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Abstract
We show that gradient descent converges to a local minimizer, almost surely with random initial-
ization. This is proved by applying the Stable Manifold Theorem from dynamical systems theory.
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1. Introduction

Saddle points have long been regarded as a tremendous obstacle for continuous optimization. There
are many well known examples when worst case initialization of gradient descent provably converge
to saddle points (Nesterov, 2004, Section 1.2.3), and hardness results which show that finding even
a local minimizer of non-convex functions is NP-Hard in the worst case (Murty and Kabadi, 1987).
However, such worst-case analyses have not daunted practitioners, and high quality solutions of
continuous optimization problems are readily found by a variety of simple algorithms. Building on
tools from the theory of dynamical systems, this paper demonstrates that, under very mild regularity
conditions, saddle points are indeed of little concern for the gradient method.

More precisely, let f : Rd → R be twice continuously differentiable, and consider the classic
gradient method with constant step size α:

xk+1 = xk − α∇f(xk). (1)

We call x a critical point of f if ∇f(x) = 0, and say that f satisfies the strict saddle property if
each critical point x of f is either a local minimizer, or a “strict saddle”, i.e,∇2f(x) has at least one
strictly negative eigenvalue. Informally, we prove:

If f : Rd → R is twice continuously differentiable and satisfies the strict saddle prop-
erty, then gradient descent (Equation 1) with a random initialization and sufficiently
small constant step size almost surely converges to a local minimizer.

c© 2016 J.D. Lee, M. Simchowitz, M.I.J. & B.R. .



LEE SIMCHOWITZ

Here, by sufficiently small, we simply mean less than the inverse of the Lipschitz constant of the
gradient. As we discuss below, such step sizes are standard for the gradient method. We remark that
the strict saddle assumption is necessary in the worst case, due to hardness results regarding testing
the local optimality of functions whose Hessians are highly degenerate at critical points (e.g, quartic
polynomials) (Murty and Kabadi, 1987).

1.1. Related work

Prior work has show that first-order descent methods can circumvent strict saddle points, provided
that they are augmented with unbiased noise whose variance is sufficiently large along each di-
rection. For example, Pemantle (1990) establishes convergence of the Robbins-Monro stochastic
approximation to local minimizers for strict saddle functions. More recently, Ge et al. (2015) give
quantitative rates on the convergence of noise-added stochastic gradient descent to local minimiz-
ers, for strict saddle functions. The condition that the noise have large variance along all directions
is often not satisfied by the randomness which arises in sample-wise or coordinate-wise stochastic
updates. In fact, it generally requires that additional, near-isotropic noise be added at each itera-
tion, which yields convergence rates that depend heavily on problem parameters like dimension. In
contrast, our results hold for the simplest implementation of gradient descent and thus do not suffer
from the slow convergence associated with adding high-variance noise to each iterate.

But is this strict saddle property reasonable? Many works have answered in the affirmative by
demonstrating that many objectives of interest do in fact satisfy the “strict saddle” property: PCA,
a fourth-order tensor factorization (Ge et al., 2015), formulations of dictionary learning (Sun et al.,
2015b,a) and phase retrieval (Sun et al., 2016).

To obtain provable guarantees, the authors of Sun et al. (2015b,a) and Sun et al. (2016) adopt
trust-region methods which leverage Hessian information in order to circumvent saddle points. This
approach joins a long line of related strategies, including: a modified Newton’s method with curvi-
linear line search (Moré and Sorensen, 1979), the modified Cholesky method (Gill and Murray,
1974), trust-region methods (Conn et al., 2000), and the related cubic regularized Newton’s method
(Nesterov and Polyak, 2006), to name a few. Specialized to deep learning applications, Dauphin
et al. (2014); Pascanu et al. (2014) have introduced a saddle-free Newton method.

Unfortunately, such curvature-based optimization algorithms have a per-iteration computational
complexity which scales quadratically or even cubically in the dimension d, rendering them un-
suitable for optimization of high dimensional functions. In contrast, the complexity of an iteration
of gradient descent is linear in dimension. We also remark that the authors of Sun et al. (2016)
empirically observe gradient descent with 100 random initializations on the phase retrieval problem
reliably converges to a local minimizer, and one whose quality matches that of the solution found
using more costly trust-region techniques.

