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Abstract
There is a recent surge of interest in identifying the sharp recovery thresholds for cluster recovery
under the stochastic block model. In this paper, we address the more refined question of how
many vertices that will be misclassified on average. We consider the binary form of the stochastic
block model, where n vertices are partitioned into two clusters with edge probability a/n within
the first cluster, c/n within the second cluster, and b/n across clusters. Suppose that as n → ∞,
a = b + µ

√
b, c = b + ν

√
b for two fixed constants µ, ν, and b → ∞ with b = no(1). When

the cluster sizes are balanced and µ 6= ν, we show that the minimum fraction of misclassified
vertices on average is given by Q(

√
v∗), where Q(x) is the Q-function for standard normal, v∗

is the unique fixed point of v = (µ−ν)2
16 + (µ+ν)2

16 E[tanh(v +
√
vZ)], and Z is standard normal.

Moreover, the minimum misclassified fraction on average is attained by a local algorithm, namely
belief propagation, in time linear in the number of edges. Our proof techniques are based on
connecting the cluster recovery problem to tree reconstruction problems, and analyzing the density
evolution of belief propagation on trees with Gaussian approximations.
Keywords: Belief propagation, Density evolution, Community detection

1. Introduction

The problem of cluster recovery under the stochastic block model has been intensely studied in
statistics Holland et al. (1983); Snijders and Nowicki (1997); Bickel and Chen (2009); Cai and Li
(2014); Zhang and Zhou (2015); Gao et al. (2015), computer science (where it is known as the
planted partition problem) Dyer and Frieze (1989); Jerrum and Sorkin (1998); Condon and Karp
(2001); McSherry (2001); Coja-Oghlan (2005, 2010); Chen et al. (2014); Anandkumar et al. (2014);
Chen and Xu (2014), and theoretical statistical physics Decelle et al. (2011a); Zhang et al. (2012);
Decelle et al. (2011b). In the simplest binary form, the stochastic block model assumes that n
vertices are partitioned into two clusters with edge probability a/nwithin the first cluster, c/nwithin
the second cluster, and b/n across the two clusters. The goal is to reconstruct the underlying clusters
from the observation of the graph. Different reconstruction goals can be considered depending on
how the model parameters a, b, c scale with n (See Abbe and Sandon (2015) for more discussions):

• Exact recovery (strong consistency). If the average degree is Ω(log n), it is possible to exactly
recover the clusters (up to a permutation of cluster indices) with high probability. In the case
with two equal-sized clusters, and a = c = α log n/n and b = β log n/n for two fixed
α, β > 0, a sharp exact recovery threshold (

√
α −

√
β)2 ≥ 2 has been found in Mossel

et al. (2015b); Abbe et al. (2014) and it is further shown that semi-definite programming
can achieve the sharp threshold in Hajek et al. (2014); Bandeira (2015). The threshold for
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two unequal-sized clusters is proved in Hajek et al. (2015a). Exact recovery threshold with
a fixed number of clusters has been identified in Hajek et al. (2015a); Yun and Proutiere
(2014a); Agarwal et al. (2015), and more generally in Abbe and Sandon (2015); Perry and
Wein (2015) with heterogeneous cluster sizes and edge probabilities.

• Weak recovery (weak consistency). If the average degree is Ω(1), one can hope for misclas-
sifying only o(n) vertices with high probability, which is known as weak recovery or weak
consistency. In the setting with two approximately equal-sized clusters and a = c, it is shown
in Yun and Proutiere (2014b); Mossel et al. (2015b) that weak recovery is possible if and only
(a− b)2/(a+ b)→∞.

• Correlated recovery (non-trivial detection). If the average degree is Θ(1), exact recovery
or weak recovery becomes hopeless as the resulting graph under the stochastic block model
will have at least a constant fraction of isolated vertices. Moreover, it is easy to see that
even vertices with constant degree cannot be labeled accurately given all the other vertices’
labels are revealed. Thus one goal in the sparse graph regime is to find a partition positively
correlated with the true one (up to a permutation of cluster indices), which is also called non-
trivial detection. In the setting with two approximately equal-sized clusters and a = c, it was
first conjectured in Decelle et al. (2011a) and later proven in Mossel et al. (2015a, 2013b);
Massoulié (2014) that correlated recovery is feasible if and only if (a − b)2 > 2(a + b). A
spectral method based on the non-backtracking matrix is recently shown to achieve the sharp
threshold in Bordenave et al. (2015).

