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Abstract
I prove near-optimal frequentist regret guarantees for the finite-horizon Gittins index strategy for
multi-armed bandits with Gaussian noise and prior. Along the way I derive finite-time bounds on
the Gittins index that are asymptotically exact and may be of independent interest. I also discuss
computational issues and present experimental results suggesting that a particular version of the
Gittins index strategy is an improvement on existing algorithms with finite-time regret guarantees
such as UCB and Thompson sampling.

1. Introduction

The stochastic multi-armed bandit is a classical problem in sequential optimisation that captures a
particularly interesting aspect of the dilemma faced by learning agents. How to explore an uncertain
world, while simultaneously exploiting available information? Since Robbins (1952) popularised
the problem there have been two main solution concepts. The first being the Bayesian approach
developed by Bradt et al. (1956), Gittins (1979) and others, where research has primarily focussed
on characterising optimal solutions. The second approach is frequentist, with the objective of de-
signing policies that minimise various forms of regret (Lai and Robbins, 1985). The purpose of this
article is to prove frequentist regret guarantees for popular Bayesian or near-Bayesian algorithms,
which explicates the strong empirical performance of these approaches observed by Kaufmann et al.
(2012a) and others.

In each round the learner chooses an arm It ∈ {1, . . . , d} based on past observations and re-
ceives a Gaussian reward Xt ∼ N (µIt , 1) where µ ∈ Rd is the vector of unknown means. A
strategy is a method for choosing It and is denoted by π. The performance of a particular strategy
π will be measured in terms of the expected regret, which measures the difference between the ex-
pected cumulative reward of the optimal strategy that knows µ and the expected rewards of π. Let
µ∗ = maxi µi be the mean reward for the optimal arm, then the expected regret up to horizon n is
defined by

Rπµ(n) = E

[
n∑
t=1

(µ∗ − µIt)

]
, (1)

where the expectation is taken with respect to the uncertainty in the rewards and any randomness
in the strategy. If Q is a probability measure on Rd, then the Bayesian regret is the expectation of
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Eq. (1) with respect to the prior Q.

BRπQ(n) = Eθ∼Q

[
E

[
n∑
t=1

(µ∗ − µIt)

∣∣∣∣∣µ = θ

]]
. (2)

I assume that Q is Gaussian with diagonal covariance matrix Σ = diag(σ2
1, . . . , σ

2
d).

A famous non-Bayesian strategy is UCB (Katehakis and Robbins, 1995; Agrawal, 1995; Auer
et al., 2002), which chooses It = t for rounds t ∈ {1, . . . , d} and subsequently maximises an upper
confidence bound.

It = arg max
i

µ̂i(t− 1) +

√
α log t

Ti(t− 1)
,

where µ̂i(t− 1) is the empirical estimate of the return of arm i based on samples from the first t− 1
rounds and Ti(t− 1) is the number of times that arm has been chosen. For α > 2 and any choice of
µ it can be shown that

RUCB
µ (n) = O

 ∑
i:∆i>0

log(n)

∆i
+ ∆i

 , (3)

where ∆i = µ∗ − µi is the regret incurred by choosing arm i rather than the optimal arm. No
strategy enjoying sub-polynomial regret for all mean vectors can achieve smaller asymptotic regret
than Eq. (3), so in this sense the UCB strategy is optimal (Lai and Robbins, 1985).

The Bayesian strategy minimises Eq. (2), which appears to be a hopeless optimisation problem.
A special case where it can be solved efficiently is called the one-armed bandit, which occurs when
there are two arms (d = 2) and the expected return of the second arm is known (σ2

2 = 0). Bradt
et al. (1956) showed that the Bayesian optimal strategy involves choosing the first arm as long as
its “index” is larger than the return of the second arm and thereafter choosing the second arm. The
index depends only on the number of rounds remaining and the posterior distribution of the first
arm and is computed by solving an optimal stopping problem. Another situation when Eq. (2)
can be solved efficiently is when the horizon is infinite (n = ∞) and the rewards are discounted
geometrically. Then Gittins (1979) was able to show that the Bayesian strategy chooses in each
round the arm with maximal index. Gittins’ index is defined in the same fashion as the index of
Bradt et al. (1956) but with obvious modifications to incorporate the discounting. The index has
a variety of interpretations. For example, it is equal to the price per round that a rational learner
should be willing to pay in order to play the arm until either the horizon or their choice of stopping
time (Weber, 1992).

Gittins’ result is remarkable because it reduces the seemingly intractable problem of finding
the Bayesian optimal strategy to solving an optimal stopping problem for each arm separately. In
our setting, however, the horizon is finite and the rewards are not discounted, which means that
Gittins’ result does not apply and the Bayesian optimality of Gittins index strategy is not preserved.1

1. This contradicts the opposite claim made without proof by Kaufmann et al. (2012a) but counter-examples for
Bernoulli noise have been known for some time and are given here for Gaussian noise in Appendix A. In fact,
the Gittins index strategy is only Bayesian optimal in all generality for geometric discounting (Berry and Fristedt,
1985, §6).
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Nevertheless, the finite-horizon Gittins index strategy has been suggested as a tractable heuristic for
the Bayesian optimal policy by Niño-Mora (2011) and Kaufmann (2016), a claim that I support
with empirical and theoretical results in the special case that d = 2 (with both means unknown). A
brief chronological summary of the literature on multi-armed bandits as relevant for this article is
given in Appendix K.

I make a number of contributions.

Contribution 1 (Section 2) Upper and lower bounds on the finite-horizon Gittins index for the
Gaussian prior/noise model that match asymptotically and are near-optimal in finite time. Asymp-
totic approximations are known for the discounted case via an elegant embedding of the discrete
stopping problem into continuous time and solving the heat equation as a model for Brownian mo-
tion (Bather, 1983; Yao, 2006). In the finite-horizon setting there are also known approximations,
but again they are asymptotic in the horizon and are not suitable for regret analysis (Chernoff and
Ray, 1965; Burnetas and Katehakis, 1997).

Contribution 2 (Section 3) A proof that the Gittins index strategy with the improper flat Gaussian
prior enjoys finite-time regret guarantees comparable to those of UCB. There exists a universal
constant c > 0 such that

RGittins
µ (n) ≤ c ·

 ∑
i:∆i>0

log(n)

∆i
+ ∆i

 . (4)

I also show that the Gittins index strategy is asymptotically order-optimal for arbitrary Gaussian
priors. There exists a universal constant c > 0 such that for all non-degenerate Gaussian priors the
Bayesian strategy satisfies

lim sup
n→∞

RGittins
µ (n)

log(n)
≤ c ·

 ∑
i:∆i>0

1

∆i

 .

While Eq. (4) depends on a particular choice of prior, the above result is asymptotic, but independent
of the prior. This is yet another example of a common property of (near) Bayesian methods, which
is that the effect of the prior is diluted in the limit of infinite data. A unique aspect of the bandit
setting is that the strategy is collecting its own data, so although the result is asymptotic, one has to
prove that the strategy is choosing the optimal arm sufficiently often to get started.

Contribution 3 (Appendix A) For the special case that there are two arms (d = 2) I show by a
comparison to the Gittins index strategy that the fully Bayesian strategy (minimising Eq. (2)) also
enjoys the two regret guarantees above.

Contribution 4 (Appendices B and C) I present a method of computing the index in the Gaus-
sian case to arbitrary precision and with sufficient efficiency to simulate the Gittins index policy
for horizons of order 104. This is used to demonstrate empirically that the Gittins index strategy
with a flat prior is competitive with state-of-the-art algorithms including UCB, Thompson sam-
pling (Thompson, 1933), OCUCB (Lattimore, 2015a) and the fully Bayesian strategy. I propose
an efficient approximation of the Gittins index that (a) comes with theoretical guarantees and (b)
is empirically superior to Thompson sampling and UCB, and only marginally worse than OCUCB.
The approximation may also lead to improvements for index-based algorithms in other settings.
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2. Bounds on the Gittins Index

As previously remarked, the Gittins index depends only on the posterior mean and variance for
the relevant arm and also on the number of rounds remaining in round t, which is denoted by
m = n − t + 1. Let ν ∈ R and σ2 ≥ 0 be the posterior mean and variance for some arm in
a given round. Let µ ∼ N (ν, σ2) and Y1, Y2, . . . , Ym be a sequence of random variables with
Yt ∼ N (µ, 1). Assume {Yt}mt=1 are independent after conditioning on µ. The Gittins index for an
arm with posterior mean ν and variance σ2 and horizon m = n− t+ 1 is given by

γ(ν, σ2,m) = max

{
γ : sup

1≤τ≤m
E [(µ− γ)τ ] ≥ 0

}
, (5)

where the supremum is taken over stopping times with respect to the filtration generated by ran-
dom variables Y1, . . . , Ym. Equivalently, 1{τ = t} must be measurable with respect to σ-algebra
generated by Y1, . . . , Yt. I denote τ(ν, σ2,m) to be the maximising stopping time in Eq. (5) for
γ = γ(ν, σ2,m). The following upper and lower bound on γ is the main theorem of this section.

