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Abstract
We propose and analyze a family of information processing systems, where a finite set of experts or
servers are employed to extract information about a stream of incoming jobs. Each job is associated
with a hidden label drawn from some prior distribution. An inspection by an expert produces a noisy
outcome that depends both on the job’s hidden label and the type of the expert, and occupies the
expert for a finite time duration. A decision maker’s task is to dynamically assign inspections so
that the resulting outcomes can be used to accurately recover the labels of all jobs, while keeping
the system stable. Among our chief motivations are applications in crowd-sourcing, diagnostics,
and experiment designs, where one wishes to efficiently discover the nature of a large number of
items, using a finite pool of computational resources or human agents.

We focus on the capacity of such an information processing system. Given a level of accuracy
guarantee, we ask how many experts are needed in order to stabilize the system, and through what
inspection architecture. Our main result provides an adaptive inspection policy that is asymptoti-
cally optimal in the following sense: the ratio between the required number of experts under our
policy and the theoretical optimal converges to one, as the probability of error in label recovery
tends to zero. 1

Keywords: sequential hypothesis testing, stochastic resource allocation, information processing
system, fluid model.

1. Introduction

An increasing number of modern processing systems has been designed and deployed for the pur-
pose of learning and information extraction. In these applications, which we refer to broadly as
information processing systems, a group of experts or servers is tasked with performing noisy in-
spections on a large collection of jobs, with the objective of uncovering some hidden features associ-
ated with each job up to a level of desirable accuracy. For instance, in crowd-sourcing (Karger et al.
(2014)), a collection of images is dispatched to a group of human agents, where an agent attaches
a label to each assigned image based on her own judgment. A decision maker then aggregates the
agents’ responses to produce a “best” label for each image. Similar learning tasks can also arise in
medical diagnostics (Gerdtz and Bucknall (2001)), where medical data of patients is reviewed by
physicians or nurses with different domains of expertise, with the goal of correctly identifying the
patients’ diseases, or in quality management (Baker and von Beers (1996)), where a set of prod-

1. Extended abstract. Full version appears as Massoulie and Xu (2016), http://arxiv.org/abs/1603.00544.
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ucts undergoes a number of different tests performed by specialized machines, to identify whether
a product is faulty and the type of fault it contains.

The presence of resource constraints is a crucial feature shared across many of these systems:
the amount of processing resources, such as human agents, machines, or computer servers, is finite,
and yet, each inspection or test requires the corresponding resource to commit a non-trivial amount
of effort. This raises a natural question:

How much information can we extract using a finite amount of processing resources?

The main objective of the present work is to address this question, and gain understanding of the
“capacity” of an information processing system. We will approach this problem by studying the
minimum number of experts needed in order to learn a sufficient amount of information about every
job in a stream of arrivals, while ensuring system stability. 2

2. Model and Metrics

Our system operates in continuous time, and consists of m experts (system size), where each expert
has a type (expertise) that belongs to a finite set, K, and the fraction of type-k experts is ρk (expert
mixture). The system receives a stream of incoming jobs arriving according to a Poisson process
of rate one, where the ith job is associated with a random label, Hi, taking values in a finite set H.
The labels are drawn i.i.d. according to some prior distribution, π, and are hidden from the decision
maker.

An atomic unit of processing in our system is called an inspection: the decision maker may
assign an expert of type k to perform an inspection on a job, which occupies the expert for a random
period of time that is exponentially distributed with mean µk (inspection rate), during which the
expert cannot inspect other jobs. The inspection leads to a noisy outcome, whose distribution,
p(k, h, ·), depends on both the type of the expert, k ∈ K, and the true label of the job under
inspection, h ∈ H.3

At any time t, the decision maker can choose to let a job i depart from the system, at which
point she must produce a classification, Ĥi, representing her belief of job i’s true label. We say that
there is an error if the classification does not match the true label, i.e., if Ĥi 6= Hi. The high-level
goal of the decision maker is to assign inspections intelligently, and use the resulting outcomes to
produce, for each job, a correct classification of its hidden label with a small probability of error.

The real-time operation of the system is controlled by an inspection policy, ψ. At any time
t, the policy has the ability to: (1) let an idle expert initiate an inspection on a job; (2) let a job
depart from the system, in which case the policy will have to produce a classification for the job’s
label. An inspection policy that does not require the knowledge of the prior distribution, π, is said
to be prior-oblivious. There are two main performance criteria for an inspection policy that are of
interest:

2. We will use the term “expert” to refer to a single unit of processing resource, with the understanding that it may
represent a computer server, testing machine, or human agent, depending on the application.

