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Abstract

We study a semidefinite programming (SDP) relaxation of the maximum likelihood estimation for
exactly recovering a hidden community of cardinality K from an n x n symmetric data matrix A,
where for distinct indices 4, j, A;; ~ P if 4, j are both in the community and A;; ~ @ otherwise,
for two known probability distributions P and ). We identify a sufficient condition and a necessary
condition for the success of SDP for the general model. For both the Bernoulli case (P = Bern(p)
and @ = Bern(q) with p > ¢) and the Gaussian case (P = A (p, 1) and Q@ = N(0, 1) with p > 0),
which correspond to the problem of planted dense subgraph recovery and submatrix localization
respectively, the general results lead to the following findings: (1) If K = w(n/logn), SDP attains
the information-theoretic recovery limits with sharp constants; (2) If X = ©(n/logn), SDP is
order-wise optimal, but strictly suboptimal by a constant factor; (3) If K = o(n/logn) and K — oo,
SDP is order-wise suboptimal. The same critical scaling for K is found to hold, up to constant
factors, for the performance of SDP on the stochastic block model of n vertices partitioned into
multiple communities of equal size K. A key ingredient in the proof of the necessary condition is a
construction of a primal feasible solution based on random perturbation of the true cluster matrix.

Keywords: Semidefinite programming relaxations; Planted dense subgraph recovery; Submatrix
localization; Stochastic block model

1. Introduction

1.1. Motivation and problem setup

Consider the stochastic block model (SBM) Holland et al. (1983) with a single community, where out
of n vertices a community consisting of K vertices are chosen uniformly at random; two vertices are
connected by an edge with probability p if they both belong to the community and with probability
q if either one of them is not in the community. The goal is to recover the community based on
observation of the graph, which, when p > ¢, is also known as the planted dense subgraph recovery
problem McSherry (2001); Chen and Xu (2014); Hajek et al. (2015a); Montanari (2015).

In the special case of p = 1 and ¢ = 1/2, planted dense subgraph recovery reduces to the
widely-studied planted clique problem, i.e., finding a hidden clique of size K in the Erd6s-Rényi
random graph G(n, 1/2). It is well-known that the maximum likelihood estimator (MLE), which is
computationally intractable, finds any clique of size K > 2(1 + €) log, n for any constant € > 0;
however, existing polynomial-time algorithms, including spectral methods Alon et al. (1998), message
passing Deshpande and Montanari (2015a), and semi-definite programming (SDP) relaxation of
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MLE Feige and Krauthgamer (2000), are only known to find a clique of size K > e/n. In fact,
impossibility results for the more powerful s-round Lovész-Schrijver relaxations and, more recently,
degree-2r sums-of-squares (SOS) relaxation (with s = 1 and r = 1 corresponding to SDP) have been
recently obtained in Feige and Krauthgamer (2003) and Deshpande and Montanari (2015b); Meka
et al. (2015); Hopkins et al. (2015); Raghavendra and Schramm (2015), showing that relaxations
of constant rounds or degrees lead to order-wise suboptimality even for detecting the clique. In
other words, for the planted clique problem there is a significant gap between the state of the art of
polynomial-time algorithms and what is information-theoretically possible.

In sharp contrast, for sparser graphs and larger community size, SDP relaxations have been shown
to achieve the information-theoretic recovery limit up to sharp constants. For p = alogn/n,q =
blogn/n and K = pn for fixed constants a,b > 0 and 0 < p < 1, the recent work Hajek et al.
(2016) identified a sharp threshold p* = p*(a, b) such that if p > p*, an SDP relaxation of MLE
recovers the hidden community with high probability; if p < p*, exact recovery is information
theoretically impossible. This optimality result of SDP has been extended to multiple communities
as long as their sizes scale linearly with the graph size n Bandeira (April, 2015); Hajek et al. (2015b);
Agarwal et al. (2015); Perry and Wein (2015); Montanari and Sen (April, 2015).

The dichotomy between the optimality of SDP up to sharp constants in the relatively sparse
regime and the order-wise suboptimality of SDP in the dense regime prompts us to investigate the
following question:

When do SDP relaxations cease to be optimal for planted dense subgraph recovery?

In this paper, we address this question under the more general hidden community model consid-
ered in Deshpande and Montanari (2015a).

Definition 1 (Hidden Community Model) Let C* be drawn uniformly at random from all subsets
of [n] of cardinality K. Given probability measures P and () on a common measurable space X, let
A be an n x n symmetric matrix with zero diagonal where for all 1 <1i < j < n, A;; are mutually
independent, and A;; ~ P ifi,j € C* and A;; ~ (@) otherwise.

The distributions P and () as well as the community size K vary with the matrix size n in general.

In this paper we assume that these model parameters are known to the estimator, and focus on exact

recovery of the hidden community based on the data matrix A, namely, constructing an estimator

C = C(A), such that as n — oo, P{C # C*} — 0 uniformly in the choice of the true cluster C'*.
We are particularly interested in the following choices of P and Q:

e Bernoulli case: P = Bern(p) and @@ = Bern(q) with 0 < ¢ < p < 1. In this case, the data
matrix A corresponds to the adjacency matrix of a graph, and the problem reduces to planted
dense subgraph recovery.

e Gaussian case: P = N (u,1) and @ = N(0, 1) with o > 0. In this case, the submatrix of A
with row and column indices in C* has a positive mean p except on the diagonal, while the
rest of A has zero mean, and the problem corresponds to a symmetric version of the submatrix
localization problem studied in Shabalin et al. (2009); Kolar et al. (2011); Butucea et al. (2015);
Ma and Wu (2015); Chen and Xu (2014); Cai et al. (2015).
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1.2. Main results

We show that for both planted dense subgraph recovery and submatrix localization, SDP relaxations
of MLE achieve the information-theoretic optimal threshold if and only if the hidden community
size satisfies K = w(—~ ). More specifically,

logn
o K =uw( Togn ), SDP attains the information-theoretic recovery limits with sharp constants. This
extends the previous result in Hajek et al. (2016) obtained for K = ©(n) and the Bernoulli
case.

o K = @(%), SDP is order-wise optimal, but strictly suboptimal by a constant factor;

® K =0(p;) and K — oo, SDP is order-wise suboptimal.

To establish our main results, we derive a sufficient condition and a necessary condition under
which the optimal solution to SDP is unique and coincides with the true cluster matrix. In particular,
for planted dense subgraph recovery, whenever SDP does not achieve the information-theoretic
threshold, our sufficient condition and necessary condition are within constant factors of each
other; for submatrix localization, we characterize the minimal signal-to-noise ratio required by
SDP within a factor of four when K = w(y/n). The sufficiency proof is similar to those in Hajek
et al. (2016) based on the dual certificate argument; we extend the construction and validation of
dual certificates for the success of SDP to the general distributions P, (). The necessity proof is
via constructing a high-probability feasible solution to the SDP by means of random perturbation
of the ground truth that leads to a higher objective value. One could instead adapt the existing
constructions in the SOS literature for planted clique Deshpande and Montanari (2015b); Meka et al.
(2015); Hopkins et al. (2015); Raghavendra and Schramm (2015) to our setting, but it falls short of
establishing the impossibility of SDP to attain the optimal recovery threshold in the critical regime of
K = ©(n/logn); see Remark 5 for details.

An alternative approach to establish impossibility results for SDP, thanks to strong duality that
holds for the specific program, is to prove the non-existence of dual certificates, which turns out to
yield the same condition given by the aforementioned explicit construction of primal solutions. The
dual-based method has been previously used for proving necessary conditions for related nuclear-
norm constrained optimization problems, see e.g., Kolar et al. (2011); Vinayak et al. (2014); Chen
and Xu (2014); however, the constants in the derived conditions are often loose or unspecified. In
comparison, we aim to obtain necessary conditions for SDP relaxations with explicit constants.
Another difference is that the specific SDP considered here is more complicated involving the
stringent positive semi-definite constraint and a set of equality and non-negativity constraints.

Using similar techniques, we obtain analogous results for SDP relaxation for SBM with logarith-
mically many communities. Specifically, consider the network of n = r K vertices partitioned into r
communities of cardinality K each, with edge probability p for pairs of vertices within communities
and ¢ for other pairs of vertices. Then SDP relaxation, in contrast to the MLE, is constantwise
suboptimal if r > C'log n for sufficiently large C, and orderwise suboptimal if » = w (logn). That
is, it is constantwise suboptimal if K < % for sufficiently small ¢, and orderwise suboptimal if

K=o <1ogn). This result complements the sharp optimality for SDP previously established in

Hajek et al. (2015b) for » = O(1) and extended to = o(log n) in Agarwal et al. (2015).
In closing, we comment on the barrier which prevents SDP from being optimal. It is known that,
see e.g., Chen and Xu (2014); Montanari and Sen (April, 2015), spectral methods which estimate the
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communities based on the leading eigenvector of the data matrix A suffer from a spectral barrier: the
spectrum of the “signal part” [E [A] must escape that of the “noise part” A — E [4], i.e., the smallest
nonzero singular value of E [A] needs to be much larger than the spectral norm || A — E [A] ||. Closely
related to the spectral barrier, the SDP barrier originates from a key random quantity (see (6)), which
is at most and, in fact, possibly much smaller than, the largest eigenvalue of A — E [A]. Thus we
expect the SDP barrier to be weaker than the spectral one. Indeed, for the submatrix localization
problem, if the submatrix size is sufficiently small, i.e., K = o(y/n/logn), SDP recovers the
community with high probability if 1 = (/logn), while the spectral barrier requires a much
stronger signal: u = Q(y/n/K); see Section 4.1 for details.

1.3. Notation

Let I and J denote the identity matrix and all-one matrix, respectively. For a matrix X we write
X » 0if X is positive semidefinite, and X > 0 if X is non-negative entrywise. Let S™ denote the
set of all n x n symmetric matrices. For X € S, let A2(X) denote its second smallest eigenvalue.
For an m x n matrix M, let || M || and || M ||r denote its spectral and Frobenius norm, respectively.
For any S C [m],T C [n], let Mgy € R¥*T denote (M;;)ics jer and for m = n abbreviate
Mg = Mgg. For a vector z, let ||x|| denote its Euclidean norm. We use standard big O notations
as well as their counterparts in probability, e.g., for any sequences {a,, } and {b,}, a, = O(b,) or
ap, =< by, if there is an absolute constant ¢ > 0 such that 1/¢ < a,, /b, < c. All logarithms are natural
and we adopt the convention 0log 0 = 0. Let Bern(p) denote the Bernoulli distribution with mean
p and Binom(n, p) denote the binomial distribution with n trials and success probability p. Let
d(pl|lg) = plog % +(1—p)log % denote the Kullback-Leibler (KL) divergence between Bern(p)
and Bern(q). We say a sequence of events &,, holds with high probability, if P{&,} — 1 asn — cc.

2. Semidefinite programming relaxations

Recall that £* € {0,1}" denotes the indicator of the underlying cluster C*, such that £ = 1 if
i€ C* and & = 0 otherwise. Let L denote an n x n symmetric matrix such that L;; = f(A;;) for
i # jand L;; = 0, where f : X — R is any function possibly depending on the model parameters.
Consider the following combinatorial optimization problem:

§: arg max Z L;;&i&;
3

1,J
st. £€ {0, 1}” (D)
¢"1=K,

which maximizes the sum of entries among all K x K principal submatrices of L.