Theorem 1 If β ≥ 1 is chosen such that γ(ν, σ2,m) = ν +
√

2σ2 log β. Then there exists a
universal constant c > 0 such that

cmin

 m

log
3
2
+(m)

,
mσ2

log
1
2
+(mσ2)

 ≤ β ≤ m

log
3
2 (m)

,

where log+(x) = max {1, log(x)}.

Important Remark I use c, c′ and c′′ as temporary positive constants that change from theorem to
theorem and proof to proof. A table of notation may be found in Appendix L.

The upper bound in Theorem 1 is rather trivial while the lower bound relies on a carefully con-
structed stopping time. As far as the asymptotics are concerned, asm tends to infinity the upper and
lower bounds on β converge up to constant factors, which leads to

exp

((
γ(ν, σ2,m)− ν√

2σ2

)2
)

= Θ

(
m

log
3
2 m

)
. (6)

The log
3
2 (m) looks bizarre, but is surprisingly well-justified as shall be seen in the next section. In

order to obtain logarithmic regret guarantees it is necessary that the approximation be accurate in
the exponential scale as in Eq. (6). Merely showing that log β/ log(m) tends to unity as m grows
would not be sufficient. Empirically choosing c = 1/4 in the lower bound leads to an excellent
approximation of the Gittins index (see Fig. 2 in Appendix C). The proof of Theorem 1 relies on a
carefully chosen stopping time.

τ = min

{
m, min

{
t ≥ 1

ν2
: µ̂t +

√
4

t
log (4tν2) ≤ 0

}}
, (7)

where µ̂t = 1
t

∑t
s=1 Ys. Note that 1{τ = t} depends only on Y1, Y2, . . . , Yt so this is a stopping

time with respect to the right filtration.
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Lemma 2 If ν < 0, then there exists a universal constant c′ ≥ 2e such that:

1. If θ ∈ (−∞, ν], then E[τ |µ = θ] ≤ 1 +
c′

ν2
.

2. If θ ∈ (ν, 0), then E[τ |µ = θ] ≤ 1 +
c′

θ2
log

(
eν2

θ2

)
.

3. If θ ∈ [0,∞), then E[τ |µ = θ] ≥ m/2.

The proof of Lemma 2 may be found in Appendix D. Before the proof of Theorem 1 we need
two more results. The proofs follow directly from the definition of the Gittins index and are omitted.

Lemma 3 For all m ≥ 1 and σ2 ≥ 0 and ν, ν ′ ∈ R we have γ(ν, σ2,m)− ν = γ(ν ′, σ2,m)− ν ′.

Lemma 4 γ(ν, σ2,m) ≥ ν for all ν, σ2 and m.

Proof of Theorem 1 Starting with the lower bound, by Lemma 3 it is enough to bound the Gittins
index for any choice of ν. Let ν = −

√
2σ2 log β where β ≥ 1 will be defined subsequently. I will

shortly show that there exists a stopping time τ adapted to the filtration generated by Y1, . . . , Ym for
which

E [µτ ] ≥ 0 . (8)

Therefore by the definition of the Gittins index we have γ(ν, σ2,m) ≥ 0 and so by Lemma 3

(∀ν ′) γ(ν ′, σ2,m) ≥ ν ′ +
√

2σ2 log β .

I now prove Eq. (8) holds for the stopping time given in Eq. (7). First note that if β = 1, then
ν = 0 and E [µτ ] = 0 for the stopping time with τ = 1 surely. Now assume β > 1 and define
P = N (ν, σ2) to be a Gaussian measure on R. Then

E [µτ ] = Eθ∼P [θE [τ |µ = θ]] =

∫ ∞
0

θE [τ |µ = θ] dP (θ) +

∫ 0

−∞
θE [τ |µ = θ] dP (θ) . (9)

The integrals will be bounded seperately. Define

Erfc(x) =
2√
π

∫ ∞
x

exp
(
−y2

)
dy f(β) =

1

β

√
1

2π
−
√

log β

2
Erfc

(√
log β

)
.

A straightforward computation combined with Lemma 2 shows that∫ ∞
0

θE [τ |µ = θ] dP (θ) ≥ m

2

∫ ∞
0

θdP (θ) =
mσ

2
f(β) . (10)

The function f satisfies f(β)β log+(β) = Θ(1) with the precise statement given in Lemma 22
in Appendix J. Let W : [0,∞) → R be the product logarithm, defined implicitly such that x =
W (x) exp(W (x)). For the second integral in Eq. (9) we can use Lemma 2 again, which for θ ∈
(ν, 0) gives

θ (E[τ |µ = θ]− 1) ≥ θmin

{
m,

c′

θ2
log

(
eν2

θ2

)}
≥ −

√
c′mW

(
emν2

c′

)
,
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where in the first inequality we have exploited the fact that τ ≤ m occurs surely and the second
follows by noting that θ is negative and that θm is increasing in θ and 1/θ log(eν2θ−2) is decreasing.
Let ε = 1−

√
7/8, which is chosen such that by tail bounds on the Gaussian integral (Lemma 14):∫ 0

εν
dP (θ) ≤ exp

(
−(1− ε)2ν2

2σ2

)
=

(
1

β

) 7
8

and
∫ 0

−∞
θdP (θ) ≥ ν − σ√

2π
.

Combining the above two displays with Lemma 2 we have for some universal constant c′′ > 0∫ 0

−∞
θE[τ |µ = θ]dP (θ) ≥

(
1 +

c′

ε2ν2
log
( e
ε2

))∫ 0

−∞
θdP (θ)−

∫ 0

εν

√
c′mW

(
emν2

c′

)
dP (θ)

(a)

≥ c′′

((
1 +

1

ν2

)
(ν − σ)−

√
mW

(
emν2

c′

)(
1

β

) 7
8

)
(b)

≥ −c′′
((

1 +
1

2σ2 log(β)

)(√
2σ2 log(β) + σ

)
+
√
mW(mσ2 log(β))

(
1

β

) 7
8

)
,

where in (a) I have substituted the bounds on the integrals in the previous two displays and naively
chosen a large constant c′′ to simplify the expression and in (b) I substitute ν = −

√
2σ2 log(β) and

exploited the assumption that c′ ≥ 2e. Therefore by Eq. (10) and Eq. (9) we have

E[µτ ] ≥ mσ

2
f(β)− c′′

((
1+

1

2σ2 log(β)

)(√
2σ2 log(β)+σ

)
+
√
mW(mσ2 log(β))β−

7
8

)
.

Therefore by expanding the bracketed product, dropping the non-dominant 1/(σ log(β)) term and
upper bounding the sum by the max there exists a universal constant c′′′ ≥ 1 such that the following
implication holds:

mσf(β) ≥ c′′′max

{
σ,

1√
σ2 log(β)

,
√
σ2 log(β),

√
mW (mσ2 log(β))β−

7
8

}
=⇒ E[µτ ] ≥ 0 .

Let c ≥ 1 be a sufficiently large universal constant and define β by

β1 =
m

c log
3
2
+(m)

β2 =
mσ2

c log
1
2
+(mσ2)

β =

{
min {β1, β2} if min {β1, β2} ≥ 3

1 otherwise

If β ≥ 3, then the inequality leading to the implication is shown tediously by applying Lemma 22
to approximate f(β) (see Appendix J for the gory algebraic details). If β = 1, then ν = 0 and
E[µτ ] ≥ 0 is trivial for the stopping time τ = 1 surely. Finally we have the desired lower bound by
Lemma 3,

γ(ν ′, σ2,m) ≥ ν ′ +
√

2σ2 log(β) ≥ ν ′ +

√√√√√2σ2 log

 1

3c
min

 m

log
3
2
+(m)

,
mσ2

log
1
2
+(mσ2)


 .
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For the upper bound we can proceed naively and exploit the fact that the stopping time must be
chosen such that 1 ≤ τ ≤ m surely. This time choose ν such that γ(ν, σ2,m) = 0 and let β ≥ 1 be
such that ν = −

√
2σ2 log(β), which is always possible by Lemma 4. Then

0 = sup
τ

∫ ∞
−∞

θE[τ |µ = θ]dP (θ) ≤ m
∫ ∞

0
θdP (θ) +

∫ ν

−∞
θdP (θ) = mσf(β)− σ√

2π
+
ν

2
.