3. The family of outcome distributions, {p(k, h, ·)}k∈K,h∈H, is assumed to satisfy the following two properties, but
can otherwise be arbitrary (see Massoulie and Xu (2016) for details): (1) no single outcome can distinguish two job
labels with absolute certainty; (2) for any two distinct job labels, h, h′ ∈ H, there exists at least one expert type,
k ∈ K, such that p(k, h, ·) and p(k, h′, ·) are distinct.
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1. Accuracy: We would like an inspection policy to accurately recover the true labels of all
jobs. Given an accuracy parameter, δ > 0, we say that a policy is δ-accurate, if for all h ∈ H and
i ∈ N, we have that P(Ĥi = h

∣∣Hi = h) ≥ 1− δ.
2. Stability: We would like all jobs to receive a classification in finite time. Denote by Q(t) the

total number of jobs in the system at time t. We say that the system is stable under an inspection
policy, if the resulting process {Q(t)}t∈R+ is positive recurrent.

The main goal of this paper is to understand how to design δ-accurate inspection policies that
can stablize the system with the least number of experts (m). This inspires the following notion of
resource efficiency, where we compare the number of experts required under a specific inspection
policy against that of a theoretical optimal, as follows. Fix an expert mixture, {ρk}k∈K, inspection
rates, {µk}k∈K, and outcome distributions, {p(h, k, ·)}h∈H,k∈K. For a δ-accurate inspection policy,
ψ, define mψ(δ, π) as the number of experts required under ψ in order to ensure stability:

mψ(δ, π) = min{m ∈ N : given δ and π, a system with m experts is stable under ψ}. (1)

Given prior distribution π and δ > 0, we definem∗(δ, π) as the smallest number of experts for which
there exists a δ-accurate inspection policy that stabilizes the system. That is,m∗(δ, π) represents the
minimal amount of processing resources required to ensure stability under an “optimal” inspection
policy. The following definition serves as our main performance metric.

Definition 1 We say that an inspection policy, ψ, is resource efficient, if

lim sup
δ→0

mψ(δ, π)

m∗(δ, π)
= 1, for all prior distribution, π. (2)

We say that ψ is strongly resource efficient, if the above convergence occurs uniformly over all
prior distributions:

lim sup
δ→0

sup
π

mψ(δ, π)

m∗(δ, π)
= 1. (3)

3. Main Result

Our main result provides a prior-oblivious policy that asymptotically achieves the optimal minimum
system size in the regime where the accuracy parameter, δ, tends to zero.

Theorem 2 Fix an expert mixture, {ρk}k∈K, inspection rates, {µk}k∈K, and outcome distributions,
{p(h, k, ·)}h∈H,k∈K. There exists a prior-oblivious, strongly resource efficient inspection policy, ψ.
In particular, there exist c0, δ0 > 0, such that

sup
π

mψ(δ, π)

m∗(δ, π)
≤ 1 + c0

√
ln ln(1/δ)

ln(1/δ)
, ∀δ ∈ (0, δ0). (4)

The inspection policy in Theorem 2 will be given explicitly as part of the proof, and it also
inspires a much simpler heuristic policy (see Appendix of Massoulie and Xu (2016)). We highlight
two important features of the theorem. First, the inspection policy is strongly resource efficient,
which implies that its performance guarantee in comparison to the theoretical optimal holds inde-
pendently of the prior distribution. Second, the inspection policy is prior-oblivious so that it can
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operate without any knowledge of the prior distribution of the job labels. This feature is especially
important for our problem, since knowing the prior distribution would have likely required first
learning the labels of the incoming jobs, which is the very task that we are trying to solve. More-
over, because a prior-oblivious policy automatically adapts to any prior distribution, it is also more
robust against any shifts in the prior distribution over time, which can occur in many applications.

Figure 1: Overall architecture associated with the proposed inspection policy.

4. Inspection Policy and Proof Ideas

We now describe, at a high level, the inspection policy and proof techniques used to show Theorem
2. A complete proof can be found in Massoulie and Xu (2016).