In practice, one may be interested in the finer question of how many vertices that will be mis-
classified on expectation or with high probability. In the two equal-sized clusters setting, previous
results on exact recovery, weak recovery, and correlated recovery provide conditions under which
the minimum fraction of misclassified vertices on average is o(1/n), o(1), and strictly smaller than
1/2, respectively. By assuming (a − b)2/(a + b) → ∞, recent work Zhang and Zhou (2015);
Gao et al. (2015) showd that the expected misclassified fraction decays to zero exponentially fast
and gives a sharp characterization of the decay exponent under a minimax framework. However,
all these previous results do not shed light on the important question of when it is possible to mis-
classify only ε fraction of vertices on expectation, for any finite ε ∈ (0, 1/2). To the best of our
knowledge, it is an open problem to find a closed-form expression of the expected misclassified
fraction in terms of the model parameters. In this paper, we give such a simple formula in the
special case of two approximately equal-sized clusters. Specifically, suppose that

a = b+
√
bµ, c = b+

√
bν, b→∞, b = no(1), (1)

for two fixed constants µ, ν. We further assume that µ 6= ν so that the vertex degrees are statisti-
cally correlated with the cluster structure, and hence the name of the degree-correlated stochastic
block model. We show that the minimum fraction of misclassified vertices on average is given
by Q(

√
v∗), where Q(x) is the Q-function for standard normal, v∗ is the unique fixed point of

v = (µ−ν)2

16 + (µ+ν)2

16 E [tanh(v +
√
vZ)], and Z is standard normal. Moreover, the minimum

expected misclassified fraction can be attained by a local algorithm, namely belief propagation
(BP) algorithm (See Algorithm 1), in time O(nb2). The local belief propagation algorithm can
be viewed as an iterative algorithm which improves on the misclassified fraction on average step
by step; running belief propagation for one iteration reduces to the simple thresholding algorithm
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based on vertex degrees. It is crucial to assume µ 6= ν for the above results to hold, otherwise it is
well-known (see e.g. Kanade et al. (2014)) that no local algorithm can even achieve the non-trivial
detection. Nevertheless, under a slightly stronger assumption that b → ∞ and b = o(log n), we
show that if µ = ν with |µ| > 2, local belief propagation combined with a global algorithm capable
of non-trivial detection when |µ| > 2, attains the minimum expected misclassified fraction Q(

√
v)

in polynomial-time, where v is the largest fixed point of v = µ2

4 E [tanh(v +
√
vZ)] .

When the clusters sizes are unbalanced, i.e., one cluster is of size approximately ρn for ρ ∈
(0, 1/2), we give a lower bound on the minimum expected misclassified fraction, and an upper
bound attained by the local belief propagation algorithm. However, we are unable to prove that the
upper bound matches the lower bound. In fact, numerical experiments suggest that there exists a
gap between the upper and lower bound when the cluster sizes are very unbalanced, i.e., ρ is close
to 0.

Our proofs are mainly based on two useful techniques introduced in previous work. First, in the
regime (1), the observed graph is locally tree-like, so we connect the cluster recovery problem to re-
construction problems on trees, and for the tree problems, the optimal estimator can be computed by
belief propagation algorithm. Such connection has been investigated before in Mossel et al. (2015a,
2013a); Mossel and Xu (2015). Second, we characterize the density evolution of belief propaga-
tion on trees with Gaussian approximations, and as a result, we get a recursion with the largest
fixed point corresponding to a lower bound on the minimum expected misclassified fraction, and
the smallest fixed point correspond to the expected misclassified fraction attained by the local belief
propagation algorithm. Density evolution has been widely used for the analysis of multiuser de-
tection Montanari and Tse (2006) and sparse graph codes Richardson and Urbanke (2008); Mezard
and Montanari (2009), and more recently has been introduced for the analysis of finding a single
community in a sparse graph Montanari (2015). As a final piece, we prove that in the balanced
cluster case, the recursion has a unique fixed point using the ideas of symmetric random variables
Richardson and Urbanke (2008); Montanari (2005) and the first-order stochastic dominance, thus
establishing the tightness of the lower bound and the optimality of the local BP simultaneously.

We point out that local algorithm by itself is a thriving research area (see Lyons and Nazarov
(2011); Hatami et al. (2012); Gamarnik and Sudan (2014) and the references therein). Intuitively,
local algorithms are one type of algorithms that make decision for each vertex just based on the
neighborhood of small radius around the vertex; these algorithms are by design easy to run in a
distributed fashion. Under the context of community detection, local algorithms determine which
community each vertex lies in just based on the local neighborhood around each vertex (see Monta-
nari (2015) for a formal definition). Recent work Mossel and Xu (2015) shows that with the aid of
extra noisy label information on cluster structure, the local algorithms can be optimal in minimizing
the expected misclassified fraction in the stochastic block model. In comparison, we show that when
the vertex degrees are correlated with the cluster structure, the local algorithms can be optimal even
without the extra noisy label information.