Rearranging and substituting the definition of ν and applying Lemma 22 in the appendix leads to

m√
8πβ log β

≥ mf(β) ≥ 1√
2π

+

√
1

2
log β ≥

√
1

2
log β .

Naive simplification leads to β ≤ m/ log
3
2 (m) as required.

3. Regret Bounds for the Gittins Index Strategy

I start with the finite-time guarantees. Before presenting the algorithm and analysis we need some
additional notation. The empirical mean of arm i after round t is denoted by

µ̂i(t) =
1

Ti(t)

t∑
s=1

1{Is = i}Xs Ti(t) =
∑
s≤t

1{Is = i} .

I will avoid using µ̂i(t) for rounds t when Ti(t) = 0, so this quantity will always be well-defined.
Let ∆max = maxi ∆i and ∆min = min {∆i : ∆i > 0}. The Gittins index strategy for a flat Gaus-
sian prior is summarised in Algorithm 1. Since the flat prior is improper, the Gittins index is not
initially defined. For this reason the algorithm chooses It = t in rounds t ∈ {1, . . . , d} after which
the posterior has unit variance for all arms and the posterior mean is µ̂i(d). An alternative interpre-
tation of this strategy is the limiting strategy as the prior variance tends to infinity for all arms.

Input: d, n
Choose each arm once
for t ∈ d+ 1, . . . , n do

Choose It = arg max
i

γ
(
µ̂i(t− 1), Ti(t− 1)−1, n− t+ 1

)
end

Algorithm 1: Gittins strategy with flat Gaussian prior

Theorem 5 Let π be the strategy given in Algorithm 1. Then there exist universal constants c, c′ >
0 such that

Rπµ(n) ≤ c
∑
i:∆i>0

(
log(n)

∆i
+ ∆i

)
Rπµ(n) ≤ c′

(√
dn log(n) +

d∑
i=1

∆i

)

While the problem dependent bound is asymptotically optimal up to constant factors, the problem
independent bound is sub-optimal by a factor of

√
log(n) with both the MOSS algorithm by Au-

dibert and Bubeck (2009) and OCUCB by Lattimore (2015a) matching the lower bound of Ω(
√
dn)
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given by Auer et al. (1995). The main difficulty in proving Theorem 5 comes from the fact that the
Gittins index is smaller than the upper confidence bound used by UCB. This is especially true as t
approaches the horizon when the Gittins index tends towards the empirical mean, while the UCB
index actually grows. The solution is (a) to use very refined concentration guarantees and (b) to
show that the Gittins strategy chooses near-optimal arms sufficiently often for t ≤ n/2, ensuring
that the empirical mean of these arms is large enough that bad arms are not chosen too often in the
second half. Before the proof we require some additional definitions and lemmas. Assume for the
remainder of this section that µ1 ≥ µ2 ≥ . . . ≥ µd, which is non-restrictive, since if this is not the
case, then the arms can simply be re-ordered. Let F be the event that there exists a t ∈ {1, . . . , n}
and i ∈ {1, . . . , d} such that

|µ̂i(t)− µi| ≥

√
2

Ti(t)
log(dn2) .

The index of the ith arm in round t is abbreviated to γi(t) = γ(µ̂i(t− 1), Ti(t− 1)−1, n− t+ 1),
which means that for rounds t > d Algorithm 1 is choosing It = arg maxi γi(t). Define random
variable Z = µ1 −min1≤t≤n/2 γ1(t), which measures how far below µ1 the index of the first arm
may fall some time in the first n/2 rounds. For each i ∈ {1, . . . , d} define

ui =

⌈
32

∆2
i

log(2dn2)

⌉
. (11)

Now we are ready for the lemmas. First is the key concentration inequality that controls the prob-
ability that the Gittins index of the optimal arm drops far below the true mean. It is in the proof of
Theorem 6 that the odd-looking powers of the logarithmic terms in the bounds on the Gittins index
are justified. Any higher power would lead to super-logarithmic regret, while a lower power could
potentially lead to a sub-optimal trade-off between failure probability and exploration.

Lemma 6 Let c > 0 be a universal constant, and ∆ > 0 and Y1, Y2, . . . be a sequence of i.i.d.
random variables with Yt ∼ N (0, 1) and St =

∑t
s=1 Ys. Then there exist universal constants

c′ > 0 and n0 ∈ N such that whenever n ≥ n0.

P

∃t : St ≥ t∆ + max

0,

√√√√√2t log

 cn

2 log
3
2
+(n/2)



 ≤ c′ · log(n)

n∆2

P

∃t : St ≥ t∆ + max

0,

√√√√√2t log

 cn

2t log
1
2
+

(
n
2t

)


 ≤ c′ · log+(n∆2)

n∆2
.

The proof of Lemma 6 follows by applying a peeling device and may be found in Appendix F. Note
that similar results exist in the literature. For example, by Audibert and Bubeck (2009); Perchet
and Rigollet (2013) and presumably others. What is unique here is that the improved concentration
guarantees for Gaussians are also being exploited.

Assumption 7 Assume that n ≥ n0, which is non-restrictive since n0 is a universal constant and
Theorem 5 holds trivially with c = n0 for n ≤ n0.
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Lemma 8 There exists a universal constant c > 0 such that for all ∆ > 0 we have

P {Z ≥ ∆} ≤ c ·
log(n) + log+(n∆2)

n∆2
.

Proof Apply Theorem 1 and Theorem 6 and the fact that m = n− t+ 1 ≥ n/2 for t ≤ n/2.

Lemma 9 E[Ti(n)] ≤ n/i.

Proof The result follows from the assumption that µ1 ≥ . . . ≥ µd, the definition of the algorithm,
the symmetry of the Gaussian density and because the exploration bonus due to Gittins index is shift
invariant (Lemma 3).

Lemma 10 P {F} ≤ 1/n.

Proof For fixed Ti(t) = u apply the standard tail inequalities for the Gaussian (Lemma 14) to
bound P{|µ̂i(t) − µi| ≥

√
2 log(2dn2)/u} ≤ 1/(dn2). The result is completed by applying the

union bound over all arms and values of u ∈ {1, . . . , n}.

Lemma 11 If F does not hold and i is an arm such that Z < ∆i/2, then Ti(n/2) ≤ ui.

Proof Let t ≤ n/2 be some round such that Ti(t−1) = ui. Then by Theorem 1 and the definitions
of F and ui we have

γi(t) ≤ µ̂i(t) +

√
2

ui
log(n) ≤ µi +

√
2

ui
log(2dn2) +

√
2

ui
log(n)

≤ µi +
∆i

2
= µ1 −

∆i

2
< µ1 − Z ≤ γ1(t) .

Therefore It 6= i and so Ti(n/2) ≤ ui.

Proof of Theorem 5 The regret may be re-written as

Rπµ(n) =
d∑
i=1

∆iE[Ti(n)] . (12)

To begin, let us naively bound the regret for nearly-optimal arms. Define a set C ⊂ {1, . . . , d} by

C =

{
i : 0 < ∆i ≤ 4

√
8i

n
log(2dn2)

}
=

{
i : 0 < ∆i ≤

128i

n∆i
log(2dn2)

}
.

Therefore by Lemma 9 we have∑
i∈C

∆iE[Ti(n)] ≤
∑
i∈C

128

∆i
log(2dn2) . (13)

9
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For arms not in C we need to do some extra work. By Lemma 10

∑
i/∈C

∆iE[Ti(n)] ≤ P {F}n∆max + E

[
1{¬F}

∑
i/∈C

∆iTi(n)

]

≤ ∆max + E

[
1{¬F}

∑
i/∈C

∆iTi(n)

]
. (14)

From now on assume F does not hold while bounding the second term. By Lemma 11, ifZ < ∆i/2,
then Ti(n/2) ≤ ui. Define disjoint (random) sets A,B ⊆ {1, . . . , d} by

B =

i : Z < ∆i/2 and
∑
j≥i

uj ≤
n

4

 and A = {1, . . . , d} −B .