If L is the log likelihood ratio (LLR) matrix with f(A;;) = log %(Aij) fori # jand L;; = 0,
then fA is precisely the MLE of £*. In general, evaluating the MLE requires knowledge of K and the
distributions P, Q). Computing the MLE is NP hard in the worst case for general values of n and K
since certifying the existence of a clique of a specified size in an undirected graph, which is known
to be NP complete Karp (1972), can be reduced to computation of the MLE. This intractability of
the MLE prompts us to consider its semidefinite programming relaxation as studied in Hajek et al.
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(2016). Note that (1) can be equivalently' formulated as
max (L, Z)
s.t. rank(Z) =1,
Zi <1, Vie]|n]
Zij >0, Vi,je[n]
(I1,Z) =K
(3,7Z) = K*. 2)

Replacing the rank-one constraint by the positive semidefinite constraint leads to the following
convex relaxation of (2), which can be cast as a semidefinite program:?

ZSDP = argmax (L, Z)
Z

st. Z+0 (3)
Zi <1, Vie|n]
Z>0
1,Z)=K
(3,7) = K~

Let £* € {0,1}" denote the indicator of the community such that supp(¢*) = C*. Let Z* = £*(¢*) T
denote the cluster matrix corresponding to C*. It is straightforward to retrieve the underlying cluster
C* from Z*. Thus, if IP’{ESDP = Z*} — 1 as n — oo, then exact recovery of C* is attained. Note
that by the symmetry of the SDP formulation and the distribution of L, the probability of success
IP{ESDP = Z*} is the same conditioned on any realization of £* and hence the worst-case probability
of error coincides with the average-case one.

Recall that if L is the LLR matrix, then the solution E to (1) is precisely the MLE of £*. In
the Gaussian case, log %(Aij) = p(Ai; — pn/2) with > 0 for i # j; in the Bernoulli case,

log %(Aij) = log 28:3 A;j + log % with p > ¢ for i # j. Thus, in both cases, (3) with L = A

corresponds to a semidefinite programming relaxation of the MLE, and the only model parameter
needed for evaluating (3) is the cluster size K.

3. Analysis of SDP in the general model

In this section, we give a sufficient condition and a necessary condition, both deterministic, for the
success of SDP (3) for exact recovery. Define

e(i,C*) = Y Lij, i€ [n] )

jeC

1. Here (1) and (2) are equivalent in the following sense: For any feasible £ for (1), Z = &€ T is feasible for (2); Any
feasible Z for (2) can be written as Z = ££ ' such that either £ or —¢ is feasible for (1).

2. Zspp as arg max denotes the set of maximizers of the optimization problem (3). If Z * is the unique maximizer, we
write Zspp = Z*.
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and

a =Ep[Lis],
B =Egq[L12].

We assume that o > [, i.e., L has an elevated mean in the submatrix supported on C* x C*
(excluding the diagonal). This assumption guarantees that Z* is the optimal solution to (3) when
L is replaced by its mean E [L], and is clearly satisfied when L is the LLR matrix, in which case
a=D(P||Q) > 0> —-D(Q||P) = B, or L =Ain the Gaussian and Bernoulli cases.

Theorem 2 (Sufficient condition for SDP: general case) If

i 0,C) - max { e, ). K6 > L~ E[2]]| - )

1¢C
then Z\SDP =7

The sufficient condition of Theorem 2 is derived via the dual certificate argument. That is, we
give an explicit construction of dual variables which together with Z* are shown to satisfy the KKT
conditions under the condition (5).

The necessary condition relies on the following key quantity which is the value of an auxiliary
SDP program. Let m = n — K and M = L(g=)cx(c)c denote the submatrix of L outside the
community. Then M is an m x m symmetric matrix with zero diagonal, where {M;; : 1 <i < j <
m} are i.i.d. For a € R, consider the value (random variable) of the following SDP:

Vin(a) = max (M, Z) (6)
st. Z»=0
Z >0
Tr(Z) =1
J,Z) =a.
There is no feasible solution to (6) unless 1 < a < m, so by convention, let V,,(a) = —cc ifa < 1

or a > m. Dropping the second and the last constraints in (6), yields V;,(a) < Amax(M). Also,
V(1) =0, Vi (m) = (M,J)/m, and a — V,,(a) is concave on [1, m]. Clearly, the distributions
of M as well as V;,,(a) depend on the distribution () but not P.

Fix K,n,C*, the matrix L, and a € [1, K]. Also, let r = . For ease of notation suppose
the indices are permuted so that C* = [K], index K minimizes e(i, C*) over all i € C*, and
index K + 1 maximizes e(j, C*) over all j ¢ C*. Let U be an n X n matrix corresponding to the
solution of the SDP defining V;,(a) with M = L(c«yex (c+)e in (6). Thatis, U is a symmetric n X n
matrix with U;; = 0if (¢, ) & (C*)¢ x (C*)¢, Viu(a) = (L, U), U = 0,U >0, Tr(U) = 1, and
(J,U)=a=Kr.

Next we give intuition about the construction of primal feasible solutions via random perturbation
that lead to a necessary condition for SDP. Three positive semidefinite perturbations of Z*, namely
Z* 4 6; for 1 < i < 3, can be defined for 0 < € < 1/2 by letting (dashed lines delineate the K’ x K



SDP FOR HIDDEN COMMUNITY

submatrices and only nonzero entries are shown):

_ e ;
.
0 = € e —€ —2¢+ €2 (7
_ e ;
,,,,,,,,,,,,,,,,,,,,,,,,,, €
do=010-7) "¢ e e T ®)
03 = 2eU )]
It turns out that Z* + §; + d2 + 3 is close to being positive semidefinite for small €. Also,
(I,01) = —2e+o0(e) (J,01) = —2Ke+ o(e) (L,61) = —2e min;ec~ e(i, C™)
(I, 02) = o(e) (J,02) = 2(K —a)e +o(e) (L,d2) = 2(1 — r)emax;gc- e(j, C*)
(I,03) = 2¢ (J,03) = 2ae (L, 63) = 2eV,_k(a)

Therefore, up to o(e) terms, Z* + &1 + do + J3 satisfies the two equality constraints of the SDP (3)
and is near a feasible solution of the SDP (3), suggesting that a necessary condition for the optimality
of Z*is (L, 01 + 02 + d3) < 0. Note that

(L,61 4+ 62 + 93) = 2¢ <(1 —r)maxe(j,C*) + V,_k(a) — min e(3, C’*)> + o(e).
jeC ieC*

Hence the term inside the parenthesis must be non-positive. This leads the following deterministic
necessary condition for SDP. The proof, given in Section 8.2, is a minor variation of the heuristic
argument just presented.

Theorem 3 (Necessary condition for SDP: general case) If Z* € ESDP, then

min e(i, C*) — maxe(j,C*) > sup < Vio_g(a) — % max e(j, C™) (10)

ieC* jeC* 1<a<K { j¢cr }

Remark 4 Note that (10) is equivalent to

a
o (1Y e
wine(i.C) > sup {Vaw(@) + (1= ) maxe(.C)}.

Setting a = K in (10) yields the weaker necessary condition: min;ec» e(i, C*) > V,,_ g (K).
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Remark 5 The problem formulation as well as proof technique of Theorem 3 differ from existing
results on the planted clique problem for the sum of squares (SoS) hierarchy Deshpande and
Montanari (2015b); Meka et al. (2015); Hopkins et al. (2015); Raghavendra and Schramm (2015) in
an essential way. Aside from the fact that those papers consider more powerful convex relaxations,
they address the clique detection problem (which do have implications for clique estimation), which
can be viewed as testing the null hypothesis Hy : clique absent versus the alternative H, : clique
present, using the value of the SOS program as the test statistic. The approach of these papers
involves only the null hypothesis, showing that a feasible solution to SOS program can be constructed
based on the G(n, 1/2) graph whose objective value is much larger than the size of the largest clique
in G(n,1/2), leading to a large integrality gap. This further induces a high false-positive error
probability if the size of the planted clique K is small. In comparison, since we are dealing with
recovery as opposed to detection using SDP, the impossibility result in Theorem 3 follows from the
fact that, if the true cluster matrix Z* is an optimal solution, then certain random perturbations
of Z* must not lead to a strictly larger objective value. More precisely, the perturbation argument
involves three directions (7)-(9). Note that the matrix U in (9) is the maximizer of (6) and can be
constructed using similar techniques in the SoS literature. However, this perturbation alone is not
enough to separate the performance of SDP from MLE in the critical regime K = ©(n/logn), and
it is necessary to exploit the other perturbations terms (7)-(8) that depend on the true cluster matrix.

Remark 6 Since Slater’s condition and hence strong duality holds for the SDP (3), the fulfillment
of the KKT conditions is necessary for Z* to be a maximizer. We provide an alternative proof of
Theorem 3 in Section 8.2, showing that (10) is necessary for the existence of dual variables to satisfy
the KKT conditions together with Z*.

By comparing Theorem 2 and Theorem 3, we find that both the sufficient and necessary conditions
are in terms of the separation between min;cc+ e(i, C*) and max;¢cs e(j, C*). In comparison, for
the optimal estimator, MLE, to succeed in exact recovery, it is necessary that min;cc= e(i, C*) >
max ;g e(j, C*); otherwise, one can form a candidate community C' by swapping the node 7 in C"*
achieving the minimum e(7, C*) with the node j not in C* achieving the maximum e(j, C*), so that
the new community C' has a likelihood at least as large as that of C*.

Capitalizing on Theorems 2 and 3, we will derive explicit sufficient and necessary results for the
success of SDP in the Gaussian and Bernoulli cases. Interestingly, in both cases, if K = w(n/logn),
the sufficient condition of SDP coincides in the leading terms with the information-theoretic necessary
condition for min;ec+ e(i, C*) > max;¢gc« e(j, C*), thus resulting in the optimality of SDP with
the sharp constants.

4. Submatrix localization

In this section we consider the submatrix localization problem corresponding to the Gaussian case of
Definition 1. The SDP relaxation of MLE is given by (3) with L. = A.

Theorem 7 (Sufficient conditions for SDP: Gaussian case) Assume that K > 2andn — K =< n.
Let € > 0 be an arbitrary constant. If either K — oo and

pl—) > —— (V21og K + \/2log(n — K) ) + 2}? (1)

b
VK
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or

(1 =€) > 2y/log K + 2+/logn, (12)

then P{ Zspp = Z*} — 1 asn — .

Remark 8 7o deduce (11) from the general sufficient condition (5), we first show that

min e(i, C*) > —V2(K—-1) logK—l—oP (13)

eC*
max e(j,C*) < /2K log(n — K) + Op (14)
JgCr

Then (11) follows since A —E [A] is an n x n Wigner matrix whose spectral norm is (24 op(1))+/n.
Under the condition (12), with high probability, min; jycc«xc=ixj Aij > Max(; jygc=xc+ Aij, and
thus ESDP = Z*. In this case, the community can be also trivially recovered with probability tending
to one using entrywise hard thresholding, and not surprisingly, but SDP as well.

Next we present a converse result for the exact recovery performance of SDP in a strong sense:

Theorem 9 (Necessary condition for SDP in Gaussian casel Assume that L = A in the SDP (3),
K — oo, and K = o(n). Suppose that liminf,,_,. P{Z* € Zspp} > 0. Then for any fixed € > 0,

e if K = w(\/n), then

=5

p(l4e) > (15)

(\/210gK—|— \/210g(n—K)> +

=l

e if K =0(y/n), then

p(1+€) > /log (1 v (16)

/1 n

Remark 10 7o deduce Theorem 9 from the general necessary condition given in Theorem 3, we
first show that the inequalities in (13) and (14) are in fact equalities. Then, we prove a high-
probability lower bound to Vy,,(a) and choose a = o(K) in (10) when K = w(y/n), and a = K
when K = O(y/n).

