ,Xm∗,n converges

to the same joint moment of the appropriate independent Poisson variables. If

EQn

(
Pn

Qn

)2

≤ (1 + o(1)) exp



∑

m≥3

µmδ
2
m


 <∞ (32)

then Pn and Qn are contiguous.

We will apply Theorem 20 with Pn replaced by P̂n = (Pn | Ωn); i.e., the block model con-

ditioned on having almost the expected label frequencies. We will take Xm,n to be the number of

m-cycles in the graph G (which is drawn either from P̂n or from Qn). In order to apply Theorem 20,

we need to know that the number of m-cycles has a limiting Poisson distribution (and we need to

know the parameters). For Qn, this is classical; for Pn it was proved by Bollobás et al. (2007) (and it

follows for P̂n since P̂n is obtained from Pn by conditioning on an event that holds with probability

converging to 1).
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Proposition 21 Let Xm be the number of m-cycles in G. Then

Xm
d→ Pois

(
1

2m
dm
)

under Qn, and

Xm
d→ Pois

(
1

2m
dm tr(Tm)

)
under Pn.

Moreover, for any fixed m∗ the variables {X3, . . . ,Xm∗} are asymptotically independent under

both Pn and Qn, in the sense of Theorem 20.

Hence, we may apply Theorem 20 with µm = 1
2md

m and δm = tr(Tm) − 1. Recalling that

1 = λ1 ≥ · · · ≥ λq are the eigenvalues of T , we have δm =
∑

i≥2 λ
m
i . Hence,

∞∑

m=3

µmδ
2
m =

1

2

∞∑

m=3

dm

m

q∑

i,j=2

λmi λ
m
j

=
1

2

q∑

i,j=2

∞∑

m=3

(dλiλj)
m

m

=

q∑

i,j=2

logψ(dλiλj),

where ψ(x) = (1 − x)−1/2e−x/2−x2/4. In particular, condition (32) follows immediately from

Proposition 8, which in turn proves that P̂n and Qn are contiguous. Since Pn(Ωn) → 1, Pn and P̂n

are contiguous also. This proves the first statement of Theorem 7: if Q(π, (M − dJ)/
√
2d) < 1

then Pn and Qn are contiguous.

6.2. Non-detectability

Finally, in this section we prove that if Q(π,A/
√
2d) < 1 (where A = M − dJ) then Pn is

non-detectable; this will complete the proof of Theorem 7. The following proposition is the main

technical result we need. It shows that if Q(π,A/
√
2d) < 1 then for any two fixed configurations

on a finite set of nodes, the total variation distance between the distribution on graphs conditioned

on these two configurations respectively goes to zero.

Proposition 22 Suppose Q
(
π,A/

√
2d
)
< 1. Then, for any fixed r > 0, and for any two configu-

rations (a1, a2, · · · , ar) and (b1, b2, · · · , br), we have:

TV (Pn (G|σu = au for u ∈ [r]) ,Pn (G|σu = bu for u ∈ [r])) = o(1),

where TV (P1,P2) denotes the total variation distance between the two distributions P1 and P2.

Proof We will first prove the statement of the proposition with Pn replaced by P̂n = (Pn | Ωn);
i.e., the block model conditioned on having almost the expected label frequencies.
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We start by using the definition of total variation distance:

TV
(
P̂n (G|σu = au for u ∈ [r]) , P̂n (G|σu = bu for u ∈ [r])

)

=
∑

G

∣∣∣P̂n (G|σu = au for u ∈ [r])− P̂n (G|σu = bu for u ∈ [r])
∣∣∣

=
∑

G

∣∣∣P̂n (G|σu = au for u ∈ [r])− P̂n (G|σu = bu for u ∈ [r])
∣∣∣
√

Qn (G)√
Qn (G)

(a)

≤
(
∑

G

Qn (G)

)1/2


∑

G

(
P̂n (G|σu = au for u ∈ [r])− P̂n (G|σu = bu for u ∈ [r])

)2

Qn (G)




1/2

=



∑

G

(∑
σ̃ P̂n (σ̃)

(
P̂n (G|a, σ̃)− P̂n (G|b, σ̃)