The setA is non-empty because u1 =∞, which implies that 1 ∈ A. Let i = maxA, which satisfies
either either Z ≥ ∆i/2 or n ≤ 4

∑
j≥i uj . Therefore

∑
k∈A

∆kTk(n) ≤ n∆i ≤ max

2nZ1{∆min/2 ≤ Z} , 4∆i

∑
j≥i

uj


≤ 2nZ1{∆min/2 ≤ Z}+ 4

∑
j:∆j>0

∆juj . (15)

The next step is to show that there exists an arm inA that is both nearly optimal and has been chosen
sufficiently often that its empirical estimate is reasonably accurate. This arm can then be used to
show that bad arms are not chosen too often. From the definition of B and because F does not hold
we have

∑
i∈A Ti(n/2) = n/2−

∑
i∈B Ti(n/2) ≥ n/2−

∑
i∈B ui ≥ n/4. Therefore there exists

an i ∈ A such that Ti(n/2) ≥ n/(4|A|). Suppose j /∈ A ∪ C and ∆j ≥ 4∆i and Tj(t) = uj . Then

γj(t) ≤ µj +
∆j

2
= µi −

∆j

2
+ ∆i ≤ µi −

∆j

4
< µi −

√
8j

n
log(dn2)

≤ µi −
√

8|A|
n

log(dn2) ≤ µ̂i(t) ≤ γi(t) . (16)

Therefore It 6= j and so Tj(n) ≤ uj . Now we consider arms with ∆j < 4∆i. By the same
reasoning as in Eq. (15) we have∑

j:∆j<4∆i

∆jTj(n) ≤ 4n∆i ≤ 8nZ1{∆min/2 ≤ Z}+ 16
∑

j:∆j>0

∆juj .

Finally we have done enough to bound the regret due to arms not in C. By the above display and
Eq. (15) and the sentence after Eq. (16) we have∑

i/∈C

1{¬F}∆iTi(n) ≤ 10nZ1{∆min/2 ≤ Z}+ 20
∑

j:∆j>0

∆juj +
∑
j /∈C

∆juj .

10
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Combining this with Eq. (13) and the regret decomposition Eq. (12) and Eq. (14) we have

Rπµ(n) ≤ ∆max +
∑
j∈C

128

∆j
log(dn2) + 21

∑
j:∆j>0

∆juj + 10nE [Z1{∆min/2 ≤ Z}] . (17)

From Lemma 8 there exists a universal constant c′′ > 0 such that

EZ1{∆min/2 ≤ Z} ≤
∫ ∞

∆min/2
P {Z ≥ z} dz +

∆min

2
P
{
Z ≥ ∆min

2

}
≤
c′′(log(n) + log+(n∆2

min))

n∆min
.

Substituting into Eq. (17) and inserting the definition of ui and naively simplifying completes the
proof of the problem dependent regret bound. To prove the second bound in Theorem 5 it suffices
to note that the total regret due to arms with ∆i ≤

√
d/n log(n) is at most

√
nd log(n).

Asymptotic regret for non-flat prior The previous results relied heavily on the choice of a flat
prior. For other (Gaussian) priors it is still possible to prove regret guarantees, but now with a
dependence on the prior. For the sake of simplicity I switch to asymptotic analysis and show that
any negative effects of a poorly chosen prior wash out for sufficiently large horizons. Let νi and
σ2
i be the prior mean and variance for arm i and let νi(t) and σ2

i (t) denote the posterior mean and
variance at the end of round t. A simple computation shows that

νi(t) =

(
νi
σ2
i

+
t∑

s=1

1{Is = i}Xs

)/(
1

σ2
i

+ Ti(t)

)
σ2
i (t) =

(
1

σ2
i

+ Ti(t)

)−1

. (18)

The strategy chooses It = arg max
i

γ(νi(t− 1), σ2
i (t− 1), n− t+ 1) . (19)

Theorem 12 Assume that σ2
i > 0 for all i. Let πn be the strategy given in Eq. (19), then there

exists a universal c > 0 such that for µ ∈ Rd, lim supn→∞R
πn
µ (n)/ log n ≤ c

∑
i:∆i>0 ∆−1

i .

The proof may be found in Appendix G. It should be emphasised that the limit in Theorem 12
is taken over a sequence of strategies and an increasing horizon. This is in contrast to similar results
for UCB where the strategy is fixed and only the horizon is increasing.

4. Discussion

I have shown that the Gittins strategy enjoys finite-time regret guarantees, which explicates the
excellent practical performance. The proof relies on developing tight bounds on the index, which
are asymptotically exact. If the prior is mis-specified, then the resulting Gittins index strategy is
order-optimal asymptotically, but its finite-time regret may be significantly worse. Experimental
results show the Gittins strategy with a flat improper Gaussian prior is never much worse and often
much better than the best frequentist algorithms (please see Appendix C). The index is non-trivial to
compute, but reasonable accuracy is possible for horizons of O(104). For larger horizons I propose
a new index inspired by the theoretical results that is efficient and competitive with the state-of-the-
art, at least in the worst case regime for which experiments were performed. There are a variety of
open problems some of which are described below.

11
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Alternative prior and noise models The Gaussian noise/prior was chosen for its simplicity, but
bounded or Bernoulli rewards are also interesting. In the latter, the Gittins index can be computed
by using a Beta prior and dynamic programming. Asymptotic approximations by Burnetas and
Katehakis (1997) suggest that one might expect to derive the KL-UCB algorithm in this manner
(Cappé et al., 2013), but finite-time bounds would be required to obtain regret guarantees. Many
of the concentration inequalities used in the Gaussian case have information-theoretic analogues,
so in principle I expect that substituting these results into the current technique should lead to good
results (Garivier, 2013).

Finite-time impact of mis-specified prior For non-flat priors I only gave asymptotic bounds on
the regret, showing that the Gittins index strategy will eventually recover from even the most poorly
mis-specified prior. Of course it would be nice to fully understand how long the algorithms takes to
recover by analysing its finite-time regret. Some preliminary work has been done on this question
in a simplified setting for Thompson sampling by Liu and Li (2015). Unfortunately the results will
necessarily be quite negative. If a non-flat prior is chosen in such a way that the resulting algorithm
achieves unusually small regret with respect to a particular arm, then the regret it incurs on the
remaining arms must be significantly larger (Lattimore, 2015b). In short, there is a large price to
pay for favouring one arm over another and the Bayesian algorithm cannot save you. This is in
contrast to predictive settings where a poorly chosen prior is quickly washed away by data.

Asymptotic optimality Theorem 12 shows that the Gittins index strategy is eventually order-
optimal for any choice of prior, but the leading constant does not match optimal rate. The reason is
that the failure probability for which the algorithm suffers linear regret appears to be O(log(n)/n)
and so this term is not asymptotically insignificant. In contrast, the UCB confidence level is chosen
such that the failure probability is O(1/n), which is insignificant for large n.

Horizon effects Recent bandit algorithms including MOSS (Audibert and Bubeck, 2009) and
OCUCB (Lattimore, 2015a) exploit the knowledge of the horizon. The Gittins strategy also ex-
ploits this knowledge, and it is not clear how it could be defined without a horizon (the index tends
to infinity as n increases). The most natural approach would be to choose a prior on the unknown
horizon, but what prior should you choose and is there hope to compute the index in that case?2

You can also ask what is the benefit of knowing the horizon? The exploration bonus of the Git-
tins strategy (and MOSS and OCUCB) tend to zero as the horizon approaches, which makes these
algorithms more aggressive than anytime algorithms such as UCB and Thompson sampling and
improves practical performance.

Extending the model and computation issues For finite-armed bandits and simple priors the
index may be approximated in polynomial time, with practical computation possible to horizons of
∼104. It is natural to ask whether or not the computation techniques can be improved to compute
the index for larger horizons. I am also curious to know if the classical results can be extended to
more complicated settings such as linear bandits or partial monitoring. This has already been done
to some extent (eg., restless bandits), but there are many open problems. The recent book by Gittins
et al. (2011) is a broad reference for existing extensions.

2. An exponential prior leads to the discounted setting for which anytime regret guarantees are unlikely to exist, but
where computation is efficient. A power-law would be a more natural choice, but the analysis becomes very non-
trivial in that case.

12
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Appendix A. Comparison to Bayes

As remarked in the introduction, it turns out that both geometric discounting and an infinite horizon
are crucial for the interchange argument used in all proofs of the Gittins index theorem and indeed
the result is known to be false in general for non-geometric discounting as shown by Berry and
Fristedt (1985). Thus the observation that the Gittins index strategy is not Bayesian optimal in the
setting considered here should not come as a surprise, but is included for completeness. Let n = 2
and ν1 = 0 and σ2

1 = 1 and σ2
2 = 1/2. Then the Gittins indices are

γ(ν1, σ
2
1, 2) ≈ 0.195183 γ(ν2, σ

2
2, 2) ≈ ν2 + 0.112689 .

Therefore the strategy based on Gittins index will choose the second action if ν2 & 0.082494.
Computing the Bayesian value of each choice is possible analytically

sup
π

E

[
n∑
t=1

Xt

∣∣∣∣∣I1 = 1

]
=

∫ ∞
−∞

max {ν2, δ}
1√
π

exp
(
−δ2

)
dδ

=
exp

(
−ν2

2

)
2
√
π

+
ν2 + ν2 Erf(ν2)

2
.

sup
π

E

[
n∑
t=1

Xt

∣∣∣∣∣I1 = 2

]
= ν2 +

∫ ∞
−∞

max {0, ν2 + δ} 1√
π/3

exp
(
−3δ2

)
dδ

= ν2 +
exp

(
−3ν2

2

)
√

2π
+
ν2 + ν2 Erf

(√
3ν2

)
2

.