By comparing sufficient condition (11) and necessary condition (15), we can see that the sufficient
condition and necessary condition are within a factor of 4 in the case of K = w(y/n).

e if K = o(y/n), then
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4.1. Comparison to the information-theoretic limits

It is instructive to compare the performance of the SDP to the information-theoretic fundamental
limits. We focus on the most interesting regime of K — oo and n — K =< n. It has been shown
(cf. (Hajek et al., 2015e, Theorem 4)) that, for any € > 0, the MLE (which minimizes the probability
of error) achieves exact recovery if

pl—) > max{\/Z log K + \/2logn, 2\/log(n/K)} : (18)
conversely, if
u(1+6)§\/%max{\/ﬂogK—F\/210gn,2\/10g(n/K)}, (19)

no estimator can exactly recover the community with high probability.
Comparing (18) — (19) with (11), (12), and (15)— (17), we arrive at the following conclusion on
the performance of the SDP relaxation:

e K = w(n/logn): Since v/n = o(v/K logn), in this regime SDP attains the information-
theoretically optimal recovery threshold with sharp constant.

e K = ©(n/logn): SDP is order-wise optimal but strictly suboptimal in terms of constants.
More precisely, consider the critical regime of

pn _ pologn

K:
logn’ a vn

for fixed constants p, j1o > 0. Then MLE succeeds (resp. fails) if pud > (resp. <) 8. If ppg >
24/2p+2, then SDP succeeds; conversely, if SDP succeeds, then ppg > 2+/2p+1/2. Moreover,
it is shown in Hajek et al. (2015¢) that a message passing algorithm plus clean-up succeeds if
pud > 8 and ppg > 1/+/e, while a linear message passing algorithm corresponds to a spectral
method succeeds if pug > 8 and ppo > 1. Therefore, SDP is strictly suboptimal comparing
to MLE, message passing, and linear message passing for p > 0, p > (1//e — 1/2)?/8, and
p > 1/32, respectively. See Fig. 1 for an illustration.

(20)

e w(l) < K = o(n/logn): Comparing to MLE, SDP is order-wise suboptimal. Moreover,
when K < n'/?279 for any fixed constant § > 0, u = Q(y/Iogn) is necessary for SDP to
achieve exact recovery, while the entrywise hard-thresholding or simply picking the largest
entries attains exact recovery when (1 — €) > 2y/logn. Thus in this regime, the more
sophisticated SDP procedure is only possible to outperform the trivial thresholding algorithm
by a constant factor. Similar phenomena has been observed in the bi-clustering problem Kolar
et al. (2011), which is an asymmetric version of the submatrix localization problem, and the
sparse PCA Krauthgamer et al. (2015).

e K = O(1): In this case the sufficient condition of SDP is within a constant factor of the
information limit. For the extreme case of K = 2, SDP achieves the information limit with
optimal constant, namely, u(1 — €) > 2+/log n; however, in this case exact recovery can be
trivially achieved by entrywise hard-thresholding or simply picking the largest entries.

10
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Figure 1: Phase diagram for the Gaussian model with K = pn/logn and pu = pologn/+/n. The
curve MLE: p,u% = 1 denotes the information-theoretic threshold for exact recovery. The threshold
for optimized message passing (MP): p?u?e = 1, and linear message passing: p>u? = 1, parallel
each other. The curve SDP necessary: pug > 21/2p + 1/2 is a lower bound below which SDP does
not provide exact recovery. The sufficient curve for SDP, above which SDP provides exact recovery,
is not shown, and lies above the four curves shown.

5. Planted densest subgraph

In this section, we turn to the planted densest subgraph problem corresponding to the Bernoulli case
of Definition 1, where P = Bern(p) and Q = Bern(q) with 0 < ¢ < p < 1. We prove both positive
and negative results for the SDP relaxation of the MLE, i.e., (3) with L. = A being the adjacency
matrix of the graph, to exactly recover the community C"*.

The following assumption on the community size and graph sparsity will be imposed:

Assumption 1 Asn — 0o, K — 0o, n — K < n, q is bounded away from 1, and nq = Q(logn).
Our SDP results are in terms of the following quantities:>

71 = solution of Kd(7||p) = log K in7 € (0, p)

21
75 = solution of Kd(7||q) = log(n — K) inT € (gq,1) b

Theorem 11 (Sufficient conditions for SDP: Bernoulli case) Suppose that Assumption 1 holds.

If

K(r =) > 5 (Vg — )+ VEp(I =), 22)
where
O(1) ng = Q(logn)
k=144 0(1) ng=w(logn) , (23)
2+0(1) ng=w(og*n)

then P{Zspp = Z*} — 1 asn — oo.

3. It can be shown that 7; and 7» are well-defined whenever exact recovery is information-theoretically possible; see
Lemma 35.

11
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Remark 12 7o deduce sufficient condition (22) from the general result (5), we first show that with
high probability,

miCn e(i,C*) > (K — 1)ny (24)
eC™

,C*) < K1o. 25
;géégge(m ) < K7y (25)

Then, we prove that with high probability,
lA=E[A]] < x (Ve =)+ VER(1-p)).

Note that | A — E[A] || behaves roughly the same as ||A" — E[A’]||, where A’ is the adjacency
matrix of G(n,q). In light of the concentration results for Wigner matrices and the fact that
|A" — E[A]|| = wp(\/nq) whenever nqg = o(logn) (cf. (Hajek et al., 2016, Appendix A)), it is
reasonable to expect that ||A" — E [A'] | = \/nq(2 + op(1)) whenever the average degree satisfies
ng = Q(log n); however, this still remains an open problem cf. Le and Vershynin (2015) and the best
known upper bounds depends on the scaling of nq. This explains the piecewise expression of Kk in
(23).

Theorem 13 (Necessary conditions for SDP: Bernoulli case) Suppose that Assumption 1 holds,
and K = o(n). Ifliminf, .o P{Z* = Zspp} > 0, then

+1, (26)

Kp K(p—q)(2loglog K +1)
1-7)—6 - 27
(1=7) log K log K ’ 27)

1
_ >
K(r — 1) >

where k is defined in (23).

Remark 14 We prove (26) by contradiction: assuming (26) is violated, we construct explicitly a
high-probability feasible solution Z to (3) based on the optimal solution of SDP defining V,,_ i (K)
given in (6), and show that (A, Z) = (A, Z*), contracting the unique optimality of Z*. Notice that
in the special case of p = 1 (planted clique), Z* is always a maximizer of the SDP (3) therefore the
failure of SDP amounts to multiple maximizers.

To deduce the necessary condition (27) from Theorem 3, we first establish some inequalities
similar to (24) and (25) but in the reverse direction. Then, we prove a high-probability lower bound

1
g L

to Vin(a) and choose a = -

Remark 15 Particularizing Theorem 11 and Theorem 13 to the planted clique problem (p = 1 and
q = 1/2), we conclude that: for any fixed € > 0, if K > 2(1 + €)+/n, then SDP succeeds (namely,
Z* is the unique optimal solution to (3)) with high probability; conversely, if K < (1 — €)\/n/2,
SDP fails with high probability. In comparison, a message passing algorithm plus clean-up is shown
in Deshpande and Montanari (2015a) to succeed if K > (1 + €) \/7%.

Assume that log ¢ 8:8 is bounded. If K\(}%Q) = O(1), then the sufficient condition of SDP

given in Theorem 11 reduces to % > (1), while the necessary condition of SDP given in

12
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Theorem 13 reduces to % > Q(1). Thus, the sufficient and necessary conditions are within
constant factors of each other. If instead % = w(1), then SDP attains the information-theoretic

recovery threshold with sharp constants, as shown in the next subsection.

5.1. Comparison to the information-theoretic limits

In this section, we compare the performance limits of SDP with the information-theoretic limits of
r(1—q)

o(1=p) is bounded and

exact recovery obtained in Hajek et al. (2015e) under the assumption that log
K /n is bounded away from 1. Let

1—q |, 1
- log =1 + % log %
- p(l—q)
q(1—p)

T

(28)

log

It is shown in (Hajek et al., 2015e, Theorem 3) that, the optimal estimator, MLE, achieves exact
recovery if

Kd(r* K
i inf SATND g g o KAP1D o (29)
n—oo  logn n—oo log(n/K)
Conversely, if
Kd(t* Kd
lim sup M < 1, or limsup ﬂ (30)

00 logn n—oo log(n/K) ’
no estimator can exactly recover the community with high probability.
Next we compare the SDP conditions (Theorems 11 and 13) to the information limit (29)—(30).
Without loss of generality, we can assume the MLE necessary conditions holds. Our results on the
performance limits of SDP lead to the following observations:

e K = w(n/logn). In this case, (29) implies (22) and thus SDP attains the information-
theoretic recovery threshold with sharp constants. To see this, note that Lemma 35 shows
that 71 > (1 — €)7* + ep and 75 < (1 — €)7* + eq for some small constant ¢ > 0. Moreover,
Lemma 32 and Lemma 34 imply that

Kd(t*llg) _ K(p—a® [ n | EK*(p—q)?
logn ~ qlogn Klogn ng ’

€2y

Therefore, if K = w(n/logn), (29) implies that Kq = Q(logn) and K (p — q)/\/ng — oo,
and consequently

K(m —m2) 2 eK(p - q) = w(yng),

which in turn implies condition (22). This result recovers the previous result in the special
case of K = pn, p = alogn/n, and ¢ = blogn/n with fixed constants p, a, b, where SDP
has been shown to attain the information-theoretic recovery threshold with sharp constants
Hajek et al. (2016).

e K = o(n/logn). In this case, condition (27) together with ¢ < 79 < pand 71 < p implies that

K(p—q)/\/nqg = Q(1). In comparison, in view of (31), K(p — q)/\/nqg = w(y/ K logn/n)
is sufficient for the information-theoretic sufficient condition (29) to hold. Hence, in this
regime, SDP is order-wise suboptimal.

13
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The above observations imply that a gap between the performance limit of SDP and information-
theoretic limit emerges at X' = O(n/logn). To elaborate on this, consider the following regime:

0 alog?n blog?n
P e (32)

B logn’ n n

where p > 0 and @ > b > 0 are fixed constants. Let I(x,y) = x — ylog(ex/y) for 2,y > 0. Let
satisfy v1 < a and pI(a,v1) = 1 and 9 satisfy v2 > b and pI(b,~2) = 1. The following corollary
follows from the performance limit of MLE given by (29)-(30) and that of SDP given by (22)-(27).

Corollary 16 Assume the scaling (32).

o [fv1 > 79, then MLE attains exact recovery; conversely, if MLE attains exact recovery, then
"= V2

o If p(y1 — ) > 4\/b, then SDP attains exact recovery; conversely, if SDP attains exact
recovery, then p(y1 — 72) > Vb/A4.

The proof is deferred to Appendix D. The above corollary implies that in the regime of (32), SDP
is order-wise optimal, but strictly suboptimal by a constant factor. In comparison, as shown in
Hajek et al. (2015d), belief propagation plus clean-up succeeds if y; > 2 and p(a — b) > \/b/e,
while a linear message-passing algorithm corresponding to spectral method succeeds if v; > 2 and

pla —b) > V/b.

6. Stochastic block model with Q2(log n) communities

In this section, we consider the stochastic block model with » > 2 communities of size K in a
network of n = 7K nodes. Derived in Hajek et al. (2015b); Agarwal et al. (2015); Perry and Wein
(2015), the following SDP is a natural convex relaxation of MLE:*

Ygpp = argmax (A,Y)
Y EeRnxn

s.t. Y =0,

1 .
Yij > RPNy € [n]

(Y,3) =0. (33)

Define the n x n symmetric matrix Y* corresponding to the true clusters by Y77 = 1 if vertices ¢ and
7 are in the same cluster, including the case ¢ = j, and Yz’]‘ = —ﬁ otherwise.