))2

Qn (G)




1/2

,

where (a) follows from Cauchy-Schwartz inequality and σ̃ denotes an assignment on [n] \ [r]. We

can expand the numerator as follows:

(
∑

σ̃

P̂n (σ̃)
(
P̂n (G|a, σ̃)− P̂n (G|b, σ̃)

))2

=
∑

σ̃,τ̃

P̂n (σ̃) P̂n (τ̃)
(
P̂n (G|a, σ̃) P̂n (G|a, τ̃ ) + P̂n (G|b, σ̃) P̂n (G|b, τ̃)

−P̂n (G|a, σ̃) P̂n (G|b, τ̃)− P̂n (G|b, σ̃) P̂n (G|a, τ̃ )
)
.

We will now show that the value of

∑

σ̃,τ̃

P̂n (σ̃) P̂n (τ̃)
∑

G

P̂n (G|a, σ̃) P̂n (G|b, τ̃ )
Qn (G)

,

is independent of a and b up to an o(1) error term. This will prove our claim. Define

Wuv(G,σ) :=





Mσu,σv

d if (u, v) ∈ E(G),

1−Mσu,σv
n

1− d
n

if (u, v) 6∈ E(G),
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and let sijkℓ = (Mik − d)(Mjℓ − d)/n = AikAjℓ/n, and tijkℓ =
sijkℓ
d +

sijkℓ
n − s2

ijkℓ

2d2 . We have:

∑

σ̃,τ̃

P̂n (σ̃) P̂n (τ̃)
∑

G

P̂n (G|a, σ̃) P̂n (G|b, τ̃ )
Qn (G)

=
∑

σ̃,τ̃

P̂n (σ̃) P̂n (τ̃)
∏

u,v∈[n]
EQn [Wuv(G, a, σ̃)Wuv(G, b, τ̃ )]

= Êσ̃,τ̃

∏

u,v∈[n]\[r]
(1 + tσ̃uτ̃uσ̃v τ̃v + ǫn)

∏

u∈[r]

v∈[n]\[r]

(1 + taubuσ̃v τ̃v + ǫn)
∏

u,v∈[r]
(1 + taubuavbv + ǫn)

= Êσ̃,τ̃

∏

i,j,k,ℓ∈[q]
(1 + tijkℓ + ǫn)

Ñijkℓ
∏

u∈[r]

i,j∈[q]

(1 + taubuij + ǫn)
Ñij

∏

u,v∈[r]
(1 + taubuavbv + ǫn) ,

(33)

where Ñijkℓ = |{{u, v} : σ̃u = i, τ̃u = j, σ̃v = k, τ̃v = ℓ}|, Ñij = |{v : σ̃v = i, τ̃v = j}|, and ǫn =
O(n−3). We first note that the last term in (33) is essentially constant:

∏

u,v∈[r]
(1 + taubuavbv + ǫn) =

∏

u,v∈[r]

(
1 +O

(
1

n

))
=

(
1 +O

(
1

n

))r2

= 1 +O

(
1

n

)
.

For the second term in (33), since Ñij < n, we have

∏

i,j∈[q]
(1 + taubuij + ǫn)

Ñij =
∏

i,j∈[q]

(
1 +

saubuij
d

+O

(
1

n2

))Ñij

= (1 + o(1))
∏

i,j∈[q]
exp

(saubuij
d

· Ñij

)
(34)

On the other hand,

∏

i,j∈[q]
exp

(nsaubuij
d

· πiπj
)
=
∏

i,j∈[q]
exp

(
πiπjAauiAbuj

d

)

= exp




(∑
i∈[q] πiAaui

)(∑
j∈[q] πjAbuj

)

d


 = 1,

and so we may write the second term of (33) as

∏

i,j∈[q]
(1 + taubuij + ǫn)

Ñij = (1 + o(1))
∏

i,j∈[q]
exp

(
nsaubuij

d

(
Ñij

n
− πiπj

))

= (1 + o(1))
∏

i,j∈[q]
exp

(
nsaubuij

d
· X̃ij√

n

)
,
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where X̃ij := n−1/2
(
Ñij − nπiπj

)
.