Solving leads to the conclusion that I2 = 2 is optimal only if ν2 & 0.116462 and hence the Gittins
strategy is not Bayesian optimal (it does not minimise Eq. (2)). Despite this, the following result
shows that the regret analysis for the Gittins index strategy can also be applied to the intractable
fully Bayesian algorithm when the number of arms is d = 2. The idea is to show that the Bayesian
algorithm will never choose an arm for which a UCB-like upper confidence bound is smaller than
the largest Gittins index. Then the analysis in Section 3 may be repeated to show that that Theorems
5 and 12 also hold for the Bayesian algorithm when d = 2.
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Theorem 13 Assume d = 2 and the horizon is n. Let Q be the multivariate Gaussian prior
measure with mean ν ∈ Rd and covariance matrix Σ = diag(σ2). If the Bayesian optimal action is
I1 = 1, then

ν1 +
√

2cσ2
1 log n ≥ γ(ν2, σ

2
2, n) ,

where c > 0 is a universal constant.

The proof of Theorem 13 is surprisingly tricky and may be found in Appendix H. Empirically
the behaviour of the Bayesian algorithm and the Gittins index strategy is almost indistinguishable,
at least for two arms and small horizons (see Appendix C).

Appendix B. Computing the Gittins Index

I briefly describe a method of computing the Gittins index in the Gaussian case. A variety of authors
have proposed sophisticated methods for computing the Gittins index, both in the discounted and
finite horizon settings (Niño-Mora, 2011; Chakravorty and Mahajan, 2013, and references therein).
The noise model used here is Gaussian and so continuous, which seems to make prior work inappli-
cable. Fortunately the Gaussian model is rather special, mostly due to the shift invariance (Lemma
3), which can be exploited to compute and store the index quite efficiently.

Let ν ∈ R and σ2 > 0 be the prior mean and variance respectively and m be the number of
rounds remaining. For t ∈ {1, . . . ,m} define independent random variables

ηt ∼ N
(

0,
σ2

1 + (t− 1)σ2
· σ2

1 + tσ2

)
.

Let ν1 = ν and νt = νt−1 + ηt−1 for t > 1. Then

γ(ν, σ2,m) = max

{
γ : sup

1≤τ≤m
E

[
τ∑
t=1

(νt − γ)

]
= 0

}
(20)

where the stopping time is with respect to the filtration generated by η1, . . . , ηm. Eq. (20) is the
Bayesian view of Eq. (5) with the integral over µ in that equation incorporated into the posterior
means. As in the proof of Theorem 1, let ν be such that γ(ν, σ2,m) = 0. Then

0 = γ(ν, σ2,m) = sup
1≤τ≤m

E

[
τ∑
t=1

νt

]
.

The optimal stopping problem above can be solved by finding the root of the following Bellman
equation for t = m.

Vt(x, σ2) =

{
x+ Eη∼N (0,σ4/(1+σ2))

[
max

{
0,Vt−1

(
x+ η, σ2

1+σ2

)}]
if t ≥ 1

0 otherwise .
(21)

Then by Lemma 3 the Gittins index satisfies

γ(0, σ2,m) = γ(ν, σ2,m)− ν = −ν = −max
{
x : Vm(x, σ2) = 0

}
. (22)
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Now Eq. (21) is a Bellman equation and conveniently there is a whole field devoted to solving
such equations (Bertsekas and Tsitsiklis, 1995, and references therein). An efficient algorithm that
computes the Gittins index to arbitrary precision by solving Eq. (21) using backwards induction and
approximating max

{
0,Vt(x, σ2)

}
using quadratic splines may be found at https://github.

com/tor/libbandit. The motivation for choosing the quadratic is because the expectation in
Eq. (21) can be computed explicitly in terms of the error function and because Vt(x, σ2) is convex
in x, so the quadratic leads to a relatively good fit with only a few splines. The convexity of V
also means that Eq. (22) can be computed efficiently from a sufficiently good approximation of
Vm. Finally, in order to implement Algorithm 1 up to a horizon of n we may need γ(ν, 1/T,m) =
ν+ γ(0, 1/T,m) for all T and m satisfying T +m ≤ n. This can computed by solving n copies of
Eq. (21) with σ2 = 1 and m ∈ {1, . . . , n− 1}. The total running time is O(n2N) where N is the
maximum number of splines required for sufficient accuracy. The results can be stored in a lookup
table of sizeO(n2), which makes the actual simulation of Algorithm 1 extremely fast. Computation
time for n = 104 was approximately 17 hours using 8 cores of a Core-i7 machine.

Appendix C. Experiments

I compare the Gittins strategy given in Algorithm 1 with UCB, OCUCB (Lattimore, 2015a) and
Thompson sampling (TS) with a flat Gaussian prior (Thompson, 1933; Agrawal and Goyal, 2012).
Due to the computational difficulties in calculating the Gittins index we are limited to modest hori-
zons. For longer horizons the Gittins index may be approximation by the lower bound in The-
orem 1. I also compare the Gittins index strategy to the Bayesian optimal strategy that can be
computed with reasonable accuracy for the two-armed case and a horizon of n = 2000. Er-
ror bars are omitted from all plots because they are too small to see. All code is available from
https://github.com/tor/libbandit.

Algorithm Index

UCB µ̂i(t− 1) +
√

2
Ti(t−1) log t

OCUCB µ̂i(t− 1) +
√

3
Ti(t−1) log

(
2n
t

)
TS ∼ N (µ̂i(t− 1), (Ti(t− 1) + 1)−1)

Table 1: Comparison Algorithms

Worst-case regret I start with the worst case regret for horizons n ∈
{

103, 104
}

. In all experiments
the first arm is optimal and has mean µ1 = 0. The remaining arms have µi = −∆. In Fig. 1
I plot the expected regret of various algorithms with d ∈ {2, 5, 10} and varying ∆. The results
demonstrate that the Gittins strategy significantly outperforms both UCB and Thompson sampling,
and is a modest improvement on OCUCB in most cases.

17

https://github.com/tor/libbandit
https://github.com/tor/libbandit
https://github.com/tor/libbandit


LATTIMORE

UCB Thompson Sampling OCUCB Gittins (Algorithm 1)
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Figure 1: Worst case regret comparison

Approximating the Gittins index Current methods for computing the Gittins index are only prac-
tical for horizons up to O(104). For longer horizons it seems worthwhile to find a closed form
approximation. Taking inspiration from Theorem 1, define γ̃(ν, σ2,m) ≈ γ(ν, σ2,m) by

γ̃(ν, σ2,m) = ν +
√

2σ2 log β(σ2,m) where

β(σ2,m) = max

{
1,

1

4
min

{
m

log
3
2 (m)

,
mσ2

log
1
2 (mσ2)

}}
.

This is exactly the lower bound in Theorem 1, but with the leading constant chosen (empirically) to
be 1/4. I compare the indices in two key regimes. First fix ν = 0 and σ2 = 1 and vary the horizon.
In the second regime the horizon is fixed to m = 103 and σ2 = 1/T is varied. The results (Fig. 2)
suggest a relatively good fit.
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Figure 2: Approximation of the index

The approximated index strategy is reasonably competitive with the Gittins strategy (Fig. 3). For
longer horizons the Gittins index cannot be computed in reasonable time, but the approximation can
be compared to other efficient algorithms such as OCUCB, Thompson sampling and UCB (Fig. 3).
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The approximated version Gittins index is performing well compared to Thompson sampling and
UCB, and is only marginally worse than OCUCB. As an added bonus, by cloning the proofs of
Theorems 5 and 12 it can be shown that the approximate index enjoys the same regret guarantees as
the Gittins strategy/UCB.
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Figure 3: Regret for approximate Gittins index strategy

Comparing Gittins and Bayes Unfortunately the Bayesian optimal strategy is not typically an
index strategy. The two natural exceptions occur when the rewards are discounted geometrically or
when there are only two arms and the return of the second arm is known. Despite this, the Bayesian
optimal strategy can be computed for small horizons and a few arms using a similar method as
the Gittins index. Below I compare the Gittins index against the Bayesian optimal and OCUCB
for n = 2000 and d = 2 and µ1 = 0 and µ2 = −∆. The results show the similar behaviour of
the Gittins index strategy and the Bayesian optimal strategy, while OCUCB is making a different
trade-off (better minimax regret at the cost of worse long-term regret).
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Figure 4: Comparing Gittins and Bayesian optimal

Appendix D. Proof of Lemma 2

For parts (1) and (2) we have θ ∈ (−∞, 0). Define tθ ∈ {1, 2, . . .} by

tθ = min

{
t ≥ 1

ν2
:

√
4

t
log(4tν2) ≤ −θ/2

}
.
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Then

E[τ |µ = θ] =
m∑
t=1

P {τ ≥ t|µ = θ} ≤ tθ +
m∑

t=tθ+1

P {τ ≥ t|µ = θ}

≤ tθ +
m−1∑
t=tθ

P

{
µ̂t +

√
4

t
log (4tν2) > 0

∣∣∣∣∣µ = θ

}

≤ tθ +
m−1∑
t=tθ

P {µ̂t ≥ θ/2|µ = θ} ≤ tθ +
∞∑
t=tθ

exp

(
− tθ

2

8

)
≤ tθ +

8

θ2
.