Consider p = 0‘10% and ¢ = Blo% for fixed constants &« > 8 > 0. For constant number of

communities, namely » = O(1), the sharp optimality of SDP has been established in Hajek et al.
(2015b): if \/a — /B > 1, Yspp = Y* with high probability; conversely, if /o — v/B < 1 and
the clusters are uniformly chosen at random among all r-equal-sized partitions of [n], then for any
sequence of estimators ffn, ]P{)A/n =Y*} — 0asn — oo. The optimality of SDP has been extended

4. There are slightly different but equivalent ways to impose the constraints. Under the condition Y > 0, the constraint
(Y,J) = 01is equivalent to Y'1 = 0, which is the formulation used in Hajek et al. (2015b).

14
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to r = o(logn) communities in Agarwal et al. (2015). Determining whether SDP continues to be
optimal for 7 = {)(log n), or equivalently, for communities of size K = O(y5;7;). is left as an open
question in Agarwal et al. (2015). Next, we settle this question by proving that in contrast to the MLE,
SDP is constantwise suboptimal when r > C'log n for sufficiently large C', and orderwise suboptimal
when r > logn. What remains open is to assert the suboptimality of SDP for all r = O(logn)

similar to the single-community case.

Theorem 17 Suppose p = o(1), ¢ = O(p), and r — oc. If liminf,_,o P{Yspp = Y*} > 0, then

r¢*(1+ o(1))

K(p—q)?>
(p—q)” = e

(34)

where k is the constant defined in (23).

Proof Section 8.2.3. ]

Remark 18 Under the assumption of ¢ = ©(p), the information-theoretic condition has been
established in Chen and Xu (2014): MLE succeeds with high probability if and only if

K(p—q)? =< qlogn. (35)

Comparing (35) to the necessary condition (34) for SDP, we immediately conclude that SDP is
orderwise suboptimal if r = w(log n), or equivalently, K = 0(&). Furthermore, if r > C'logn
for a sufficiently large constant C, SDP is suboptimal in terms of constants, which is consistent with
the single-community result in Section 1.2.

7. Discussions

In this paper, we derive a sufficient condition and a necessary condition for the success of an
SDP relaxation (3) for exact recovery under the general P/(@) model. For both the Gaussian and
Bernoulli cases, the general results imply that the SDP attains the information-theoretic recovery
limits with sharp constants if and only if KX = w(n/logn). Loosely speaking, there are two types of
perturbation which can lead to a higher objective value and prevent the true cluster matrix Z* being
the unique maximizer of the SDP. One is the local perturbation of the ground truth corresponding to
swapping a node in the community with one outside. In order for exact recovery to be informationally
possible, the optimal estimator, MLE, must also remain insensitive to this local perturbation. The
other is the global perturbation induced by the solution of the auxiliary SDP (6). This global
perturbation is closely related to the spectral perturbation, i.e., || A — E [A] ||, which is responsible
for the suboptimality of the spectral algorithms. It turns out that when K = w(n/logn), the local
perturbation dominates the global one, leading to the attainability of the optimal threshold by SDP;
however, when K = O(n/logn), the local perturbation is dominated by the global one, resulting in
the suboptimality of SDP.

An interesting future direction is to establish upper and lower bounds of SOS relaxations for the
problem of finding a hidden community in relatively sparse SBM.

15
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8. Proofs

In this section, we prove our main theorems. In particular, Section 8.1 contains the proofs of SDP
sufficient conditions given in Theorem 2, Theorem 7, and Theorem 11. The proofs of SDP necessary
conditions given in Theorem 3, Theorem 9, and Theorem 13 are presented in Section 8.2.

8.1. Sufficient Conditions

In this subsection, we provide the proof of Theorem 2, as well as the proofs of its further consequence
in the Gaussian and Bernoulli cases.

Before the main proofs, we need a dual certificate lemma, providing a set of deterministic
conditions which is both sufficient and necessary for the success of SDP (3).

Lemma 19 Z* is an optimal solution to (3) if and only if the following KKT conditions hold: there
exist D = diag{d;} > 0, B € §S" with B > 0, \,7 € R such that S ED-_B-L+nI+)]
satisfies S = 0, and

SE* =0, (36)
di(Z5:—1)=0, Vi, (37)
BijZi; =0, Vi, j. (38)
If further
A2(S) > 0, (39)
or
min d; > 0, and min B;; >0, (40)
ieC* (i,§)¢C* x C*1ij

then Z* is the unique optimal solution to (3).

Proof Notice that Z = I:L((Z:i()) I+ Kngf:ll)) J is strictly feasible to (3), i.e., the Slater’s condition
holds, which implies, via Slater’s theorem for SDP, that strong duality holds (see, e.g., (Boyd and
Vandenberghe, 2004, Section 5.9.1)). Thus the KKT conditions given in (36)—(38) are both sufficient
and necessary for the optimality of Z*.

To show the uniqueness of Z* under condition (39) or condition (40), consider another optimal

solution Z. Then,

($,2)=(D—B—L+qI+\J,2) Y (D~ B~ L,Z) +nK + \K?

®)
< (D~ L, Z*) + nK + AK?*=(S, Z*) = 0.

where (a) holds because (I, Z) = K and (J,Z) = K2; (b) holds because (L, Z) = (L, Z*),
B,Z > 0,and (D, Z) < Y iccndi = (D, Z*) in view of d; > 0 and Z; < 1forall i € [n]. It
follows that the inequality (b) holds with equality, and thus (D, Z — Z*) = 0 and (B, Z) = 0.

Suppose (39) holds. Since Z = 0,8 = 0, and (S, Z> = 0, Z needs to be a multiple of
Z* = ¢*(¢*)T. Then Z = Z* since Tr(Z) = Tr(Z*) = K.

16
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Suppose instead (40) holds. Since (B, A ) = 0 and B, Z > 0, it follows that Z-j = 0 for
all i # j such that (i,j) ¢ C* x C*. Also, in view of (D, Z — Z*) = 0 and Z; < 1, we
have that Z;; = 1 for all i € C*. Hence, Z;; = 0 for all i ¢ C* due to (I, 2> = K. Finally, it
follows from (J, Z) = K2 that Z-j = 1forall (i, j) € C*x C*. Hence, we conclude that Z = Z*. W

Proof [Proof of Theorem 2] We construct (A, 1, S, D, B) which satisfy the conditions in Lemma 19.
Observe that to satisfy (36), (37), and (38), we need that D = diag {d;} with

o ZjeC*Lij_n_)‘K ifi e C*
¢ = { 0 otherwise ’ “D

and B;; = 0 for4,j € C*, and
> By =AK-> Ly, Vi¢C (42)
jec jec

where, given )\, 7 can be chosen without loss of generality to be:

— min e(i, C*) — AK.
n = min e(;, C7)

There remains flexibility in the choice of A and the completion of the specification of B. Recall that
a=Ep [ng] and 8 = EQ [ng}. We let

A = max {maxe(i, C*)/K,B}
itC*
Bij = bilgigo= jeowy + bilficcor jgcrys
where b; £ A — & >_jecw Lij fori ¢ C*. By definition, we have d;(Z}; — 1) = 0 and B;; Z;; = 0
for all 4, j € [n]. Moreover, for all i € C*,
4Gl =di = L& —n—AK =) Ly& + Y Byél —n— MK,
J J J
where the last equality holds because B;; = 01if (¢,5) € C* x C*; forall i ¢ C*,
S L&+ Bij& —AK =Y Lij+ Kb — AK =0,
J J jec
where the last equality follows from our choice of b;. Hence, D¢* = LE* + BE* — né* — AK1 and
consequently S* = 0. Also, by definition, min;ec+ d; > 0 and min;¢c~ b; > 0, and thus D > 0,
B >0.
It remains to verify S = 0 with A2(S) > 0, i.e.,

inf z'Sz>0. (43)
zL&* ||z||2=1

Since

0 0
0 I Kyx(n—K)

i

E[L]:(a+B)Z*+ﬁJ—a[IKOXK g} —5[

17
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it follows that for any = 1 £* and ||z||2 = 1,

x' Sx :xTDa:—xTBx—l—()\—B)xTJ:U—I—aZx?+ﬁZx?—l—n—xT(L—E[L])x

ieC i¢C

(a)Zd (A —P)x TJx—i—osz —1—5236 +n—z (L-E[L)z

i€C* i€C* i¢C*
(®)
> mi 2 _ T _ _
> min Z dix?4+ A= B)z"Jz+B+n—|L-E[L]|

icC*
© [ )
. ‘> .

¢ <iré1ég dl> > a2 (44)

where (a) holds because B;; = 0 for all (i,j) € C* x C* and
SEED D WP RTIRED DD SR
i¢C* jeC* i¢cr  jeC*

(b) follows due to the assumption that o > 3 and the fact that = " (L — E [L])z < ||[L — E[L]||; (c)
holds because by assumption p > ||L — E[L] || — f and A > f3; the last inequality follows due to
min;eo= d; > 0. Therefore, the desired (43) holds in view of (44), completing the proof. |

8.1.1. GAUSSIAN CASE

We need the following standard result in extreme value theory (e.g., see (David and Nagaraja, 2003,
Example 10.5.3) and use union bound).

Lemma 20 Let {Z;} be a sequence of standard normal random variables. Then

max Z; < y/2logm +op(1l), m — oo,

i€[m]
with equality if the random variables are independent.

Proof [Proof of Theorem 7] In the Gaussian case, Ep[A12] = p and Eg[A;2] = 0. Hence, in view
of Theorem 2, it suffices to show that with probability tending to one,

min A;; — max { max E Aij,0 5 > [J[A-E[A]]|. (45)
1eC* 1¢C*
JeEC* jEC™*

By Lemma 20,

max Ajj < /2K log(n — +0p

Note that {E jeos Aij 11 € C*} are not mutually independent. By Lemma 20 applied to —A4;;,

min Ajj > (K —V2(K —-1) logK—i—op
ieC*
JeC*

18
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By Lemma 25, for any sequence t,, — 00,
A —E[A]l| <2vn+tn

with probability converging to one. Hence, in view of the assumption (11), we have that (45) holds
with high probability.

In the remainder, we prove (12) for any K > 2 implies that Z* is the unique optimal solution of
the SDP. We write T = {(i,j) € C* x C* : i # j}tand T° = {(4,j) € [n] X [n] : i # 7}\T. Recall
that for distinct ¢, j, A;; ~ N(p,1) if 4,5 € C* and N'(0, 1) otherwise. Using Lemma 20 and the
assumption (12), we have

min Aij > max Aij 46)
(4,9)eT (i,4)€T*e

with probability converging to 1. Hence, without loss of generality, we can and do assume that (46)
holds in the following. Let Z be any feasible solution of SDP (3). Since Z;; < 1 for all ¢ and Z > 0,
it follows that | Z;;| < 1forall,j. Hence 0 < Z < J. Also, (J —1,Z) = K(K —1). So (Z, A) is
a weighted sum of the terms (A;; : i # j), where the weights Z;; are nonnegative, with values in
[0,1], and total weight equal to K (K — 1). The sum is thus maximized if and only if all the weight
is placed on the K (K — 1) largest terms, namely A;; with (7, j) € T', which are each strictly larger

than the other terms. Thus, Z* is the unique maximizer.
|

8.1.2. BERNOULLI CASE

Proof [ Proof of Theorem 11] In the Bernoulli case, Ep[A;2] = p and Eg[A12] = ¢. Hence, in view
of Theorem 2, it reduces to show that with probability tending to one,

min Aj; — max ¢ max g Aij,Kqp > ||[A-E[A]| —q. (47)
ieC* - i¢C*
JeEC™* jecx

We will use the following upper bounds for the binomial distribution tails (Zubkov and Serov, 2013,
Theorem 1):

P {Binom(m,p) < mr — 1} < Q (\/de(THp)) . 2/m<7T<p, 48)
P {Binom(m,q) > mr + 1} < Q (\/de(THq)) , ¢<17<1-1/m, (49)

where () denotes the standard normal tail probability. By the definition of 71 and 79, it follows that

POy Ay < (K—1)m -1 <Q(2(K - 1)logK/K) =0(1/K), VieC*
jec*

P{Y A > Kr+1) <Q(y/2log(n — K)) =o(1/(n— K)), Vi¢C*
jeC
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By the union bound, with high probability,

Z;gér} | Ay >(K-1)1 -1
jecx

{1;%)*( Z Aij < Km+1.
JeEC™*

We decompose A = A + Ao, where A1 is obtained from A by setting all entries not in C* x C*
to be zero; similar, A is obtained from A by setting all entries in C* x C* to be zero. Applying
Lemma 30 yields that with high probability,

[A—=E[A][ <A1 — E[Ai][| + [[A2 — E [As]
S%(VKml—pX+v%ﬁl—®>,

where « is defined in (23). Hence, in view of the assumption (22), we have that (47) holds with high
probability. |

8.2. Necessary conditions

Proof [Proof of Theorem 3] The proof is a slight variation of the heuristic derivation given before
the statement of Theorem 3. Fix K, n, C*, the matrix L, and a constant a with 1 < a < K and let
r = 7. Suppose the indices are ordered and the matrix U is defined as in the heuristic derivation.