More broadly, many recent works have shown that gradient descent plus smart initialization
provably converges to the global minimum for a variety of non-convex problems: such settings
include matrix factorization (Keshavan et al., 2009; Zhao et al.) , phase retrieval (Candes et al.,
2015; Cai et al., 2015), dictionary learning (Arora et al., 2015), and latent-variable models (Zhang
et al., 2014; Belkin et al., 2014). While our results only guarantee convergence to local minimizers,
they eschew the need for complex and often computationally prohibitive initialization procedures.

Finally, some preliminary results have shown that there are settings in which if an algorithm
converges to a saddle point it necessarily has a small objective value. For example, Choromanska
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et al. (2014) studies the loss surface of a particular Gaussian random field as a proxy for understand-
ing the objective landscape of deep neural nets. The results leverage the Kac-Rice Theorem (Adler
and Taylor, 2009; Auffinger et al., 2013), and establish that that critical points with more positive
eigenvalues have lower expected function value, often close to that of the global minimizer. We
remark that functions drawn from this Gaussian random field model share the strict saddle property
defined above, and so our results apply in this setting. On the other hand, our results are consider-
ably more general, as they do not place stringent generative assumptions on the objective function
f .

1.2. Organization

The rest of the paper is organized as follows. Section 2 introduces the notation and definitions used
throughout the paper. Section 3 provides an intuitive explanation for why it is unlikely that gradi-
ent descent converges to a saddle point, by studying a non-convex quadratic and emphasizing the
analogy with power iteration. Section 4 states our main results which guarantee gradient descent
converges to only local minimizers, and also establish rates of convergence depending on the local
geometry of the minimizer. The primary tool we use is the local stable manifold theorem, accom-
panied by inversion of gradient descent via the proximal point algorithm. Finally, we conclude in
Section 5 by suggesting several directions of future work.

2. Preliminaries

Throughout the paper, we will use f to denote a real-valued function in C2, the space of twice-
continuously differentiable functions, and g to denote the corresponding gradient map with step
size α,

g(x) = x− α∇f(x). (2)

The Jacobian of g is given by Dg(x)ij = ∂gi
∂xj

(x), or Dg(x) = I − α∇2f(x). In addition to being
C2, our main regularity assumption on f is that it has a Lipschitz gradient:

‖∇f(x)−∇f(y)‖2 ≤ L ‖x− y‖2 .

The k-fold composition of the gradient map gk(x) corresponds to performing k steps of gradient
descent initialized at x. The iterates of gradient descent will be denoted xk := gk(x0). All the
probability statements are with respect to ν, the distribution of x0, which we assume is absolutely
continuous with respect to Lebesgue measure.

A fixed point of the gradient map g is a critical point of the function f . Critical points can be
saddle points, local minima, or local maxima. In this paper, we will study the critical points of f
via the fixed points of g, and then apply dynamical systems theory to g.

Definition 1

1. A point x∗ is a critical point of f if it is a fixed point of the gradient map g(x∗) = x∗, or
equivalently∇f(x∗) = 0.

2. A critical point x∗ is isolated if there is a neighborhood U around x∗, and x∗ is the only
critical point in U .
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3. A critical point is a local minimum if there is a neighborhood U around x∗ such that f(x∗) ≤
f(x) for all x ∈ U , and a local maximum if f(x∗) ≥ f(x).

4. A critical point is a saddle point if for all neighborhoods U around x∗, there are x, y ∈ U
such that f(x) ≤ f(x∗) ≤ f(y).

As mentioned in the introduction, we will be focused on saddle points that have directions of
strictly negative curvature. This notion is made precise by the following definition.

Definition 2 (Strict Saddle) A critical point x∗ of f is a strict saddle if λmin(∇2f(x∗)) < 0.

Since we are interested in the attraction region of a critical point, we define the stable set.

Definition 3 (Global Stable Set) The global stable set W s(x∗) of a critical point x∗ is the set of
initial conditions of gradient descent that converge to x∗:

W s(x∗) = {x : lim
k
gk(x) = x∗}.

3. Intuition

To illustrate why gradient descent does not converge to saddle points, consider the case of a non-
convex quadratic, f(x) = 1

2x
THx. Without loss of generality, assume H = diag(λ1, ..., λn) with

λ1, ..., λk > 0 and λk+1, . . . , λn < 0. x∗ = 0 is the unique critical point of this function and the
Hessian at x∗ is H . Note that gradient descent initialized from x0 has iterates

xk+1 =

n∑
i=1

(1− αλi)k+1〈ei, x0〉ei .

where ei denote the standard basis vectors. This iteration resembles power iteration with the matrix
I − αH .