Inspection policy. The main structure of our inspection policy is driven by two intrinsic features
of the problem:

1. Expert heterogeneity. Different types of experts can have different expertise, which is re-
flected in their distinct outcome distributions, {p(k, h, ·)}k∈K,h∈H. In particular, for a pair of job
labels, one expert type may be more efficient than another in telling them apart. Therefore, it is
important for an inspection policy to quickly obtain “rough guesses” for the job labels early on, so
that it can leverage these guesses to assign the majority of the inspections in an efficient manner.

2. Resource contention. The second feature is more nuanced and stems from the combined
effect of the resource constraint and expert heterogeneity: to utilize the experts most efficiently, the
“optimal” course of inspections for an individual job does not only depend on its true label, but
also on the prior distribution governing the proportions of labels among its fellow jobs. This is
due to the contention among jobs as they “compete” for the shared processing resources, and the
mixture of inspections that a job receives may shift as the prior distribution changes. Therefore, a
good inspection policy cannot be overly centered around individual jobs, and must be aware of the
overall arrival pattern.

Our inspection policy makes use of a three-stage architecture, as is illustrated in Figure 1.

1. In the first stage (Preparation), the policy “bootstraps”4 each incoming job, by performing a
small number of inspections using randomly chosen experts, with the goal of generating a
coarse estimate of its true label.

2. In the second stage (Adaptive), the policy performs the majority of the inspections in an
adaptive manner, with the goal of verifying whether the coarse estimates are correct. For
most of the jobs with a correct coarse estimate, the Adaptive stage “boosts” their classification

4. The term is not related to the bootstrap re-sampling method in statistics.
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accuracy to 1 − δ, and allows them to depart from the system. The adaptivity of this stage
addresses simultaneously the two features mentioned earlier: the combination of inspections
to be received by job i is determined dynamically by solving a linear optimization problem,
whose parameters depend on (1) the coarse label estimate of job i from the Preparation stage,
which allows for leveraging expert heterogeneity, and (2) what other jobs are currently in the
system, which coordinates the contention for processing resources among the jobs.

3. The third stage (Residual) treats those jobs whose coarse estimates were erroneous to ensure
that they, too, will receive an accurate classification. The inspections in this stage are carried
out in the same fashion as in the Preparation stage, i.e., by giving each job a fixed number of
inspections using randomly chosen experts.

At a high level, we can also interpret this three-stage architecture through a learning versus
verification dichotomy: all jobs are first inspected by some “generalists” (i.e., random experts) to
learn a coarse label estimate. The system then enlists the “specialists” to verify the validity of these
estimates to a high accuracy. If a coarse estimate is deemed incorrect by the “specialists,” the job
is then sent back to the “generalists” to perform learning thoroughly to reach an accurate estimate,
albeit in a less efficient manner.

Proof techniques. The proof of Theorem 2 consists of two main components. First, we employ
a linear program to derive a lower-bound on the minimum system size that must be satisfied by any
stable δ-accurate inspection policy. In the second part, we show that our proposed inspection policy
is δ-accurate, and is stable under a system size that asymptotically matches the lower-bound derived
earlier, hence proving Theorem 2.

The key idea of the proof is to make use of a connection between information need and service
requirement: inspired by Wald (1945) and Chernoff (1959), we show that obtaining accurate clas-
sifications is essentially equivalent to meeting a certain requirement on cumulative log-likelihood
ratios, which can be further viewed as a form of workload to be “drained” via performing inspec-
tions. A main technical difficulty lies in analyzing the dynamics associated with these workloads
under our inspection policy. To this end, we build on a program pioneered by Rybko and Stolyar
(1992) and Dai (1995) in the context of queueing networks, in which we approximate the system’s
aggregate workload with a certain fluid limit, and use a contraction property of the fluid limit to
derive the stability of the original system. More specifically, we show that, in the fluid limit, our in-
spection policy is effectively inducing a negative drift on a certain potential function of the aggregate
system workload, which further implies the desired contraction property.

5. Concluding Remarks

The main objective of this work is to understand the design principles and fundamental limitations
involved as one tries to efficiently classify a large set of items using a finite amount of processing
resources. The main result demonstrates a prior-oblivious inspection architecture that asymptoti-
cally uses the minimum number of experts, in the regime where the required classification error
tends to zero. More broadly speaking, our result is an attempt towards understanding how to build
effective processing architectures for large-scale statistical learning or information extraction tasks,
given limited resources or processing power. We believe that there are many other problems in
this domain, situated at the intersection between stochastic modeling and statistics, that may be of
interest for future research.
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