Going back to (33) and plugging in our estimates on the second and third terms,

∑

σ̃,τ̃

P̂n (σ̃) P̂n (τ̃)
∑

G

P̂n (G|a, σ̃) P̂n (G|b, τ̃)
Qn (G)

= (1 + o(1))Êσ̃,τ̃

∏

i,j,k,ℓ∈[q]
(1 + tijkℓ + ǫn)

Ñijkℓ
∏

u∈[r]

i,j∈[q]

exp

(
nsaubuij

d
· X̃ij√

n

)

= (1 + o(1))Êσ̃,τ̃ exp



∑

ijkℓ

Ñijkℓtijkℓ



∏

u∈[r]

i,j∈[q]

exp

(
nsaubuij

d
· X̃ij√

n

)

= (1 + o(1))Êσ̃,τ̃ exp


 1

2d

∑

ijkℓ

X̃ijX̃kℓAikAjℓ + ν1 + ν2 + ξ̃n



∏

u∈[r]

i,j∈[q]

exp

(
nsaubuij

d
· X̃ij√

n

)
,

where the last equality follows from Lemma 14. Note that exp
(

1
2d

∑
ijkℓ X̃ijX̃kℓAikAjℓ + ξ̃n

)

is independent of a and b and from Lemma 18, we also know that it is uniformly integrable. On

the other hand, since

∣∣∣X̃ij

∣∣∣ ≤ √
n, we see that exp

(∑
u∈[r],i,j∈[q]

nsaubuij

d · X̃ij√
n

)
is uniformly

bounded; hence, the entire displayed expression above is uniformly integrable. Since X̃ij →
N
(
0, πiπj − (πiπj)

2
)
, the displayed equation above converges to a finite quantity that is indepen-

dent of a and b. This proves the statement of the proposition with Pn replaced by P̂n = (Pn | Ωn).
Noting that

TV
(
Pn (G|σu = au for u ∈ [r]) , P̂n (G|σu = au for u ∈ [r])

)
= o(1), ∀ a

gives us the desired result.

As an easy consequence of Proposition 22, the posterior distribution of a single label is essen-

tially unchanged if we know a bounded number of other labels:

Lemma 23 Suppose Q
(
π,A/

√
2d
)
< 1. Then, for any set S such that |S| is a constant, u /∈ S,

we have:

E (TV (Pn (σu|G,σS) , π)|σS) = o(1).

Proof

E (TV (Pn (σu|G,σS) , π)|σS) =
∑

σu

Pn (σu)
∑

G

∣∣∣∣
Pn (G|σu, σS)
Pn (G|σS)

− 1

∣∣∣∣Pn (G|σS)

=
∑

i

π(i)TV (Pn (G|σu = i, σS) ,Pn (G|σS)) = o(1),

where the last step follows from Proposition 22.
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Finally, we will show the non-detectability part of Theorem 7. By Markov’s inequality, it is

enough to show that limn→∞ E (overlap(A(G), σ)) = 0. We first bound E (overlap(A(G), σ)) as

follows:

E (overlap(σ,A(G))) =
1

n
E

(
max

ρ

q∑

i=1

(
Niρ(i)(σ,A(G)) − 1

n
Ni(σ)Nρ(i)(A(G))

))

≤ 1

n

∑

ρ

E

(∣∣∣∣∣

q∑

i=1

(
Niρ(i)(σ,A(G)) − 1

n
Ni(σ)Nρ(i)(A(G))

)∣∣∣∣∣

)
. (35)

We will now show that each of the terms in the above summation goes to zero. Without loss of

generality, let ρ be the identity map. Fix i ∈ [q] and consider the term E
∣∣(Nii − 1

nNi(σ)Ni(A(G))
)∣∣

(for brevity, we suppress σ,A(G) in Nii(σ,A(G))). Using Jensen’s inequality, it is sufficient to

bound

E

(
Nii −

1

n
Ni(σ)Ni(A(G))

)2

= E

(
N2

ii −
2

n
NiiNi(σ)Ni(A(G)) +

1

n2
N2

i (σ)N
2
i (A(G))

)
.