The gradient method is guaranteed to converge with a constant step size provided 0 < α <
2
L (Nesterov, 2004). For this quadratic f , L is equal to max |λi|. Suppose α < 1/L, a slightly
stronger condition. Then we will have (1 − αλi) < 1 for i ≤ k and (1 − αλi) > 1 for i > k. If
x0 ∈ Es := span(e1, . . . , ek), then xk converges to the saddle point at 0 since (1− αλi)k+1 → 0.
However, if x0 has a component outside Es then gradient descent diverges to ∞. For this simple
quadratic function, we see that the global stable set (attractive set) of 0 is the subspace Es. Now, if
we choose our initial point at random, the probability of that point landing in Es is zero.

As an example of this phenomena for a non-quadratic function, consider the following example
from (Nesterov, 2004, Section 1.2.3). Letting f(x, y) = 1

2x
2 + 1

4y
4 − 1

2y
2, the corresponding

gradient mapping is

g(x) =

[
(1− α)x

(1 + α)y − αy3
]
.

The critical points are

z1 =

[
0
0

]
, z2 =

[
0
−1

]
, z3 =

[
0
1

]
.
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The points z2 and z3 are isolated local minima, and z1 is a saddle point.

Gradient descent initialized from any point of the form
[
x
0

]
converges to the saddle point z1.

Any other initial point either diverges, or converges to a local minimum, so the stable set of z1 is
the x-axis, which is a zero measure set in R2. By computing the Hessian,

∇2f(x) =

[
1 0
0 3y2 − 1

]
we find that∇2f(z1) has one positive eigenvalue with eigenvector that spans the x-axis, thus agree-
ing with our above characterization of the stable set. If the initial point is chosen randomly, there is
zero probability of initializing on the x-axis and thus zero probability of converging to the saddle
point z1.

In the general case, the local stable set W s
loc(x

∗) of a critical point x∗ is well-approximated by
the span of the eigenvectors corresponding to positive eigenvalues. By an application of Taylor’s
theorem, one can see that if the initial point x0 is uniformly random in a small neighborhood around
x∗, then the probability of initializing in the span of these eigenvectors is zero whenever there
is a negative eigenvalue. Thus, gradient descent initialized at x0 will leave the neighborhood. The
primary difficulty is that x0 is randomly distributed over the entire domain, not a small neighborhood
around x∗, and Taylor’s theorem does not provide any global guarantees.

However, the global stable set can be found by inverting the gradient map via g−1. Indeed, the
global stable set is precisely ∪∞k=0g

−k(W s
loc(x

∗)). This follows because if a point x converges to x∗,
then for some sufficiently large k it must enter the local stable set. That is, x converges to x∗ if and
only if gk(x) ∈ W s

loc for sufficiently large k. If W s
loc(x

∗) is of measure zero, then g−k(W s
loc(x

∗))
is also of measure zero, and hence the global stable set is of measure zero. Thus, gradient descent
will never converge to x∗ from a random initialization.

In Section 4, we formalize the above arguments by showing the existence of an inverse gradient
map. The case of degenerate critical points, critical points with zero eigenvalues, is more delicate;
the geometry of the global stable set is no longer characterized by only the number of positive eigen-
vectors. However in Section 4, we show that if a critical point has at least one negative eigenvalue,
then the global stable set is of measure zero.

4. Main Results

We now state and prove our main theorem, making our intuition rigorous.

Theorem 4 Let f be a C2 function and x∗ be a strict saddle. Assume that 0 < α < 1
L , then

Pr(lim
k
xk = x∗) = 0.

That is, the gradient method never converges to saddle points, provided the step size is not
chosen aggressively. Greedy methods that use precise line search may still get stuck at stationary
points. However, a short-step gradient method will only converge to minimizers.

Remark 5 Note that even for the convex functions method, a constant step size slightly less than
1/L is a nearly optimal choice. Indeed, for θ < 1, if one runs the gradient method with step size of
θ/L on a convex function a convergence rate of O( 1

θT ) is attained.
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Remark 6 When limk xk does not exist, the above theorem is trivially true.

To prove Theorem 4, our primary tool will be the theory of Invariant Manifolds. Specifically,
we will use Stable-Center Manifold theorem developed in Smale (1967); Shub (1987); Hirsch et al.
(1977), which allows for a local characterization of the stable set. Recall that a map g : X → Y is
a diffeomorphism if g is a bijection, and g and g−1 are continuously differentiable.