In closing, we compare our results with the recent results in Montanari (2015); Hajek et al.
(2015b), which studied the problem of finding a single community of size ρn in a sparse graph.
When ν = 0, i.e. b = c, the stochastic block model considered in this paper, specializes to the single
community model studied in Montanari (2015), and the recursion of density evolution derived in
this paper reduces to the recursion derived in (Montanari, 2015, Eq. (36)). It is shown in Montanari
(2015); Hajek et al. (2015b) that the local algorithm is strictly suboptimal comparing to the global
exhaustive search when ρ→ 0. In contrast, we show that if ρ = 1/2, the local algorithm is optimal
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in minimizing the expected fraction of misclassified vertices as long as µ 6= ν, and give a sharp
characterization of the minimum expected misclassified fraction.

Parallel Independent Work Zhang et al. (2015) independently studied the problem of cluster
recovery under the degree-correlated stochastic block model with multiple clusters. Based on the
cavity method and numerical simulations, it is shown that with at most four clusters of unequal sizes
but same in and out degrees, the non-trivial detection threshold phenomenon disappears, making the
minimum fraction of misclassified vertices on average a continuous function of model parameters.
In comparison, in the regime (1) with two equal-sized clusters and µ 6= ν, we give a more precise
answer, showing that the fraction of misclassified vertices on average is Q(

√
v∗), where v∗ is the

unique fixed point of v = (µ−ν)2

16 + (µ+ν)2

16 E [tanh(v +
√
vZ)]. Moreover, it is shown in Zhang

et al. (2015) that with more than four clusters of unequal sizes, there exists a regime where two
stable fixed points coexist, with the smaller one corresponding to the performance of local belief
propagation, and the larger one corresponding to the performance of belief propagation initialized
based on the true cluster structure. We find that the same phenomenon also happens in the case
of two clusters with very unbalanced sizes and different in and out degrees (See Section 2.4 for
details).

We recently became aware of the work Deshpande et al. (2015), who studied the problem of
cluster recovery under the stochastic block model in the symmetric setting with two equal-sized
clusters and a = c. By assuming that (a−b)2

2(a+b)(1−(a+b)/2n) → µ for a fixed constant µ and (a +

b)(1 − (a + b)/2n) → ∞, a sharp characterization of the per-vertex mutual information between
the vertex labels and the graph is given in terms of µ and v, where v is the largest fixed point of v =
µ2

4 E [tanh(v +
√
vZ)]. In comparison, we show that the minimum fraction of vertices misclassified

on expectation is given byQ(
√
v) and it is attainable in polynomial time with an additional technical

assumption that b = o(log n). Interestingly, the point (a) of Lemma 6.1 in Deshpande et al. (2015)
is a special case of Lemma 14 with ρ = 1/2 in our paper. The proof of Lemma 6.1 given in
Deshpande et al. (2015) and the proof of Lemma 14 given in this paper are similar: both used
the ideas of symmetric random variables Richardson and Urbanke (2008); Montanari (2005). One
slight difference is that to prove the concavity of the mapping in the recursion when ρ = 1/2, we
used the first-order stochastic dominance, while Deshpande et al. (2015) computes the second-order
derivative.

2. Model and Main Results

We consider the binary stochastic block model with n vertices partitioned into two clusters, where
each vertex is independently assigned into the first cluster with probability ρ ∈ (0, 1) and the second
cluster with probability ρ̄ , 1−ρ.1 Each pair of vertices is connected independently with probability
a/n if two vertices are in the first cluster, with probability c/n if they are in the second cluster, and
with probability b/n if they are in two different clusters. Let G = (V,E) denote the observed graph
andA denote the adjacency matrix of the graphG. Let σ denote the underlying vertex labeling such
that σi = + if vertex i is in the first cluster and σi = − otherwise. The model parameters {ρ, a, b, c}

1. Notice that the cluster sizes are random and concentrate on ρn and (1 − ρ)n. A slightly different model assumes
that the vertices are partitioned into two clusters of deterministic sizes, exactly given by ρn and (1 − ρ)n. The two
models behave similarly, but for ease of analysis, we focus on the random cluster size model in this paper.
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are assumed to be known, and the goal is to estimate the vertex labeling σ from the observation of
G. More precisely, we have the following definition.