Let Z be defined as a function of € > 0 as follows. We shall specify « and 3 depending on ¢ for
sufficiently small € in such a way that

a<l,a=1+0(),B>1—-r f=1—r+0(). (50)

Let &, be the column vector with K +1 nonzero entries, defined by & = (1,...,1,1—¢, 8¢,0,...,0)7.
Finally, let Z = aé.£L + 2€U. In expanded form:

T 1 l—e | Pe i
Z—al|l-€ - 1-¢c (1—-¢’ pe(l—¢) +2eU
Be Be  Be(l—e) | B2e?

Up to o(e) terms, Z is equal to the matrix Z* + §; + d2 + 03 described in the heuristic derivation.
Clearly for € sufficiently small, Z > 0, Z = 0, and Z;; < 1. It is also straightforward to see that

(L, Z — Z*) = 2¢ <(1 —r) gz%)*(e(z,c )+ Vi-k(a) — zré%n e(i,C )) + o(e),
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so that once we establish the feasibility of Z, the proof will be complete. That is, it remains to show
that o and 3 can be selected for sufficiently small e so that (50), (I, Z) = K, and (J, Z) = K? hold
true. The later two equations can be written as

a{K —2¢e+ (1+ %} = K — 2 (51)
a{K —(1—pB)e}? = K2 — 2eKr . (52)
Combining (51) and (52) to eliminate « and simplifying yields the following equation for 3 :
K21-B-r)+eK(B-201—-B8~-7)+e(1-5%)—-Kr(1+5%)=0
This equation has the form F'(¢, ) = 0 (K and r are fixed) with a solution at (¢, 5) = (0,1 — 7).

Also, §Z(0,1 —r) = K(1 —r) and §5(0,1 — r) = —K? # 0. Therefore, by the implicit function

theorem, the equation determines (3 as a continuously differentiable function of e for small enough
epsilon, and

p=(-r(1+ %) +O().

This expression for 5 together with (51) yields that for sufficiently small €, & < 1 and

a=1-—¢é (H(lK_T)Q> + O(€%).

Proof [Alternative proof of Theorem 3] Here is an alternative proof of Theorem 3 via a dual-
based approach. If Z* = £*(¢*)T maximizes (3), then by Lemma 19 there exist dual variables
(S,D,B,\,n)withS =D —-B—-L+nIl+ A >0,B >0,D =diag{d;} > 0, such that (36),
(37) and (38) are satisfied. As a consequence, the choice of D is fixed, namely,

o EjeC*Lij_n_)‘K ifi € C*
di = { 0 otherwise (33)

Therefore, the condition min;cc+ d; > 0 implies that

i i, C*) > AK . 4
gg}e(z,C ) > +n (54)

Moreover, the dual variable B satisfies Bo«c+ = 0 and the off-diagonal block B(c«yeco+ satisfies

> By =AK-> Ly VYi¢C" (55)

jeC* jeCc*
Denote all possible choices of B by the following convex set:
B={B:Be€S8",B>0,Bc«c+ =0, Bg+)ec~ satisfies (55)}.
In particular, we have ) jeo B;; > 0forall i ¢ C*, which implies that

AK > 5, C™). 56
> gég{ge(z, ) (56)

21



HAJEK WU XU

Finally, S = D+ AJ — B — L+ nl > 0 and S¢* = 0 imply that there exists B € B and 7 such
that n > supj,—1 ' (B + L — D — AJ)z and (54) holds. Hence,

> inf sup £ (B+L—D —\)z
"7 pes 1ty ( )

= inf Amax (B+ L — D — AJ)
BeB

> inf Amax (B+ L — D — A\J)
B>0

= inf sup (L—D—-XJ+B,U)
B>0  y-o,(UI)=1

@ sup  imf(L—D-\+BU) (57)
U=0,(UI)=1520

= sup (L—D—M\J,U), (58)

U>0,U=0,(UT)=1

where (a) follows because U = (1/n)I + J is strictly feasible for the supremum in (57) (i.e. it
satisfies Slater’s condition) so the strong duality holds.

Restricting U in (58) to satisty U;; = 0 except for those ¢, j ¢ C*, and (U,J) = a € [1, K], we
get that > sup;<,<x {Va—r(a) — a)}. It follows from (54) that

min e(i,C*) > sup {V,_kg(a) —ar} + AK
eC* 1<a<K

a
> su Vi_k(a) — —maxe(i,C*) p + maxe(i, C*),
1§a£K{ xla) K igo- ( )} igC* ( )

where the last inequality follows from ¢ < K and (56). |

8.2.1. GAUSSIAN CASE

Consider the Gaussian case P = N(u, 1) and Q = N(0, 1). Before the proof of Theorem 9, we need
to introduce a key lemma to lower bound the value of V;,,(a) given in (6). Recall that m = n — K.
By the assumption, I = A and hence M has the same distribution as an m X m symmetric random
matrix W with zero-diagonal and Wl-jl'rl'vd N(0,1) for 1 < i < j < m. The following lemma
provides a high-probability lower bound on V,,,(a) defined in (6); its proof is deferred to Appendix E.

Lemma 21 Assume that a > 1 and a = o(m) as m — oo. Let M = W be an m x m symmetric
random matrix with zero-diagonal and independent standard normal entries in the definition of
Vin(a) in (6). Then with probability tending to one,

@ —-r a = w(ym)
Vin(a) > { ay/log (1+ 75) — o(a) a=06(ym) (59)

(a — 1)\/%logaﬂ2 —O(aloglog 75) a

where r = gl(ail) + 5—% = o(y/m) ifa = w(y/m).

/IQI\
3
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Remark 22 We also have the following simple observations on V,,(a):
o V(1) =0.
e Dropping the second and the last constraints in (6), we have Vi, (a) < Amax(W) = 2¢/m(1 +
op(1)).
e Since |Wlle. = 1/2log (y) + op(1), it follows that Viy(a) < (a — 1)|[W|leo = (a —

1) 210g( )+0p( ).
We next prove Theorem 9 by combining Theorem 3 and Lemma 21.

Proof [Proof of Theorem 9] By assumption, lim inf,, IP’{ZSDP = Z*} > 0. It follows from
Theorem 3 that with a non-vanishing probability,

min Ajj — max Z Aij > sup § Vi_g(a) — 2 max Aij o (60)

Cx - K i¢c+
o SO o S 0<a<K iCr 22,

In Appendix G we show that
min A < (K —1)p—/2(K —1)log K + op(VK). (61)

ieC*
jeC*

In view of Lemma 20,

max Ajj > /2K log(n — K) + 0p (62)

C*
¢ JeEC™*

It follows from (60) that with a non-vanishing probability,

— V2(K —1)log K — \/2K log(n — K) + o(VK)

> sup {Vn K ( —a\/210g (n— )/K} (63)
0<a<lK

Case 1: K = w(y/n). We show that the necessary condition (15) holds. In view of (63), to get
a necessary condition as tight as possible, one should choose a so that V;,_k (a) is large and a is
small comparing to K. To this end, set a = /K (n — K)/*. Since K = o(n) and K = w(y/n) by
assumption, we have a = w(v/n — K) and a = o(K). Applying Lemma 21, we conclude that

Vi (a) > LQ_K +o,(Vn — K). (64)

Combining (60), (61), (62), and (64), and using vn — K > y/n — K/(2v/n — K), we obtain the
desired (15).
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Case 2: K = O(y/n). In view of the high-probability lower bounds to V,,_x(a) for a =
O(v/n — K) given in (59), V;,_k(a) — ay/2log(n — K)/K is maximized over [1, K] ata = K.
Hence, we set a = K, which satisfies a = O(v/n — K). It follows from (63) that with a non-
vanishing probability,

(K —1Dp—+/2(K —1)1log K + o(VEK) > Vg (K).

The desired lower bound on x follows from the high-probability lower bounds on V;,_ i (K) given in

(59) fora = O(v/n — K). |

8.2.2. BERNOULLI CASE

Recall that m = n — K and by assumption, L = A. In the Bernoulli case, M is an m x m symmetric
random matrix with zero diagonal and independent entries such that M;; = M;; ~ Bern(q) for all
i < j. The following lemma provides a high-probability lower bound on V,,(a) defined in (6); its
proof is deferred to Appendix F.

Lemma 23 (Lower bound to V,,,(a) in Bernoulli case) Assume that a = o(m), q is bounded away
from 1, m?q — cc. Recall that r is defined in (23). With probability tending to one,

e Ifa—1>21/mq/(1—q), then

mq(l — q)‘

e f0<a—1<1/mqg/(1—q) thenVy(a)=a—1.

Vin(a) > (e = 1)g +

Remark 24 We have the following simple observations on Vy,(a):
o V(1) =0and Vy,(a) < (a—1)|Allec =a— 1.

e Dropping the second and the last constraints in (6), we have with high probability V,,,(a) <

Amax (A) < /f\/m'

We next prove Theorem 13 by combining Theorem 3 and Lemma 23.

Proof [Proof of Theorem 13] We first show that if Z* is unique with some non-vanishing prob-
ability, then K — 1 > /nq/(1 — q)/k. We prove it by contradiction. Suppose that K — 1 <
V(n—K)g/(1—q)/k. Let A denote the (n — K) x (n — K) submatrix of A supported on
(C*)¢ x (C*). Take a = K in Lemma 23; the last statement of the lemma implies that V,,_ g (K) =
K —1 with high probability. Furthermore, the proof of the lemma shows that the (n— K ) x (n—K') ma-
trix Z defined by Z;; = 1/(n—K) and Z-j = (K- 1)111-]-/(11,.]} fori # j satisfies (Z, A) = K —1
and, with high probability, Z = 0. Let Z be the n x n matrix such that Zcryecrye = K Z and
Z;j = 0forall (i,7) ¢ (C*)¢ x (C*)°. Then one can easily verify that Z is feasible for (3) with
high probability and (Z, A) = K(K — 1). Since (Z*, A) < K(K — 1), it follows that with high
probability Z* is not the unique optimal solution to (3), arriving at a contradiction. The necessity of
(26) is then proved.
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Next, we prove the necessary condition (27). Since liminf,, IP’{ZSDP = Z*} > 0 by
assumption, Theorem 3 implies that with a non-vanishing probability,

ieC* i¢C* 1<a<K igC*

min A;j — max A;j > sup {Vn_K( ) — %maxe(z C* )} (65)
jec* jec*

We use the following lower bounds for the binomial distribution tails (Zubkov and Serov, 2013,
Theorem 1):

P {Binom(m,p) < mr} = Q (V2md(rp)), 1/m <7 <p, (66)
P{Binom(m,q) > m7r} > Q (\/de(THq)) , ¢<7<1. (67)
Let
5— 2loglog K loglog(n — K)
- e logK 7 log(n—K) [’
and define

1 = (1—=08)m +dp
75 = (1 —8)79 + dq.