Theorem 7 (Theorem III.7, Shub (1987)) Let 0 be a fixed point for the Cr local diffeomorphism
φ : U → E, where U is a neighborhood of 0 in the Banach space E. Suppose that E = Es ⊕
Eu, where Es is the span of the eigenvectors corresponding to eigenvalues of magnitude less than
or equal to 1 of Dφ(0), and Eu is the span of the eigenvectors corresponding to eigenvalues of
magnitude greater than 1 of Dφ(0). Then there exists a Cr embedded disk W cs

loc that is tangent to
Es at 0 called the local stable center manifold. Moreover, there exists a neighborhood B of 0, such
that φ(W cs

loc) ∩B ⊂W cs
loc, and ∩∞k=0φ

−k(B) ⊂W cs
loc.

To unpack all of this terminology, what the stable manifold theorem says is that if there is a map
that diffeomorphically deforms a neighborhood of a critical point, then this implies the existence
of a local stable center manifold W cs

loc containing the critical point. This manifold has dimension
equal to the number of eigenvalues of the Jacobian of the critical point that are less than 1. W sc

loc

contains all points that are locally forward non-escaping meaning, in a smaller neighborhood B, a
point converges to x∗ after iterating φ only if it is in W cs

loc ∩B.
Relating this back to the gradient method, replace φ with our gradient map g and let x∗ be a

strict saddle point. We first record a very useful fact:

Proposition 8 The gradient mapping g with step size α < 1
L is a diffeomorphism.

We will prove this proposition below. But let us first continue to apply the stable manifold theorem.
Note that Dg(x) = I − α∇2f(x). Thus, the set W cs

loc is a manifold of dimension equal to the
number of non-negative eigenvalues of the ∇2f(x). Note that by the strict saddle assumption, this
manifold has strictly positive codimension and hence has measure zero.

Let B be the neighborhood of x∗ promised by the Stable Manifold Theorem. If x converges to
x∗ under the gradient map, then there exists a T such that gt(x) ∈ B for all t ≥ T . This means that
gt(x) ∈ ∩∞k=0g

−k(B), and hence, gt(x) ∈W cs
loc. That is, we have shown that

W s(x∗) ⊆
∞⋃
l≥0

g−l(W cs
loc).

Since diffeomorphisms map sets of measure zero to sets of measure zero, and countable unions of
measure zero sets have measure zero, we conclude that W s has measure zero. That is, we have
proven Theorem 4.

4.1. Proof of Proposition 8

We first check that g is injective from Rn → Rn for α < 1
L . Suppose that there exist x and y such

that g(x) = g(y). Then we would have x− y = α(∇f(x)−∇f(y)) and hence

‖x− y‖ = α‖∇f(x)−∇f(y)‖ ≤ αL‖x− y‖ .
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Since αL < 1, this means x = y.
To show the gradient map is surjective, we will construct an explicit inverse function. The

inverse of the gradient mapping is given by performing the proximal point algorithm on the function
−f . The proximal point mapping of −f centered at y is given by

xy = argmin
x

1

2
‖x− y‖2 − αf(x).

For α < 1
L , the function above is strongly convex with respect to x, so there is a unique minimizer.

Let xy be the unique minimizer, then by KKT conditions,

y = xy −∇f(xy) = g(xy) .

Hence, xy is mapped to y by the gradient map.
We have already shown that g is a bijection, and continuously differentiable. Since Dg(x) =

I − α∇2f(x) is invertible for α < 1
L , the inverse function theorem guarantees g−1 is continuously

differentiable, completing the proof that g is a diffeomorphism.

4.2. Further consequences of Theorem 4

Corollary 9 Let C be the set of saddle points and assume they are all strict. If C has at most
countably infinite cardinality, then

Pr(lim
k
xk ∈ C) = 0.

Proof By applying Corollary 4 to each point x∗ ∈ C, we have that Pr(limk xk = x∗) = 0. Since
the critical points are countable, the conclusion follows since countable union of null sets is a null
set.

Remark 10 If the saddle points are isolated points, then the set of saddle points is at most countably
infinite.

Theorem 11 Assume the same conditions as Corollary 9 and limk xk exists, then Pr(limk xk =
x?) = 1, where x? is a local minimizer.