The results follow by naively bounding tθ. For part 3, assume µ ≥ 0 and define St = tµ̂t and
tk =

⌈
1/ν2

⌉
2k. By using the peeling device we obtain

P {τ < m|µ = θ} = P

{
∃t ≥ 1

ν2
: µ̂t +

√
4

t
log(4tν2) ≤ 0

∣∣∣∣∣µ = θ

}

≤
∞∑
k=0

P
{
∃t ≤ tk+1 : St +

√
2 · tk+1 log(4tkν2) ≤ 0

∣∣∣µ = θ
}

≤
∞∑
k=0

1

4tkν2
≤
∞∑
k=0

1

4 · 2k
=

1

2
.

Therefore E[τ |µ = θ] ≥ m/2.

Appendix E. Concentration of Gaussian Random Variables

These lemmas are not new, but are collected here with proofs for the sake of completeness.

Lemma 14 Let σ ≥ 0 and ν < 0 and X ∼ N (ν, σ2), then for x ≥ ν

1. P {X ≥ x} ≤ exp

(
−(ν − x)2

2σ2

)
.

2. E[X1{X ≤ 0}] ≥ ν − σ/
√

2π.

Proof The first is well known. The second follows since

E[X1{X ≤ 0}] =

∫ 0

−∞

x√
2πσ2

exp

(
−(ν − x)2

2σ2

)
dx

=
ν

2
Erfc

(
ν√
2σ2

)
−
√
σ2

2π
exp

(
− ν2

2σ2

)
≥ ν − σ/

√
2π

as required.
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Lemma 15 Let δ ∈ (0, 1) and ∆ ≥ 0 and X1, . . . , Xn be a sequence of i.i.d. random variables
with Xt ∼ N (0, 1) and St =

∑t
s=1Xs. Then

P

{
∃t ≤ n : St ≥ n∆ +

√
2n log

(
1

δ

)}
≤ δ√

π log(1/δ)
exp

(
−n∆2

2

)
.

Proof Let ε > 0. By the reflection principle we have P {∃t ≤ n : St ≥ ε} ≤ 2P {Sn ≥ ε} and

2P {Sn ≥ ε} = 2

∫ ∞
ε

1√
2πn

exp

(
−x

2

2n

)
dx

≤ 2

ε

∫ ∞
ε

x√
2πn

exp

(
−x

2

2n

)
dx

=
1

ε

√
2n

π
exp

(
− ε

2

2n

)
.

There result is completed by substituting ε = n∆ +
√

2n log(1/δ) and naive simplification.

Appendix F. Proof of Lemma 6

For the first part we can apply Lemma 15 and the union bound.

P

∃t ≤ n : St ≥ t∆ +

√√√√√2t log

 cn

2 log
3
2
+(n/2)




≤
n∑
t=1

P

St ≥ t∆ +

√√√√√2t log

 cn

2 log
3
2
+(n/2)




≤
2 log

3
2
+(n/2)

cn

√√√√π log

(
cn

2 log
3
2
+(n/2)

) ∞∑
t=1

exp

(
− t∆

2

2

)

≤ log(n)

n∆2
·

4 log
3
2
+(n/2)

c log(n)

√√√√π log

(
cn

2 log
3
2
+(n/2)

) .

The result follows by noting that

lim
n→∞

4 log
3
2
+(n/2)

c log(n)

√√√√π log

(
cn

2 log
3
2
+(n/2)

) =
4

c
√
π
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and then choosing n0 sufficiently large. Moving to the second part. Let η ∈ (0, 1] be a constant to
be chosen later and tk = (1 + η)k and

αk =
2 log

1
2
+

(
n

2tk

)
c

K = max

{
k : tk ≤ 2en and

√
n

tk
≥ αk ≥ 1

}
.

An easy computation shows that there exists a universal constant c′ > 0 such that tK ≥ c′n. Then

P

∃t ≤ n : St ≥ t∆ + max

0,

√√√√√2t log

 cn

2t log
1
2
+(n/(2t))





≤
K∑
k=0

P

{
∃t ≤ tk : St ≥

tk∆

(1 + η)
+

√
2tk

1 + η
log

(
n

tkαk

)}
+ P {∃tK ≤ t ≤ n : St ≥ t∆} .

(23)

The second term in Eq. (23) is easily bounded by a peeling argument.

P {∃tK ≤ t ≤ n : St ≥ t∆} ≤
∞∑
i=1

P {∃t ≤ (i+ 1)tK : St ≥ itK∆}

≤
∞∑
i=1

exp

(
−

i2t2K∆2

2(i+ 1)tK

)
≤ c′′

n∆2
, (24)

where c′′ > 0 is some sufficiently large universal constant and we have used the fact that tK ≥ c′n
and naive algebra. The first term in Eq. (23) is slightly more involved. Using peeling and Lemmas
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15 and 21 we have universal constants c′ and c′′ such that

K∑
k=0

P

{
∃t ≤ tk : St ≥

tk∆

(1 + η)
+

√
2tk

1 + η
log

(
n

tkαk

)}
(a)

≤
K∑
k=0

√√√√ 1 + η

π log
(

n
tkαk

) ( tkαk
n

)1/(1+η)

exp

(
− tk∆

2

2(1 + η)2

)
(b)

≤
K∑
k=0

αk

√√√√ 2

π log
(

n
tkαk

) ( tk
n

)1/(1+η)

exp

(
− tk∆

2

2(1 + η)2

)

(c)

≤
K∑
k=0

2 log
1
2
+

(
n
tk

)
c

√√√√ 4

π log
(
n
tk

) ( tk
n

)1/(1+η)

exp

(
− tk∆

2

2(1 + η)2

)

(d)
=

4

c
√
π

K∑
k=0

(
tk
n

)1/(1+η)

exp

(
− tk∆

2

2(1 + η)2

)
(e)

≤ 3 · 4
cη

(
2(1 + η)

n∆2

)1/(1+η)

(f)

≤ 4 · 3 · 4
cη

(
1

n∆2

)1/(1+η)

.

where (a) follows from Lemma 15, (b) since η ∈ (0, 1] and αk ≥ 1, (c) by substituting the value of
αk and because

√
n/tk ≥ αk, (d) and (f) are trivial while (e) follows from Lemma 21. Then choose

η =
1

log+(n∆2)
∈ (0, 1] ,

which satisfies

1

η

(
1

n∆2

)1/(1+η)

≤ e

n∆2
log+(n∆2) .

The result by combining the above reasoning with Eq. (24) and substituting into Eq. (23).

Appendix G. Proof of Theorem 12

As before I assume for convenience that µ1 ≥ µ2 ≥ . . . ≥ µd. Let n be fixed and abbreviate
γi(t) = γ(νi(t−1), σ2

i (t−1), n−t+1). Like the proof of Theorem 5 there are two main difficulties.
First, showing for suboptimal arms i that γi(t) < µi+∆i/2 occurs with sufficiently high probability
once Ti(t) is sufficiently large. Second, showing that γ1(t) ≥ µ1 − ∆i/2 occurs with sufficiently
high probability. Let F be the event that there exists an arm i and round t ∈ {1, . . . , n} such that

|µ̂i(t)− µi| ≥

√
2

Ti(t)
log(2dn2) .
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As in the proof of Theorem 5 we have P {F} ≤ 1/n. The regret due to F occurring is negligible,
so from now on assume that F does not hold. By Eq. (18) we have

νi(t) = ηi(t)νi + (1− ηi(t))µ̂i(t) ,

where

ηi(t) =
1

1 + σ2
i Ti(t)

= O

(
1

Ti(t)

)
.