Definition 1 The reconstruction problem on the graph is the problem of inferring σ from the obser-
vation of G. The expected fraction of vertices misclassified by an estimator σ̂ is given by

pG(σ̂) =
1

n

n∑
i=1

P {σi 6= σ̂i} . (2)

Let p∗G denote the minimum expected misclassified fraction among all possible estimators based on
G.

The optimal estimator in minimizing the error probability P {σi 6= σ̂i} is the maximum a posterior
(MAP) estimator, which is given by 2 × 1{P{σi=+|G}≥P{σi=−|G}} − 1, and the minimum error
probability is given by 1

2 −
1
2E [|P {σi = +|G} − P {σi = −|G} |]. Hence, the minimum expected

misclassified fraction p∗G is given by

p∗G =
1

2
− 1

2n

n∑
i=1

E
[∣∣P {σi = +|G} − P {σi = −|G}

∣∣]
=

1

2
− 1

2
E [|P {σi = +|G} − P {σi = −|G} |] , (3)

where the second equality holds due to the symmetry among vertices. In the special case with ρ =
1/2 and a = c, the two clusters are symmetric; thus p∗G = 1/2 and one can only hope to estimate σ
up to a global flip of sign. In general, computing the MAP estimator is computationally intractable
and it is unclear whether the minimum expected misclassified fraction p∗G can be achieved by some
estimator computable in polynomial-time.

Throughout this paper, we assume that ρ is fixed and focus on the regime (1). As the average
degree is no(1), it is well-known that a local neighborhood of a vertex is a tree with high proba-
bility. Thus, it is natural to study the local algorithms. More precisely, we consider a local belief
propagation algorithm to approximate the MAP estimator in the next subsection.

2.1. Local Belief Propagation Algorithm

Our local belief propagation algorithm is given in Algorithm 1. Specifically, let ∂i denote the set
of neighbors of i, and F (x) = 1

2 log
(

e2xρa+ρ̄b
e2xρb+ρ̄c

)
. Let d+ = ρa + ρ̄b and d− = ρb + ρ̄c denote the

expected vertex degree in the first and second cluster, respectively. Define the message transmitted
from vertex i to vertex j at t-th iteration as

Rti→j =
−d+ + d−

2
+

∑
`∈∂i\{j}

F (Rt−1
`→i), (4)

with initial conditions R0
i→j = 0 for all i ∈ [n] and j ∈ ∂i. Then we define the belief of vertex u at

t-th iteration Rtu to be

Rtu =
−d+ + d−

2
+
∑
`∈∂u

F (Rt−1
`→u). (5)
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Algorithm 1 Belief propagation for cluster recovery

1: Input: n ∈ N, ρ ∈ (0, 1), a/b, c/b, adjacency matrix A ∈ {0, 1}n×n, and t ∈ N.
2: Initialize: Set R0

i→j = 0 for all i ∈ [n] and j ∈ ∂i.
3: Run t− 1 iterations of message passing as in (4) to compute Rt−1

i→j for all i ∈ [n] and j ∈ ∂i.
4: Compute Rti for all i ∈ [n] as per (5).
5: Return σ̂tBP with σ̂tBP(i) = 2× 1{Rti≥−ϕ} − 1, where ϕ = 1

2 log ρ
1−ρ .

As we will show in Section 3.1, the message passing as in (4) and (5) exactly computes the log
likelihood ratio for a problem of inferring σu on a suitably defined tree model with root u. Moreover,
in the regime (1), there exists a coupling such that the local neighborhood of a fixed vertex u is the
same as the tree model rooted at u with high probability. These two observations together suggest
that Rtu is a good approximation of 1

2 log P{G|σu=+}
P{G|σu=−} , and thus we can estimate σu by truncating Rtu

at the optimal threshold −ϕ = 1
2 log 1−ρ

ρ , according to the MAP rule.
We can see from (4) that in each BP iterations, each vertex i needs to compute |∂i| outgoing

messages. To this end, i can first compute Rti according to (5), and then subtract F (Rt−1
j→i) from Rti

to get Rti→j for every neighbor j of i. In this way, each BP iteration runs in time O(m), where m is
the total number of edges. Hence σ̂tBP can be computed in time O(tm).

Finally, notice that Algorithm 1 needs to know the parameters {ρ, a/b, c/b}. For the main
results of this paper continue to hold, the values of the parameters are only needed to know up to
o(1) additive errors. In fact, there exists a fully data-driven procedure to consistently estimate those
parameters, see e.g., Hajek et al. (2015a)[Appendix B].