Proof Using the previous theorem, Pr(limk xk ∈ C) = 0. Since limk xk exists and there is zero
probability of converging to a saddle, then Pr(limk xk = x∗) = 1, where x∗ is a local minimizer.

We now discuss two sufficient conditions for limk xk to exist. The following proposition pre-
vents xk from escaping to ∞, by enforcing that f has compact sublevel sets, {x : f(x) ≤ c}.
This is true for any coercive function, lim‖x‖→∞ f(x) =∞, which holds in most machine learning
applications since f is usually a loss function.

Proposition 12 (Proposition 12.4.4 of Lange (2013)) Assume that f is continuously differentiable,
has isolated critical points, and compact sublevel sets, then limk xk exists and that limit is a critical
point of f .
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The second sufficient condition for limk xk to exist is based on the Lojasiewicz gradient in-
equality, which characterizes the steepness of the gradient near a critical point. The Lojasiewicz
inequality ensures that the length traveled by the iterates of gradient descent is finite. This will also
allow us to derive rates of convergence to a local minimum.

Definition 13 (Lojasiewicz Gradient Inequality) A critical point x∗ is satisfies the Lojasiewicz
gradient inequality if there exists a neighborhood U , m, ε > 0, and 0 ≤ a < 1 such that

‖∇f(x)‖ ≥ m|f(x)− f(x∗)|a (3)

for all x in {x ∈ U : f(x∗) < f(x) < f(x∗) + ε}.

The Lojasiewicz inequality is very general as discussed in Bolte et al. (2010); Attouch et al. (2010,
2013). In fact every analytic function satisfies the Lojasiewicz inequality. Also if the solution is
µ-strongly convex in a neighborhood, then the Lojasiewicz inequality is satisfied with parameters
a = 1

2 , and m =
√
2µ.

Proposition 14 Assume the same conditions as Corollary 9, and the iterates do not escape to∞,
meaning {xk} is a bounded sequence. Then limk xk exists and limk xk = x∗ for a local minimum
x∗.

Furthermore if x∗ satisfies the Lojasiewicz gradient inequality for 0 < a ≤ 1
2 , then for some C

and b < 1 independent of k,

‖xk − x∗‖ ≤ Cbk.

For 1
2 < a < 1,

‖xk − x∗‖ ≤
C

k(1−a)/(2a−1)
.

Proof The first part of the theorem follows from Absil et al. (2005), which shows that limk xk
exists. By Theorem 11, limk xk is a local minimizer x∗. Without loss of generality, we may assume
that f(x∗) = 0 by shifting the function.

Absil et al. (2005) also establish
∞∑
j=k

‖xj+1 − xj‖ ≤
2

αm(1− a)
f(xk)

1−a.

Define ek =
∑∞

j=k ‖xj+1 − xj‖, and since ek ≥ ‖xk − x∗‖ it suffices to upper bound ek.
Since we have established that xk converges, for k large enough we can use the gradient in-

equality and∇f(xk) = xk−xk+1

α :

ek ≤
2

αm(1− a)
f(xk)

1−a

≤ 2

αm1/a(1− a)
‖∇f(xk)‖(1−a)/a

≤ 2

(mα)1/a(1− a)
(ek − ek+1)

(1−a)/a.
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Define β = 2
(mα)1/a(1−a) and d = a

1−a . First consider the case 0 ≤ a ≤ 1
2 , then d ≤ 1. Thus,

ek ≤ β(ek − ek+1)
1/d

ek+1 ≤ ek −
(
ek
β

)d
≤
(
1− 1

βd

)
ek,

where the last inequality uses ek < 1 and d ≤ 1.

For 1
2 < a < 1, we have established ek+1 ≤ ek −

(
ek
β

)d
. Define the shorthands t = 1−a

2a−1 and

r = Cd−1

βd . The inductive hypothesis guarantees us ek ≤ C
kt , so ek+1 ≤ C

(
1
kt −

r
ktd

)
. We need to

verify now that

1

kt
− r

ktd
≤ 1

(k + 1)t

(k + 1)t

kt
− 1 ≤ r (k + 1)t

ktd

The last equation can be explicitly verified by noting that the left-hand side (k+1)t

kt − 1 ≤ 2t
k for k

large enough. The right-hand side satisfies r (k+1)t

ktd
≥ r k

t

ktd
= r

k . Thus for C large enough, 2t
k ≤

r
k ,

which completes the proof.