(36)

We will now calculate each of the above three terms.

EN2
ii = E

(
∑

u

1{σu=i}1{A(G)u=i}

)2

=
∑

u,v

E1{σu=i}1{A(G)u=i}1{σv=i}1{A(G)v=i}

=
∑

u,v

E1{σu=i}1{A(G)u=i}1{σv=i}1{A(G)v=i}

=
∑

u,v

E
(
E
(
1{σu=i}1{A(G)u=i}1{σv=i}1{A(G)v=i}

∣∣G
))

=
∑

u,v

E
(
E
(
1{σu=i}1{σv=i}

∣∣G
)
1{A(G)u=i}1{A(G)v=i}

)

=
(
π(i)2E

(
1{A(G)u=i}1{A(G)v=i}

)
+ o(1)

)
n2, (37)

where the last step follows from Lemma 23. Coming to the second term, we have:

ENiiNi(σ)Ni(A(G)) = E

(
∑

u

1{σu=i}1{A(G)u=i}

)(
∑

u

1{σu=i}

)(
∑

u

1{A(G)u=i}

)

=
∑

u,v,w

E
(
E
(
1{σu=i}1{A(G)u=i}1{σv=i}1{A(G)w=i}

∣∣G
))

=
∑

u,v,w

E
(
E
(
1{σu=i}1{σv=i}

∣∣G
)
1{A(G)u=i}1{A(G)w=i}

)

=
(
π(i)2E

(
1{A(G)u=i}1{A(G)v=i}

)
+ o(1)

)
n3, (38)

where the last step again follows from Lemma 23. A similar argument shows that

EN2
i (σ)N

2
i (A(G)) =

(
π(i)2E

(
1{A(G)u=i}1{A(G)v=i}

)
+ o(1)

)
n4. (39)
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Plugging (37), (38) and (39) in (36) shows that

E

(
Nii −

1

n
Ni(σ)Ni(A(G))

)2

= o(n2).

This finishes the proof.
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Appendix A. UI and multinomials

Here, we restate and prove Proposition 17. Recall that ∆q denotes the set {(α1, . . . , αq) : αi ≥
0 and

∑
i αi = 1}, and that ∆q2(π) denotes the set of (α11 . . . , αqq) such that

αij ≥ 0 for all i, j,
q∑

i=1

αij = πj for all j, and

q∑

j=1

αij = πi for all i.

In what follows, we fix an q2 × q2 matrix A and some π ∈ ∆q. We define p ∈ ∆q2(π) by

pij = πiπj (or alternatively, p = π⊗2), and we take N ∼ Multinom(n, p) and X = (N −np)/
√
n.

Finally, fix a sequence an such that
√
n≪ an ≪ n and define Ωn to be the event that

max
j

∣∣∣∣∣
∑

i

Nij − nπj

∣∣∣∣∣ ≤ an (40)

max
i

∣∣∣∣∣∣

∑

j

Nij − nπi

∣∣∣∣∣∣
≤ an. (41)

Note that the condition
√
n≪ an ensures that the probability of Ωn converges to 1.

Proposition 24 Define

λ = sup
α∈∆

q2 (π)

(α− p)TA(α − p)

D(α, p)
.

If λ < 1 then

E[1Ωn exp(X
TAX)] → E exp(ZTAZ) <∞,

as n→ ∞, where Z ∼ N (0,diag(p)− ppT ). On the other hand, if λ > 1 then

E[1Ωn exp(X
TAX)] → ∞

as n→ ∞.

Lemma 25 For any ǫ > 0, any q = 2, 3, . . . , and any p ∈ ∆q, there is a constant C < ∞ such

that for any n,

n−q/2
∑

r1+···+rq=n

exp

(
−nǫ

∣∣∣
r

n
− p
∣∣∣
2
)

≤ C.