Let K, = [logK} and 02 = (K, — 1)p. Define events

& = mén Aij < (K — K11 + (K, — 1)p+ 60
eC*
jecx

& = { max A > KTl
1¢C* = 2
jeC*

By the definition of 75, and the convexity of divergence, we have that d(73||q) < (1 — 0)d(72]|q).
Thus

umemng)zKé}zQ< ZKﬂéMO

>Q (V2K - 5)d(Tqu}>
:Q(¢m 5) log(n —
0 (( — K) )
W
o)
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where we used the bound Q(x) > f t ¢~*/2 and the fact that § > % Hence,

Plmax S Ay > Krpp D1- [[P{ S 4y < K7
jecH igce | jeor

©y_ (1 — P{Binom(K,q) > KTé})n_K
§ 1 —exp (—(n — K)P {Binom(K,q) > K13 })
1 —exp (—Q ( log(n — K))) — 1,

v

where (a) holds due to the independence of ;. A;; for different i ¢ C*; (b) holds because for
i ¢ C*, Y o Aij ~ Binom(K, q); (c) follows from the fact that 1 — 2 < e™* for 2 > 0. Hence,
we get that P{&} — 1.

In Appendix H we show that P{&;} — 1, i.e.,

P mén Aij < (K — Ky + (Ky — 1)p+60 p — 1. (68)
eC*
jec*

Let £ = & N &;. Then by union bound, P{£} — 1. It follows from (65) that with a non-vanishing
probability,

(K — Ko)1{ 4+ (Ko — 1)p+ 60 — K15 > sup {Vh_k(a)—ars} (69)

1<a<K

Applying Lemma 23, we have that with probability converging to 1,

(a—l)q—l—%\/(n—K)q(l—q) a—1>1\/n— )q/(1—q) (70)

Vn—K(a)Z{a_l 0<a-1<4y/(n—K)g/(1-q).

Recall that we have shown that K —1 > 1 ,/(n — K)q/(1 — q) in the first part of the proof. In view
of 75 > g and (70), V,,_ g (a) — a7} is maximized at

o= K)g/(l—q)+1€[1,K],
which gives V,,_x(a) = a — 1. Hence, it follows from (69) that
(K — Ky)1 + (K, — 1)p+60 — K15 > a—1—ar,
which further implies that

(K—KO)(T{—T£>>a—1—TéCL+KTé—(K —1)p—60
=(a—1)(1—-7)+ —p) — 6o

(n—K —q)
> )—6 .
- 1—q logK logK
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Plugging in the definition of 7| and 74, we derive that

1 (n— K K(p

K—-K,) (- = Sl —

( o) (1 =72) “w\ T1-¢ l—q - ) logK logK (p—a)
(n—K)q Kp K(p—q)(2loglog K + 1)
7(1—72)—6 — )
1—gq log K log K

where the last inequality follows because Té <mandd < 21‘&#. Hence, we arrive at the desired
necessary condition (27). [ |

BN

v
I

8.2.3. MULTIPLE-COMMUNITY STOCHASTIC BLOCK MODEL

Proof [Proof of Theorem 17] Since the MLE is optimal, in proving the theorem, we can assume
without loss of generality that the necessary condition for consistency of the MLE, K (p — q)? =
(qlogn), holds (see Remark 18). Since p = ©(q), it follows that we can assume without loss of
generality that K (p — ¢) = Q(logn) and Kq = Q(logn).

Suppose (34) fails, namely, there exists € > 0 such that

(P—a)ynp _ 1—e a1

rq K

We construct a matrix Y which, with high probability, constitutes a feasible solution to the SDP
program (33) with an objective value exceeding that of Y*. The construction is a variant of that used
in proving Lemma 23 in Appendix F. Let

Y =sA+t(J-T)+w(dl’ +1d" —2D) +1, (72)
where d = A1 is the vector of node degrees, D = diag {d}, s > 0 and ¢, w € R are to be specified.
In other words, Y;; = sA;; +t+ w(d; + d;) fori # jand Y;; = 1. Let 2 £ (A, J) = (d,1). Note
that for any Y > 0, the constraint (Y, J) = 0 is equivalent to Y'1 = 0. Since

Yi=sd+t(n—1)1+whnd+21-2d)+1=(s+wn—2))d+ (t(n—1)+wz+ 1)1,

to satisfy Y1 = 0, we let

s+wn—-2)=0, tih—1)4+wz+1=0

namely,
S Sz 1

- = — ) 73
YT TS Dm—2) n-i 73

Since w < 0, to satisfy the other constraints in (33), it suffices to ensure

1
t + 2wdpax > — (74)
r—1

Y >0, (75)
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where dy.x = max; d; is the maximal degree.
Since Y1 = 0, (75) is equivalent to PY P = 0, where P =1 — %J is the matrix for projection
onto the subspace orthogonal to 1. Since

PYP=P(sA+ (1 —-t)I—2wD)P,
in view of the facts that E[A] = —pI, D = 0, and w < 0, it suffices to verify that
s|lA—E[A]| < 1—t—sp. (76)
Next, we compute the objective value:
(AY) = (s +t)(A, ) + 2w|/d||3.

By the Chernoff bounds for binomial distributions,

2

(A,Y") = "(p— ) + Op (Vn?n]r)

(4.3) =" o+ (r — 1)g) + Op (/o).

Then (A, Y*) = nK(p — q)(1 + op(1)) and z = (A,J) = n?q(1 + op(1)). By concentration,’
1d|j3 = n¢*(1 + ( )) and dpax = ng(1 4+ op(1)). To ensure that (A,Y) > (A, Y™*), we set
(AY) = (1+¢€)(A,Y™*), or equivalently:

(s + 1)z 4 2w||d|? = (1 +€)(A, Y™, a7

Solving (73) and (77) and by the assumption p = o(1) and the fact ﬁ = o(E1), we have:

T

:(1+e+0p(1))pr;qq, t=(1+6+0P(1))2¥, w=—(1+e+op(1))2—2,

nrq

(78)

Hence ¢ + 2wdmax = —(1 4+ e+ 0op(1))2=1 > — 5, i.e., (74), holds with high probability.

It remains to verify (76). Since np = Q(logn), applylng Lemma 30 yields ||A —E[A]|| < x\/np
with high probability. In view of the assumption (71), (76) holds with high probability, which
completes the proof. |
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Appendix A. Bounds on spectral norms of random matrices

For the convenience of the reader, this section collects known bounds on the spectral norms of
random matrices that are used in this paper.

Lemma 25 (Gordon-Davidson-Szarek) IfY is an n X n random matrix such that the random
variables (Yi; : 1 <i < j < n) are independent, Gaussian, with mean zero and var(Y;;) < 1 then
P{||Y] > 2v/n +t} < 2exp(—t2/4) for any t > 0.

Lemma 25 is a slight generalization of (Davidson and Szarek, 2001, Theorem 2.11), which
applies to the case of var(Y;;) = 1 and is based on Gordon’s inequality on the expected norm E[||Y|],
proved, in turn, by the Slepian-Gordon comparison lemma. Examining the proof shows that the
assumption can be weakened to var(Y;;) < 1.
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Lemma 26 ((Latala, 2005, Theorem 2)) There is a universal constant C such that whenever A is
a random matrix (not necessarily square) of independent and zero-mean entries:

E[A] < C | max /ZE[a?j]+m§LX\/ZE[a?j]+ 1 ZE[a;lj]

Lemma 27 (Corollary of (Bai and Yin, 1988, Theorem A)) Let W = (Xij, i,7 > 1) be a sym-
metric infinite matrix such that entries above the diagonal are mean zero iid, entries on the diagonal
are iid, and the diagonal of W is independent of the off-diagonal. Let Wy, = (X;; 14,5 € {1,...,n})
forn > 1. Let 0 = var(X12). IfE [X}] < 0o and E [X{,] < oo, then |[W,||//n — 20 a.s. as
n — oo.

The following two lemmas are used in the proof of Lemma 30 below.

Lemma 28 ((Bandeira and van Handel, 2014, Corollary 3.6)) Let X be an n X n symmetric
random matrix with X;; = &;;b;;, where {&;; : i > j} are independent symmetric random variables
with unit variance, and {b;j : i > j} are given scalers. Then for any o > 3,

B{1X1] < ¢ {20 + 1m0 fatoen Viow, |

2 4 . 2
where 0° = max; by

Lemma 29 ((Vu, 2007, Theorem 1.4)) There are universal constants C and C' such that the fol-
lowing holds. Let A be a symmetric random matrix such that {A;; : 1 < i < j < n} are independent,
zero-mean, variance at most o2, and bounded in absolute value by K. If K and o depend on n such
that o > C'n~Y/2K log? n, then

|A]| < 20v/n + C(Ko)*n'/*logn, (79)
with probability converging to one as n — o0.

For example, for the case the matrix entries are Bern(p), the second term in (79) becomes asymptoti-
cally negligible compared to the first if \/pn = w((np)'/*logn), or equivalently, np = w(log* n).

Lemma 30 Let M denote a symmetric n X n random matrix with zero diagonals and independent
entries such that M;; = Mj; ~ Bern(p;;) for all i < j with p;; € [0,1]. Assume p;;(1 — pi;) <
foralli < j and nr = Q(logn). Then, with high probability,

|M —E[M]|| < rynr,
where

O(1) nr = Q(logn)
k=14944+0(l) nr=w(logn) . (80)
2+0(1) nr=w(og’n)

32



SDP FOR HIDDEN COMMUNITY

Proof It follows from the symmetrization argument and Lemma 28 (for this application of the
lemma, b;; < /1, |&;bi;| <1, and 0% < nr) that for any a > 3,

E[|[M — E[M]|]] < 2E [||(M — E[M]) o B[] < 2¢**(2/nir + 14a/logn)

where E is an n X n zero-diagonal, symmetric random matrix whose entries are Rademacher and
independent from M. Since nr = Q(logn), we have that E[|M — E [M]||] = O(y/nr). If nr =
w(logn), then by letting o = (nr/logn)/4, we have that E[||M — E[M]|]] < (4 4 o(1))y/nr.
Talagrand’s inequality for Lipschitz convex functions (see Tao (2012) or (Boucheron et al., 2013,
Theorem 7.12)) implies that for any constant ¢’ > 0, there exists a constant ¢y > 0 such that with
probability at least 1 —n ¢, || M —E [M]|| < E[||M — E [M] ||]+co+/Tog n. Hence, we have proved
the lemma for the case of nr = Q(log n) and the case of nr = w(logn). Finally, if nr = w(log*n),
then the lemma is a direct consequence of Vu’s result, Lemma 29, with K = 1 and o2 =r. [ |

Appendix B. A concentration inequality for a random matrix of log normal entries

Let g(z) = e™*/2 for some T > 0. Recall that W is an m x m symmetric, zero-diagonal random
matrix with i.i.d. standard Gaussian entries up to symmetry. Let g(W) denote an m x m symmetric,
zero-diagonal random matrix whose (4, j)-th entry is g(W;;) for i # j. We need the following matrix
concentration inequality for g(V).

Lemma 31 There exists a universal constant C > 0 such that

EfllgW) —E[gW)] ] < Cy/m(e3 —1). (81)

In addition, if T — 0 as m — oo, then the following refined bound holds:
P {|lg(W) = E[gW)]|| > 2/mr + A} < O(VT) + 2e"7/4, (82)

where A = 2,/m7%/? = o(/mT).