Therefore for sufficiently large n and ui =
⌈

32
∆2 log(dn2)

⌉
and Ti(t− 1) = ui

γi(t) ≤ ηi(t− 1)νi + (1− ηi(t− 1))µ̂i(t− 1) +
√

2σ2
i (t− 1) log(2n)

≤ ηi(t− 1)(νi − µi) + µi +

√
2

Ti(t− 1)
log(2n) +

√
2

Ti(t− 1)
log(2dn2)

≤ ηi(t− 1)(νi − µi) + µi + ∆i/2 ≤ µi + 3∆i/4 .

For the first arm we have for t ≤ n/2 that

γ1(t) ≥ η1(t− 1)ν1 + (1− η1(t− 1))µ̂1(t− 1) +
√

2σ2
1(t− 1) log βt .

where by Theorem 1

βt ≥ cmin

 n/2

log
3
2
+(n/2)

,
nσ2

1(t− 1)/2

log
1
2
+(nσ2

1(t− 1)/2)

 .

For any ∆ > 0 define F∆ to be the event that there exists a t ≤ n/2 for which

µ̂1(t− 1) +

√
2

T1(t− 1)
log βt ≤ µ1 −∆ .

By Lemma 6 there is a universal constant c′ > 0 such that

P {F∆} ≤ c′(log(n) + log+(n∆2))/(n∆2)

and when F∆ does not occur we have for t ≤ n/2 that

γ1(t) ≥ η1(t− 1)ν1 + (1− η1(t− 1))

(
µ1 −∆−

√
2

T1(t− 1)
log βt

)
+
√

2σ2
1(t− 1) log βt

≥ µ1 −∆−O
(

1

T1(t− 1)

)
− (1− η1(t− 1))

√
2

T1(t− 1)
log βt

+
√

2σ2
1(t− 1) log βt .
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Comparing the ratio of the last two terms gives

(1− η1(t− 1))
√

2
T1(t−1) log βt√

2σ2
1(t− 1) log βt

=

√
σ2

1T1(t− 1)

1 + σ2
1T1(t− 1)

< 1 .

Since log βt = Θ(log n) for t ≤ n/2, if F∆ does not hold and n is sufficiently large, then

γ1(t) ≥ µ1 − 2∆ for all t ≤ n/2 .

The proof is completed by duplicating the argument given in the proof of Theorem 5 and taking the
limit as n tends to infinity.

Appendix H. Proof of Theorem 13

Lemma 16 Let X ∼ N (0, σ2) and A be an arbitrary event. Then

E1{A}X ≤ P {A}

√
2σ2 log

(
1

P {A}

)
.

Lemma 17 Let Bt be the standard Brownian motion. Let ε > 0 and define stopping time τ =
min {t : Bt = −ε}. Then

P {τ > t} = Φ

(
ε√
t

)
− Φ

(
−ε√
t

)
.

The proofs of Lemmas 16 and 17 are omitted, but the former follows by letting δ = P {A} and
noting that the worst-case occurs when A = 1{X ≥ α} where α is such that∫ ∞

α

exp
(
−x2/(2σ2)

)
√

2πσ2
dx = δ .

The second lemma is well known (Lerche, 1986, for example). For what follows we need an alter-
native view of the Gittins index. Let ν ∈ R and 1 ≥ σ2 ≥ 0. Furthermore define

σ2
t =

σ2

1 + (t− 1)σ2
· σ2

1 + tσ2
,

which satisfies
∑∞

t=1 σ
2
t = σ2. I abbreviate σ2

≤t =
∑t

s=1 σ
2
t . Let ν1 = ν and νt+1 = νt + ηt where

ηt ∼ N (0, σ2
t ). Then the Gittins index is given by

γ(ν, σ2, n) = sup
1≤τ≤n

E [
∑τ

t=1 νt]

E[τ ]
,

where 1{τ = t} is measurable with respect to the σ-algebra generated by ν1, ν2, . . . , νt+1. This is
equivalent to the definition in Eq. (5), but written in terms of the evolution of the posterior mean
rather than the observed reward sequences (these can be computed from each other in a deterministic
way).
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Lemma 18 There exists a universal constant 1 ≥ c > 0 such that γ(ν, σ2, n) ≥ c
√

2σ2
≤n.

The proof is left as an exercise (hint: choose a stopping time τ = dn/2e unless νdn/2e is large
enough when τ = n). Recall that τ = τ(ν, σ2, n) is the stopping rule defining the Gittins index
for mean ν, variance σ2 and horizon n. The following lemma shows that τ = n with reasonable
probability and is crucial for the proof of Theorem 13.

Lemma 19 Let ν ∈ R and σ2 > 0 and let τ = τ(ν, σ2, n). Then there exists a universal constant
c′ > 0 such that

P {τ = n} ≥ c′

n2 log(n)
.

Proof Assume without loss of generality (by translation and Lemma 3) that γ(ν, σ2, n) = 0 and let

E = −ν ≥ c
√

2σ2
≤n by Lemma 18. By definition of the Gittins index we have

E

[
τ∑
t=1

νt

]
= 0 .

Let δt = P {τ ≥ t and νt ≥ E/(2n)} and αt = E[νt|τ ≥ t and νt ≥ E/(2n)]. By Lemma 16 we

have αt ≤
√

2σ2
≤t log(1/δt)− E ≤

√
2σ2
≤t log(1/δt). Therefore

0 = E

[
τ∑
t=1

νt

]
≤ −E/2 +

n∑
t=2

δtαt .

Therefore there exists a t such that δtαt ≥ E/(2n) and so

δt

√
2σ2
≤t log

1

δt
≥ δtαt ≥

E
2n
≥
c
√

2σ2
≤n

2n
.

Straightforward analysis shows that

δt ≥
c

2n log
(

2n
c

) .
Now we apply Lemma 17. First note that if τ ≥ t and νs ≥ 0 for all s ≥ t, then τ = n. Therefore

P {τ = n} ≥ P {τ ≥ t and νs ≥ 0 for all s ≥ t}

≥ c

2n log
(

2n
c

) (Φ

(
E

2nσ≤n

)
− Φ

(
− E

2nσ≤n

))
≥ c

2n log
(

2n
c

) (Φ
( c

2n

)
− Φ

(
− c

2n

))
≥ c2

8n2 log
(

2n
c

)
as required.
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Remark 20 It is rather clear that the above proof is quite weak. Empirically it appears that
P {τ = n} = Ω(1/n), but the result above is sufficient for our requirements.

Proof of Theorem 13 Let π∗ be the Bayesian optimal policy, which by assumption chooses I1 = 1.
Define π be the policy that chooses arm 2 until t such that γ2(t) < γ2(1) and thereafter follows π∗

as if no samples had been observed and substituting the observed values for the second arm as it is
chosen. Let τ = τ(ν2, σ

2
2, n), then π chooses the second time until at least t = τ . For any policy π

let T πi (n) be the number of plays of arm i by policy π, which is a random variable. Let νi,s be the
posterior mean of the ith arm after s− 1 plays. Then the value of policy π is

V π = E

 d∑
i=1

Tπi (n)∑
s=1

νi,s

 ,
which is maximised by the Bayesian optimal policy π∗. Therefore if we abbreviate T π

∗
i (n) by Ti(n)

and γ2(1) by γ, then

0 ≥ V π − V π∗

≥ E

1{τ > T2(n)}
T1(n)∑

s=T1(n)−τ+T2(n)

(γ − ν1,s)


≥

n∑
s=1

E
[
1{τ − T2(n) ≥ s} (γ −max

s≤n
ν1,n)

]

≥
n∑
s=1

P {τ − T2(n) ≥ s}

(
γ − ν1 −

√
2σ2

1 log

(
1

P {τ − T2(n) ≥ s}

))

=

n∑
s=1

δs

(
γ − ν1 −

√
2σ2

1 log

(
1

δs

))
, (25)

where δs = P {τ − T2(n) ≥ s}. Since the optimal policy chooses action 1 in the first round by
assumption, if τ = n, then τ − T2(n) ≥ 1 is guaranteed. Therefore by Lemma 19 we have

δ1 ≥
c′

n2 log(n)
.

By rearranging Eq. (25) we have for any δ ≤ δ1 that

γ ≤ ν1 +

∑n
s=1 δs

√
2σ2

1 log
(

1
δs

)
∑n

s=1 δs

≤ ν1 +

√
2σ2

1 log

(
1

δ

)
+

∑
s:δs<δ

δs
√
−2σ2

1 log δs

δ1

≤ ν1 +

√
2σ2

1 log

(
1

δ

)
+

∑
s:δs<δ

√
2σ2

1δs

δ1

≤ ν1 +

√
2σ2

1 log

(
1

δ

)
+
n
√

2σ2
1δ

δ1
.
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The result is completed by choosing δ = δ2
1n
−2.