5. Conclusion

We have shown that gradient descent with random initialization and appropriate constant step size
does not converge to a saddle point. Our analysis relies on a characterization of the local stable
set from the theory of invariant manifolds. The geometric characterization is not specific to the
gradient descent algorithm. To use Theorem 4, we simply need the update step of the algorithm to
be a diffeomorphism. For example if g is the mapping induced by the proximal point algorithm,
then g is a diffeomorphism with inverse given by gradient ascent on −f . Thus the results in Sec-
tion 4 also apply to the proximal point algorithm. That is, the proximal point algorithm does not
converge to saddles. We expect that similar arguments can be used to show ADMM, mirror descent
and coordinate descent do not converge to saddle points under appropriate choices of step size. In-
deed, convergence to minimizers has been empirically observed for the ADMM algorithm Sun et al.
(2015a).

It is not clear if the step size restriction (α < 1/L) is necessary to avoid saddle points. Most
of the constructions where the gradient method converges to saddle points require fragile initial
conditions as discussed in Section 3. It remains a possibility that methods that choose step sizes
greedily, by Wolfe Line Search or backtracking, may still avoid saddle points provided the initial
point is chosen at random. We leave such investigations for future work.

Another important piece of future work would be relaxing the conditions on isolated saddle
points. In a followup work, Panageas and Piliouras (2016) have addressed this by using a countable
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covering of Rn, instead of a naive union bound. It is possible that for the structured problems that
arise in machine learning, whether in matrix factorization or convolutional neural networks, that
saddle points are isolated after taking a quotient with respect to the associated symmetry group of
the problem. Techniques from dynamical systems on manifolds may be applicable to understand
the behavior of optimization algorithms on problems with a high degree of symmetry.

It is also important to understand how stringent the strict saddle assumption is. Will a perturba-
tion of a function always satisfy the strict saddle property? Adler and Taylor (2009) provide very
general sufficient conditions for a random function to be Morse, meaning the eigenvalues at critical
points are non-zero, which implies the strict saddle condition. These conditions rely on checking the
density of∇2f(x) has full support conditioned on the event that∇f(x) = 0. This can be explicitly
verified for functions f that arise from learning problems.

However, we note that there are very difficult unconstrained optimization problems where the
strict saddle condition fails. Perhaps the simplest is optimization of quartic polynomials. Indeed,
checking if 0 is a local minimizer of the quartic

f(x) =

n∑
i,j=1

qijx
2
ix

2
j

is equivalent to checking whether the matrix Q = [qij ] is co-positive, a co-NP complete problem.
For this f , the Hessian at x = 0 is zero. In concurrent work, Anandkumar and Ge (2016) have
proposed an algorithm to avoid third-order saddles. Interestingly, the strict saddle property failing
is analogous in dynamical systems to the existence of a slow manifold where complex dynamics
may emerge. Slow manifolds give rise to metastability, bifurcation, and other chaotic dynamics,
and it would be intriguing to see how the analysis of chaotic systems could be applied to understand
the behavior of optimization algorithms around these difficult critical points.
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Jérôme Bolte, Aris Daniilidis, Olivier Ley, Laurent Mazet, et al. Characterizations of Lojasiewicz inequali-
ties: subgradient flows, talweg, convexity. Trans. Amer. Math. Soc, 362(6):3319–3363, 2010.

T Tony Cai, Xiaodong Li, and Zongming Ma. Optimal rates of convergence for noisy sparse phase retrieval
via thresholded Wirtinger flow. arXiv preprint arXiv:1506.03382, 2015.

Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval via Wirtinger flow: Theory
and algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007, 2015.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The loss surface
of multilayer networks. arXiv:1412.0233, 2014.

Andrew R Conn, Nicholas IM Gould, and Ph L Toint. Trust region methods, volume 1. SIAM, 2000.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Ben-
gio. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In
Advances in Neural Information Processing Systems, pages 2933–2941, 2014.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic gradient
for tensor decomposition. arXiv:1503.02101, 2015.

Philip E Gill and Walter Murray. Newton-type methods for unconstrained and linearly constrained optimiza-
tion. Mathematical Programming, 7(1):311–350, 1974.

M.W. Hirsch, C.C. Pugh, and M. Shub. Invariant Manifolds. Number no. 583 in Lecture Notes in Mathemat-
ics. Springer-Verlag, 1977.

Raghunandan H. Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from a few entries.
IEEE Transactions on Information Theory, 56(6):2980–2998, 2009.

K Lange. Optimization. springer texts in statistics. 2013.
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