Proof We first prove (81). Let U be the upper-triangular part of g(W) — E[g(WW)]. Then
ElllgW) —E[g(W)]|]] < 2E[||U||]. Note that U consists of independent zero-mean entries,
applying Latata’s theorem (Lemma 26), we have for some universal constant ¢’ > 0,

B < (o (3 EOF] + g, /B +»VEZ:EIQ§ (33)
7‘7

< v (2 EW@+EW@”§. (84

Note that ,
E[UR] = B2~ 12 = ¢ 1

Similarly,
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Combining the last three displays gives that E [||U]|] < Coy/me®™ /2 holds for any 7 > 0 and
some universal constant Cy > 0. To complete the proof of (81), it remains to show that E [||U]|] <

cy/m(e™ — 1) forall T € [0, 1]. Indeed,

E[UL] = 5 — 463 467 — 3
= g(e” — 1) < 200(e” —1)% < 80074,

where g(s) = (s +1)% —4(s +1)3 +6(s + 1) — 3 = s%(3 + 165 + 1552 + 653 + s1) < 200s? for
all s € [0, 2]. Applying (84) again yields the desired result.

Next we establish the finer estimate (82) for 7 — 0. The main idea is to linearize the function g.
To this end, let h(z) = g(z) — 1 — 2. Since E [¢(W)] = J — L, it follows that

gW) =E[g(W)] = 7W + h(W).
Lemma 25 yields that P {||W|| > 2\/m + t} < 2exp(—t2/4) for any t > 0. Hence,
IP){HTWH > oy /mr + \/%73/2} < 2¢~M7/4, (85)

To bound ||A(W)]|, let B be the upper-triangular part of h(W), namely, B;; = h(W;;) if i < j and
0 elsewhere. Then ||h(W)]|| < 2||B||. Since B consists of independent zero-mean entries, Lemma 26

yields
E[|IB) < ¢ | max /ZE [B2] —|—max \/ZIE i[> E[B]
1,
< ey (2\/E[B%21 +EBH)

for some universal constant c. Note that

E[Bd) = E[(e™1277/2 _1 - 7Wip)? =™ —1—72=0(r%)
as 7 — 0. Similarly,
E[Bfy] = ¥ —4e®™ (372 4 1) + 67 (471 + 572 + 1) — 3 —47° — 2171 — 1872 = O(+%).
Consequently, E [|| B||] = O(y/m7?). Therefore

P{Inm)l| = vimr®/2} <B{IBI| > vimr¥/2/2} = O(v7).

Combining the last displayed equation with (85) and applying the union bound complete the proof
for the case 7 — 0. u
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Appendix C. Useful facts on binary divergences

Lemma 32 Forany() < q<p<1,

() (»—q)?
o <dpllg) < : (86)
(i —g) = 0= 40—y
(» — ) (r —q)?
o <d(qllp) < 87
2p(1 —q) () p(1—p)
Proof The upper bound follows by applying the inequality log z < z — 1 for > 0 and the lower
bound is proved using i d(;’Hq) = p(]_l—p) and Taylor’s expansion. |

Lemma 33 Assume that 0 < ¢ < p < 1 and u,v € [q,p]. Then forany 0 < n < 1,

(1 =yt fe) > (1= Z2E= 0 ) (88)
2 _
a1 =yt o) = A maxgaulo) o). (89)

Proof By the mean value theorem,

d((1 = n)u+nullv) = d(ullv) = n(u —v)d (z|v),

for some x € (min{u, v}, max{u,v}). Notice that d'(z||v) = log fﬁ;;}) and thus
max{u,v}(1 — min{u,v}) lu — |

|d'(z]lq)| < log min{u, v}(1 — max{u,v}) = ¢(1 —p)’

where the last equality holds due to log(1 4+ z) < x and x € (g, p). It follows that
n(u—v)? ( 20p(1 — CJ))
d((1 —n)u+nu|lv) > d(ullv) — ——— > (1 — ———= | d(u||v),
(= npu+moll) > dalo) = =) ) dtul)

where the last inequality holds due to the lower bounds in (86) and (87). Thus the first claim follows.
For the second claim,

n*(u—v)* _ n’q(1 —p)
2p(1—q) — 2p(1—4q)

where the first inequality holds due to the lower bounds in (86) and (87); the last inequality holds due
to the upper bounds in (86) and (87). |

d((1 —n)u+nvllu) >

v

max{d(ul|v),d(v|u)},

Lemma 34 Assume thatlog 2 E ; is bounded from above. Suppose for some € > 0 that Kd(p||q) >

(1 + €) log 7 for all sufficiently large n. Recall that T* is defined in (28). Thenp — 7* = O(p — q)
and 7™ —q = 0O(p — q).
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Proof By the definition of 7%,

e dlle) - x log %
p(1-q) ’
q(1—p)
\ d(qllp) + 4 log 7+
ToE Mg

q(1-p)

log 2

log 2

Notice that d(p||q) + d(q||p) = (p — q) log gl Z; Hence,
p—7" _ d(pllg) — % log %
p—q  dpllg)+d(qllp) ’
T —q _ dlgllp) + % log %

p—q  d(plg) +d(glp)

By the boundedness assumption of log E g and Lemma 32, d(pl||q) =< d(q||p). Since Kd(p||q) >

(1 + ¢€) log 7 for all sufficiently large n, it follows that p — 7% and 7* — gareboth©(p —¢). W

Lemma 35 Assume that log qgl_ ; is bounded. Suppose that Kd(p||q) > (1 + €)log & for all

sufficiently large n.

Kd(t*|l9)
logn

o [fliminf,,
interval [q, p).

> 1, then 11 and 19 in (21) are well-defined and take values in the

o [fliminf, Kd(r"|lq) > 1, then there exists a fixed constant n > 0 such that 11 > (1 —

logn

)T 4+ np and 72 < (1 — n)7* + ng.

Proof It follows from Lemma 34 that p — 7" = Q(p — ¢) and 7" — ¢ = Q(p — q). In particular, there
exists a fixed constant § > 0 such that (1 — §)g + dp < 7 < (1 — 0)p + d¢g. By the monotonicity
and convexity of divergence, d(7*|lq) < (1 — 0)d(p||¢) and d(7*||p) < (1 — 0)d(q||p). Hence, if

liminf, o0 ZHID > 1, then Kd(pllq) > (1+ ') logn and Kd(q||p) > (1+¢") log K for some
fixed constant ¢’ > 0. Thus, in view of the continuity of binary divergence functions, 7; and 7 are
well-defined, and moreover 71 > ¢ and 75 < p.

Note that (1 — n)7* + np € [g, p]. In view of Lemma 33,

(1 - ) + nallg) > (1 _ m) a7 g

Kd(r"la) 1, then there exists a fixed constant ¢ > 0 such that for sufficiently

log n
large n, Kd(7*q) > (1 + €') log n. It follows from the last displayed equation that by choosing 7
sufficiently small, d ((1 — n)7* + ng|lq) > (1 + ¢) log n for some fixed constant &’ > 0. Thus by

definition, 75 < (1 — n)7* + nq. Similarly, one can verify that 7, > (1 — n)7* + np. [

If lim inf,,
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Appendix D. Proof of Corollary 16

We first show that if y; > 9, then

K *
lim inf M

n—»00 logn

> 1, (90)

which implies that MLE achieves exact recovery in view of (29).

Recall that I(z,y) = = — ylog(ex/y) for x,y > 0. Define 79 = ( /b) Then I(b, 79) =
I(a, 7). Note that I(b,~y2) = I(a,v1) = 1/p. Since I1(b, x) is strictly i mcreasmg over [b, c0) and
I(a, ) is strictly decreasing over (0, a], it follows that v2 < 79 < ;1. Thus (b, 79) > 1/p. In the
regime (32), we have 7* log 2 (10 + o(1)). Taylor’s expansion yields that

d(rllg) = q = rlog = + O((r = 9)*) = 1(a,7) + O((r = )?).
Therefore,

d(m"llq)

2
= 5T (b, 70) + 0(1)

which implies the desired (90).

Secondly, suppose that MLE achieves exact recovery. We aim to show that ~v; > 2. Suppose not.
Then 1 < 72. By the similar argument as above, it follows that y; < 79 < 2. Thus I(b, 79) < 1/p.
As a consequence,

Kd(r*
(7*ll9) <1
logn
for some positive constant ¢ > 0, which contradicts the fact that lim inf,, Kcll(();lm > 1, the

necessary condition (30) for MLE to achieve exact recovery.

Finally, we prove the claims for SDP. By definition, 7, = log®n(y; + o(1))/n and 75 =
log? n(7y2 + o(1))/n. Therefore, if p(y1 — 72) > 4v/b, then the sufficient condition for SDP (22)
holds; if the necessary condition for SDP (27) holds, then p(y; — v2) > Vb/4.

Appendix E. Proof of Lemma 21

Proof To prove the desired lower bound of V,,,(a), we construct an explicit feasible solution Z to
(6). For a given 7 € R, let

2
g(x) — 7 /2’ o= - 1 Zg 7,]
Z<j
Define an m x m matrix Z by Z; = % and Z;; = #ml_l)g(Wij) for i # j. By definition,

Z>0,Tr(Z)=1,and (Z,J) = a

We pause to give some intuition on the construction of Z. Note that g is in fact the likelihood ratio
between two shifted Gaussians: g(z) = %(w) and thus E [g(W;;)] = 1 and E [W;;9(W;;)] = 7.
Therefore we expect that « is concentrated near 1, and similarly

(Z,W) ~ “_1 ZE Wijg(W, == oy

o
z<]
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Thus to get a lower bound to V;,,(a) as tight as possible, we would like to maximize 7 so that Z > 0
with high probability.

Recall that as defined in Appendix B, g(W) is an m x m zero-diagonal matrix with the (7, j)-th
entry given by g(Wj;). Then E [¢(W)] =J — I and

1 a—1
Z:%I—l—mg(w)
1 a—1 a—1

Hence, since J > 0 and a > 1, to show Z > 0, it suffices to verify that

(m—1)

lg(W) —E[gW)]]| < =-—== - 1. o1

Therefore, we aim to choose 7 as large as possible to satisfy (91). Recall that Lemma 31 provides
different upper bounds on ||g(W) — E [¢g(W)] || depending on the value of 7. Accordingly, the best
choice of 7 depends on the particular regimes of a.

Case1: w(y/m) <a <o(m). Let

vm m3/4 1

;o _ R 92
2(a—1) 2/2(a—1)32 Vm ©2)
The last two terms in (92) are lower order terms comparing to the first term; thus 7 = (1+0(1)) Q(T\/i)

It follows that for sufficiently large m, 7 > 0, 7 = o(1), and 7 = w(1/y/m).

We next show that Z is feasible for (6) with high probability; it suffices to verify (91). For i < j,
E [g(Wi;)] = 1 and var (g(W;;)) = - 1= O(72). It follows from Chebyshev’s inequality that

2
P ZQ: (9(W:5) ~ Elg(Wig)))| > 5 vmlm — D7 ¢ < m S0 ©3)
Thus, with probability tending to one,
la —1| < 7/y/m. 94)
As a consequence, we have that
a(;n—_ll)_123:11_;/—%;_12?—_11_2(@”—11)2_1' ©3)

Since 7 — 0 and 7m — o0, applying Lemma 31 yields that with probability tending to one,

lg(W) —E[g(W)] || < 2v/mr + 2¢/m7%/2. (96)

Plugging in the definition of 7 given in (92), (96) implies that with probability converging to one,

lg(W) ~Elg(W)]|| < = —2 ©7)
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Since by assumption a = w(y/m) and @ = o(m), combining (95) and (97) yields that with
probability tending to one, (91) and hence Z > 0 hold.

Finally, we compute the value of the objective function (Z, W). Fori < j, E[W;;g(W;;)] =T
and E [W%QQ(WZJ)} = ¢™ (1 + 472) = O(1). Thus, it follows from Chebyshev’s inequality (and

1

a = w(m)) that:

P (Wig(Wig) —7)

1<j

) () e

In view of (92) and (94), with probability tending to one,

(Z,W) = a-1) > Wijg(Wij)

am(m — 1) =

(a—1)T a 1

proving the first part of (59).