Appendix I. Technical Lemmas

Lemma 21 Let η ∈ (0, 1) and ∆ > 0. Then

∞∑
k=0

(1 + η)
k

1+η exp
(
−(1 + η)k∆2

)
≤ 3

η

(
1

∆2

)1/(1+η)

.

Proof Let L = min
{
L : (1 + η)k ≥ 1

∆2

}
. Then

∞∑
k=0

(1 + η)
k

1+η exp
(
−(1 + η)k∆2

)
=

L−1∑
k=0

(1 + η)
k

1+η exp
(
−(1 + η)k∆2

)
+

∞∑
k=L

(1 + η)
k

1+η exp
(
−(1 + η)k∆2

)
≤

L−1∑
k=0

(1 + η)
k

1+η +
∞∑
k=L

(1 + η)
k

1+η exp
(
−(1 + η)k∆2

)
≤ 1

η

(
1

∆2

)1/(1+η)

+
∞∑
k=L

(1 + η)
k

1+η exp
(
−(1 + η)k∆2

)
≤ 1

η

(
1

∆2

)1/(1+η)

+

(
1 + η

∆2

)1/(1+η) ∞∑
k=0

(1 + η)
k

1+η exp
(
−(1 + η)k

)
≤ 1

η

(
1

∆2

)1/(1+η)

+

(
1 + η

∆2

)1/(1+η) ∞∑
k=0

(1 + η)k exp
(
−(1 + η)k

)
≤ 1

η

(
1

∆2

)1/(1+η)

+

(
1 + η

∆2

)1/(1+η)(1

e
+

∫ ∞
0

(1 + η)k exp
(
−(1 + η)k

)
dk

)
≤ 1

η

(
1

∆2

)1/(1+η)

+

(
1 + η

∆2

)1/(1+η) 1

e

(
1 +

1

log(1 + η)

)
≤ 2

η

(
1 + η

∆2

)1/(1+η)

≤ 3

η

(
1

∆2

)1/(1+η)

as required.

Appendix J. Completing Proof of Theorem 1

First we need and easy lemma.
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Lemma 22 f(β) = 1
β

√
1

2π −
√

log β
2 Erfc

(√
log β

)
satisfies:

1. limβ→∞ f(β)β log(β) = 1√
8π

.

2. f(β) ≥ 1
10β log(β) for all β ≥ 3.

3. f(β) ≤ 1√
8π
· 1
β log β .

Completing Theorem 1 To begin we choose c = (40c′′′)4. Recall that we need to show that

mσf(β) ≥ c′′′max

{
σ,
√
σ2 log(β),

1√
σ2 log(β)

,
√
mW (mσ2 log(β))β−

7
8

}
,

where

β1 =
m

c log
3
2
+(m)

β2 =
mσ2

c log
1
2
+(mσ2)

β = min {β1, β2}

and β ≥ 3 is assumed. This is equivalent to showing:

(1) mσf(β) ≥ c′′′σ and

(2) mσf(β) ≥ c′′′
√
σ2 log(β) and

(3) mσf(β) ≥ c′′′/
√
σ2 log(β) and

(4) mσf(β) ≥ c′′′
√
mW (mσ2 log(β))β−

7
8 .

By Theorem 22 we have

mσf(β) ≥ mσ

10β log+(β)
≥ mσ

10 · m

c log
3
2
+(m)

log+

(
m

c log
3
2
+(m)

)
≥ c′′′σ

√
log+(m) ≥ c′′′

√
σ2 log(β) ≥ c′′′σ .

Therefore (1) and (2) hold. For (3) we have

mσf(β) ≥ mσ

10β log+(β)
≥ mσ

10 · mσ2

c log
1
2
+(mσ2)

log
1
2
+

(
mσ2

c log
1
2
+(mσ2)

)√
log+(β)

≥ c′′′√
σ2 log(β)

.

Therefore (3) holds. Finally

mσf(β)β
7
8

(a)

≥ mσ

10β
1
8 log+(β)

(b)

≥ mσ

40β
1
4

(c)

≥ mσ

40
(

mσ2

(40c′′′)4

) 1
4

(d)
= c′′′

√
m
(
mσ2

) 1
4

(e)

≥ c′′′
√
mW (mσ2 log(mσ2))

(f)

≥ c′′′
√
mW (mσ2 log(β)) ,
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where (a) follows from Lemma 22. (b) since β
1
8 log(β) ≤ 4β

1
4 for β ≥ 3. (c) by substituting and

naively upper bounding β ≤ β2. (d) is trivial. (e) since x
1
4 ≥

√
W (x log(x)) for all x ≥ 0. (f) is

true because β ≤ β2 ≤ mσ2.

Appendix K. A Brief History of Multi-Armed Bandits

This list is necessarily not exhaustive. It contains in (almost) chronological order the papers that are
most relevant for the present work, with a special focus on earlier papers that are maybe less well
known. Please contact me if there is a serious omission in this list.

• Thompson (1933) proposes a sampling approach for finite-horizon undiscounted Bernoulli
bandits now known as Thompson sampling. No theoretical results are given.

• Robbins (1952) sets out the general finite-horizon bandit problem and gives some Han-
nan consistent algorithms and general discussion. Robbins seems to have been unaware of
Thompson’s work.

• Bradt et al. (1956) present the optimal solution for the Bayesian one-armed bandit in the
finite-horizon undiscounted setting. They also prove many of the counter-intuitive properties
of the Bayesian optimal solution for multi-armed bandits. The index used in the present article
could just as well be called the Bradt–Johnson–Karlin index.

• Gittins (1979) presents the optimal solution for the Bayesian multi-armed bandit in the infinite-
horizon geometrically discounted setting. Gittins seems to have been unaware of the work by
Bradt et al. (1956) who defined a similar index. Gittins’ result does not apply in the finite-
horizon setting.

• Whittle (1980); Weber (1992); Tsitsiklis (1994) all give alternative proofs and/or characteri-
sations of the Gittins index for the infinite-horizon discounted case.

• Bather (1983) gives an asymptotic approximation of the infinite-horizon Gittins index (see
also the work by Yao (2006)).

• The textbook by Berry and Fristedt (1985) summarises many of the earlier results on Bayesian
multi-armed bandits. They also prove that geometric discounting is essentially necessary for
the Gittins index theorem to hold and give counter-examples in the Bernoulli case.

• Lai and Robbins (1985) develop asymptotically optimal frequentist algorithms for the multi-
armed bandits and prove the first lower bounds.

• Agrawal (1995) and Katehakis and Robbins (1995) independently develop the UCB algo-
rithm.

• Burnetas and Katehakis (1997) give asymptotic approximations for the finite-horizon Gittins
index (more specific results in a similar vein are given by Chernoff and Ray (1965)).

• Auer et al. (2002) proves finite-time guarantees for UCB.
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REGRET ANALYSIS OF THE FINITE-HORIZON GITTINS INDEX STRATEGY

• Niño-Mora (2011) presents some methods for computing the finite-horizon Gittins index in
the discrete case, and also suggest that index algorithm is a good approximation for the in-
tractable Bayesian solution (no reference given).

• Kaufmann et al. (2012b) gave promising empirical results for the finite-horizon Gittins index
strategy for the Bernoulli case, but did not study its theoretical properties. They also incor-
rectly claim that the Gittins strategy is Bayesian optimal. Their article played a large role in
motivating the present work.
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LATTIMORE

Appendix L. Table of Notation

d number of arms

n horizon

t current round

µi expected return of arm i

µ∗ maximum mean reward, µ∗ = maxi µi

µ̂i(t) empirical estimate of return of arm i after round t

Ti(t) number of times arm i has been chosen after round t

It arm chosen in round t

Xt reward in round t

νi prior mean of arm i

σ2
i prior variance for mean of arm i

∆i gap between the expected returns of the best arm and the ith arm

∆max maximum gap, maxi ∆i

∆min minimum non-zero gap, min {∆i : ∆i > 0}

log+(x) max {1, log(x)}

W(x) product logarithm x = W (x)exp(W (x))

diag(σ2
1, . . . , σ

2
d) diagonal matrix with entries σ2

1, . . . , σ
2
d

γ(ν, σ2,m) Gittins index for mean/variance (ν, σ2) and horizon m

τ(ν, σ2,m) stopping time that determines the Gittins index

Erfc(x) complementary error function

Erfc(x) =
2√
π

∫ ∞
x

exp(−y2)dy

Erf(x) error function Erf(x) = 1− Erfc(x)

N (µ, σ2) Gaussian with mean µ and variance σ2

Φ(x) standard Gaussian cdf

Φ(x) =
1√
2π

∫ x

−∞
exp

(
− t

2

2

)
dt
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