Proof We have

n−q/2
∑

r1+···+rq=n

exp

(
−nǫ

∣∣∣
r

n
− p
∣∣∣
2
)

≤ n−q/2
n∑

r1,...,rq=1

exp

(
−nǫ

∣∣∣
r

n
− p
∣∣∣
2
)

=

q∏

i=1

[
n−1/2

n∑

r=1

exp

(
−nǫ

( r
n
− pi

)2)
]
.
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The problem has now reduced to the case q = 1; i.e., we need to show that

n−1/2
n∑

r=1

exp(−nǫ(r/n− p)2) < C(p, ǫ).

We do this by dividing the sum above into ℓ = ⌈√n⌉ different sums. Note that if r
n ≥ p then

(
r + ℓ

n
− p

)2

=
( r
n
− p
)2

+
ℓ2

n2
+

2ℓ

n

( r
n
− p
)
≥
( r
n
− p
)2

+
1

n
. (42)

Hence, r ≥ np implies

exp

(
−nǫ

(
r + ℓ

n
− p

)2
)

≤ e−ǫ exp

(
−nǫ

( r
n
− p
)2)

.

Stratifying the original sum into strides of length ℓ,

n−1/2
n∑

r=⌈pn⌉
exp(−nǫ(r/n− p)2) ≤ n−1/2

⌈pn⌉+ℓ−1∑

r=⌈pn⌉

∞∑

m=0

exp(−nǫ((r +mℓ)/n− p)2).

Now, (42) implies that the inner sum may be bounded by a geometric series with initial value less

than 1, and ratio e−ǫ. Hence,

n−1/2
n∑

r=⌈pn⌉
exp(−nǫ(r/n− p)2) ≤ n−1/2ℓ

1

1− e−ǫ
,

which is bounded. A similar argument for the case r ≤ pn completes the proof.

Proof [Proof of Proposition 24] First, recall that for any α = (α11, . . . , αqq) ∈ ∆q2 , we have

Pr(N = αn) ≍ exp(−nD(α, p)); this just follows from Stirling’s approximation. Next, note that

D(α, p) is zero only for α = p, and that D(α, p) is strongly concave in α. Therefore, λ < 1 implies

that there is some ǫ > 0 such that

D(α, p) ≥ (1 + ǫ)(α− p)TA(α− p) + ǫ|α− p|2

for all α ∈ ∆q2(p). Hence, any α ∈ ∆q2(p) satisfies

Pr(N = αn) exp(n(1 + ǫ)(α− p)TA(α− p)) ≤ C exp(−nǫ|α− p|2). (43)

Recalling the definition of Ωn, we write (with a slight abuse of notation) α ∈ Ωn if |maxi
∑

j αij−
pi| ≤ n−1an and similarly with i and j reversed. Note that for every α ∈ Ωn, there is some

α̃ ∈ ∆q2(π) with |α− α̃|2 = o(n−1); in particular, (43) also holds for all α ∈ Ωn (with a change in

the constant C). Then

E[1Ωn exp((1 + ǫ)XTAX)] =
∑

α∈Ωn

Pr(N = nα) exp
(
n(1 + ǫ)(α− p)TA(α − p)

)

≤
∑

α∈Ωn

exp
(
−nǫ|α− p|2

)

≤ C <∞,
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for some constant C independent of n, where the last line follows from Lemma 25. In particular,

exp(XTAX) has 1 + ǫ uniformly bounded moments, and so it is uniformly integrable as n → ∞.

Since X
d→ N (0,diag(p)− ppT ), it follows that E exp(XTAX) → E exp(XTAX).

In the other direction, if λ > 1 then there is some α ∈ ∆q2(p), α 6= p and some ǫ > 0 such that

D(α, p) ≤ (α − p)TA(α − p)− 2ǫ. By the continuity of D(α, p) and (α − p)TA(α − p), we see

that for sufficiently large n, there exists r ∈ n∆q2(p) such that

D(r/n, p) ≤ (r/n− p)TA(r/n− p)− ǫ.

For any n, let r∗ = r∗(n) be such an r. Then

E exp(XTAX) ≥ Pr(N = r∗(n)) exp
(
n(r∗/n− p)TA(r∗/n− p)

)

≍ exp
(
n
(
(r∗/n− p)TA(r∗/n− p)−D(r∗/n, p)

))

≥ exp (nǫ) → ∞.
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