Case 2: a = o(y/m). The desired lower bound given in the third part of (59) is trivially true for
a = 1 so we suppose a > 2. The proof is almost identical to the first case except that we set

1 m m
T= \/3 (log i log log ?> 99)

First, we verify that (91) holds with high probability. By the choice of 7, €™ = o(m!/3). Thus,
2
(93) and hence (94) continue to hold. It follows from (94) that « = 1 + O p(%). Applying

Lemma 31 and Markov’s inequality, with probability at least 1 — (log %)—1/ 4

o)~ Elgw)] | < O(10g )" mfesr 1),

Plugging in the definition of 7 given in (99), it further implies that with high probability,

(W)~ Elo(w)] | < ¢ (105 7).

Therefore (91) holds with high probability.
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Then we compute the value of the objective function (Z, W). Entirely analogously to (98), we
have

Tm(m — 1) < 2m2/3em (1 + 472)

— 0.
— 2ml/3 - m(m-—1)72

P (Wijg(Wig) = 7)

1<j

Therefore with probability tending to one,

2= 20D S W 2 0 (1 0(EL ) (1)

By the choice of 7 given in (99), we have that

Combining the last two displayed equations yield that with high probability,

/1 m aloglog(m/a?)
(Z,W) > (a—1) glogﬁ—O <log(m/a2)> ,

proving the desired lower bound to V},,(a) given in the third part of (59).

Case3: a = O(y/m). Let 7 be a constant to be chosen later. The proof is similar to the previous
two cases; the key difference is that the distributions of entries of g(W) are independent of m, and
thus we can the invoke Lemma 27, a corollary of the Bai-Yin theorem, instead of Lemma 31, to

obtain
lg(W) —E[g(W)]|| = 24/m(e™ —1)(1 + op(1)).

In view of (91), as long as 7 is chosen to be a constant so that

0 < 7 < liminf  /log (1 + ﬁ)
m—»o0 4&2
we have Z > 0 with high probability.
Finally, we compute the value of the objective function (Z, W). Entirely analogously to (98), we
have

m(m — 1)

> — — O(1/m) — 0.

P> (Wiyg(Wiy) —7)

i<j

It follows that with probability converging to 1,

zowys> @D o (1 - O(mfl/Z)) = ar +0(1),
«
which yields the desired lower bound to V;,,(a). [ |
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Appendix F. Proof of Lemma 23

The proof follows the same fashion as that in the Gaussian case. In particular, to prove the desired
lower bound to V;,,(a), we construct an explicit feasible solution Z to (6); however, the particular
construction is different. Recall that in the Bernoulli case, M is assumed to be an m x m symmetric
random matrix with zero diagonal and independent entries such that M;; = M;; ~ Bern(q) for all
1< J.
Let
(M, J)

m(m — 1)

and assume that R € (0, 1) for the time being. For a given v € (0, 1], define

vy—R (a—1) 1=y (a—1) >0

R Bmm=-1) T i-Bmm-1 ="

Define an m x m matrix Z by Z;; = 1/m and Z;; = oM + [ for i # j. By definition, (Z,I) =1,

a+ B = % > 0, and thus Z > 0. Moreover,

(2,3) = a(M,3) + BT —1,3) + %<I,J) —
and
(Z,M) = (a+ B)(M,J) = (a —1). (100)

Thus to get a lower bound to V;,,(a) as tight as possible, we would like to choose v as large as
possible to satisty Z > 0 with high probability.
Note that

Z=aM+BJ-1)+ (1/m)I=(8+aq)(J 1)+ (1/m)I+ a(M — E[M]).
Thus, to show Z > 0, it suffices to verify that
1
——pB—aq—||M-E[M]|>0.
m

By Lemma 30, with high probability, || M —E[M]| < xk/mgq(1 — q), where « is a universal positive
constant defined in (23). Hence, to show Z > 0, it further suffices to verify that

B aq— ra/ma(l —q) > 0. (101)

As a result, we would like to choose v € (0, 1] as large as possible to satisfy (101). We pause to
give some intuitions on the choice of . By concentration inequalities, R ~ ¢ with high probability.
Since a = o(m), # = o(1/m). Furthermore, ¢ < y/mg(1 — q). Hence, to satisfy (101), roughly it

suffices that ]

ky/ma(l = q)m’

a <

which further implies that
mq(1l —q)
< .
T=a+ k(a—1)
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This suggests that we should take  to be the minimum of ¢ + 7W and 1.

Before specifying the precise choice of v, we first show that R 1s close to ¢ with high probability.
Let ¢,;, = log(m./q) which converges to infinity under the assumption that m?2q — oo. Thus, by the
Chernoff bound for the binomial distribution, with probability converging to 1, |R — q| < ¢py\/q/m.
Without loss of generality, we can and do assume that | R — q| < ¢,,,/q/m in the remainder of the
proof. Since g is bounded away from 1 and m?q — oo, R is also bounded away from 1 and R > 0.

This verifies that o, 8 and hence Z are well-defined.

Let

(1-9) —e [mg

g+ (11— Yyt a—1> 1< /md
v = ( ) k(a—1) K 1_1 q — (102)

1 0<a—-1< - g’
where € = 2/ log (m min{,/g, 1/a}). Equivalently,
: mq(1l - q)

= 1l—¢) F—"m——,15. 103
gl mm{q+( €) o —1) ,} (103)

The assumptions, m?q — oo and @ = o(m), imply that € = o(1) and hence 7 € [q, 1].
Next, we compute the value of (Z, M). In view of (100), it suffices to evaluate (a — 1)~. By the
choice of v,

mq(l—q) -
(a—1)y— (a—Dg+(1-e)¥——— a—-12" /1L (104)
a—1 0<a—1< iz [ma~

Since € = o(1), absorbing the factor 1 — € in the last displayed equation into the definition of x given
in (23) yields the desired lower bound to V,,(a).

To finish the proof, we are left to verify (101). Since 8 4+ aR = m(“ L

~1y it follows that

1 1 _ m-a (a — 1)yem

where we used the fact that | R — ¢| < ¢;,,/q/m and o < ay/m?R in the last equality.

ClLet ap = qa:qq) ((a 1)) Next, we bound |a— | from the above. In view of | R—q| < ¢;n\/q/m
andy > g,

V- R 7—Q‘<‘7 R -4

B R(1—R) R(-R)

Y —q v—q'
R1-R) q(1-gq)

‘+‘RO—R)ﬂ1—®

IR —q +w_qﬂR—wR+q—H
~ R(1-R) R(1 = R)q(1—q)
Cm7Y _ Cm”Y
=0 (i) 0 () =@ (i)
Consequently,
(a—1)yem
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Combining (105) and (106) yields that
1

— — B —aq — kay/mq(l — q)

:%—ﬁ—aq—ﬁao mq(1 —q) — (o — ag)ry/mg(l —q)

-y - o ()

Thus, to verify (101), it reduces to show the right hand side of the last displayed equation is negative.
In view of (103),

(a—1)(v—q)
WE mq(l —q) < (1—¢e)m
and
(@a—Demy _ (a—1)em  cm ) m
Vmg S vm i <1og<m¢a>)

where the last equality because c,,, = log(m./q) and the assumption that a = o(m). Combining the
last two displayed equations and plugging in the definition of e yield that

ey e o ()

> 0.

2m

> : —a—o| ———
log (mmin{,/g,1/a}) (log(mﬂ))

Hence, it follows from (107) that (101) holds. Consequently, Z > 0 holds with high probability.
This completes the proof of the lemma.

Appendix G. Proof of (61)

Note that for each i € C, X; £ ZjeC Wi;; is distributed according to A/(0, K — 1) but not
independently. Below we use the Chung-Erdds inequality Chung and Erdos (1952):

2
SN

S P{ADY + 2 P{AA}

For any i # j, P{X; < —s,X; < —s} = E[Q*((s + Z2)/VK —2)] £ E[¢*(Z)] where Z ~
N(0,1),and P{X; < —s} = E[g(Z)] = Q(s/vV K — 1). Therefore

P{XZ S —S,X]’ S —S} —P{XZ S —S}]P){Xj S —S}

:var(g(Z))ZE[<Q< 5;_22)—69( ;_1»1
<Q(S/4)+<,0< i?/il2)2E (j[:_zz_\/;—lfl
< exp(—5?/8) + exp (_9;2115) !Kl—Z * (\/Kl— 1 \/K1—2>282] '
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Let s = VK — 1(y/2log K — loglog K/+/2log K). Then P{X; < —s} = O(y/log K/K) and
P{X; < —5X; < —s} —P{X; < —s}P{X; < —s} = O(K17/8).

Applying (108), we conclude that P {min;cc X; < —s} > 1 — 0(1/y/1og K).

Appendix H. Proof of (68)

We show P {&1} — 1. In this section, by a slight abuse of notation, let e(é,.S) = 3 ;. A;j. The
proof is complicated by the fact the random variables e(i, C*) for i € C* are not independent.
The trick is to fix C* and a small set 7' C C* with |T'| = K,. Then fori € T, e(i,C*) =
e(i,C*\T)+e(i,T'), and we can make use of the fact that the random variables (e(i, C*\T') : 1 € T')
are independent, (e(i, C*\T') : ¢ € T') is independent of (e(i,T") : 4 € T'), and, with high probability,
at least half of the random variables in e(i, T") are not unusually large. (The same trick is used for
proving Theorem 6 in Hajek et al. (2015e).)

Suppose for convenience of notation that C* consists of the first K indices, and 7" consists of the
first K, indices: C* = [K]and T = [K,]. Let T' = {i € T : (i, T) < (K, — 1)p + 60}, Since®

min e(i, C*) < mine(i,C*) < mine(i, C*\T) + (K, — 1)p + 60,
ieC* T’ T’

it follows that
P{E} > P {miTne(j, C\T) < (K — Ko)ﬁ} :
JET’

We show next that P {|T"| > %} — lasn — oo. Fori € T, e(i,T) = X; +Y; where
Xi =e(i,{1,...,0—1})and V; = e(i,{i + 1,...,K,}). The X’s are mutually independent,
and the Y’s are also mutually independent, and X; has the Binom(: — 1, p) distribution and Y;
has the Binom(K, — 4, p) distribution. Then E[X;] = (i — 1)p and var(X;) < o2 Thus, by
the Chebyshev inequality, P{X; > (i —1)p+ 30} < § forall i € T. Therefore, |{i : X; <
(i — 1)p + 30}| is stochastically at least as large as a Binom (K,, §) random variable, so that,
P{|{i: X; < (i—1)p+30} > 3%} - 1as K, — oo (which happens as n — oo). Similarly,
P{|{i:V; < (K, —i)p+30}| >3l — 1. If at least 3/4 of the X s are small and at least 3/4
of the Y’s are small, it follows that at least 1/2 of the e(¢,T")’s for ¢ € T are small. Therefore,
P{|T'| > &2} — 1 as claimed.

The set 7" is independent of (e(i, C*\T') : « € T') and those variables each have the Binom (K —
K,, p) distribution. Using the tail lower bound (66), we have

P{E:} >1-E | [ P{e(j.C"\T) = K% — Kop — 60}
JET'

>1— exp (—Q <\/2(K - Ko)d(T{Hp)> K0/2> —o(1).

2

K K
> 52| - i< 5

6. In case T” = () we use the usual convention that the minimum of an empty set of numbers is +oo.
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SDP FOR HIDDEN COMMUNITY

By definition of 7{ and the convexity of divergence, d(7{||p) < (1 — §)d(71||p), it follows that

@ (20~ Kl ) £o/2 = Q (VB =~ Rol(1 = 01T o2
> Q (VAT ) logK) Ko/2 > VB8

and P{F;} — 1.
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