2.2. Main Results

The following theorem characterizes the expected fraction of vertices misclassified by σ̂tBP as
n → ∞; it also gives a lower bound on the minimum expected misclassified fraction as n → ∞.
Furthermore, in the case ρ = 1/2 and µ 6= ν, σ̂tBP achieves the lower bound as t → ∞ after
n→∞.

Theorem 2 Assume ρ ∈ (0, 1) is fixed and consider the regime (1). Let

h(v) = E
[
tanh(v +

√
vZ + ϕ)

]
,

where Z ∼ N (0, 1) and ϕ = 1
2 log ρ

1−ρ . Let λ = ρ(µ+ν)2

8 and θ = ρ(µ−ν)2

8 + (1−2ρ)ν2

4 . Define v
and v to be the smallest and largest fixed point of

v = θ + λh(v),

respectively2. Define (vt : t ≥ 0) recursively by v0 = 0 and vt+1 = θ + λh(vt). Let σ̂tBP denote
the estimator given by Belief Propagation applied for t iterations, as defined in Algorithm 1. Then

2. The existence of fixed points of v 7→ θ + λh(v) follows from Brouwer’s fixed-point theorem and the fact that
h(v) ≤ 1.
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limt→∞ vt = v, (ρµ− ρ̄ν)2/4 ≤ v ≤ v ≤ (ρµ2 + ρ̄ν2)/4, and

lim
n→∞

pG(σ̂tBP) = ρQ

(
vt + ϕ
√
vt

)
+ (1− ρ)Q

(
vt − ϕ√

vt

)
,

lim inf
n→∞

p∗G ≥ ρQ
(
v + ϕ√

v

)
+ (1− ρ)Q

(
v − ϕ√

v

)
,

where Q(x) =
∫ +∞
x

1√
2π

e−y
2/2dy. Moreover, if ρ = 1/2 and µ 6= ν, then v = v = v∗, and thus

lim
t→∞

lim
n→∞

pG(σ̂tBP) = lim
n→∞

p∗G = Q(
√
v∗),

where v∗ is the unique fixed point of v = (µ−ν)2

16 + (µ+ν)2

16 E [tanh(v +
√
vZ)] .

If ρµ 6= ρ̄ν so that the vertex degrees are statistically correlated with the cluster structure, we
have v > 0 and thus limt→∞ limn→∞ pG(σ̂tBP) ≥ min{ρ, 1 − ρ}. Hence, the local application of
BP strictly outperforms the trivial estimator, which always guesses the label of all vertices to be +1
if ρ ≥ 1/2 and −1 if ρ < 1/2. In the balanced case ρ = 1/2, the local BP achieves the minimum
expected misclassified fraction. Numerical experiments further indicate that the local BP is still
optimal in the unbalanced case provided that ρ is not close to 0 or 1; however, we do not have a
proof (See Section 2.4 for more discussions).

If ρµ = ρ̄ν, then v = 0 and thus

ρQ

(
v + ϕ
√
v

)
+ (1− ρ)Q

(
v − ϕ
√
v

)
= min{ρ, 1− ρ}.

In this case, our local application of BP cannot do better than the trivial estimator. In fact, the local
neighborhoods are statistically uncorrelated with the cluster structure, and one can further argue that
no local algorithm can achieve non-trivial detection (see e.g. Kanade et al. (2014)). Although local
algorithms are bound to fail, there might still exist some efficient global algorithms which achieve
the minimum expected misclassified fraction. The following theorem shows that this is indeed the
case when ρ = 1/2, µ = ν and b = o(log n).

Theorem 3 Assume ρ = 1/2, a = c = b +
√
bµ for some fixed constant µ, and b → ∞ such that

b = o(log n). For an estimator σ̂ based on graph G, define the fraction of vertices misclassified by
σ̂ as

O(σ̂, σ) =
1

n
min

{
n∑
i=1

1{σi 6=σ̂i},

n∑
i=1

1{σi 6=−σ̂i}

}
. (6)

If |µ| > 2, then

lim
n→∞

inf
σ̂

E [O(σ̂, σ)] = Q
(√

v
)
, (7)

where the infimum ranges over all possible estimators σ̂ based on graph G; v > 0 is the largest
fixed point of v = µ2

4 E [tanh(v +
√
vZ)] . Moreover, there is a polynomial-time estimator such that

for every ε > 0, it misclassifies at most Q
(√
v
)
− ε fraction of vertices on expectation.
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In contrast to (2), the fraction of vertices misclassified by σ̂ is defined up to a global flip of signs
of σ̂ in (6). This is because in the case ρ = 1/2 and a = c, due to the symmetry between + and
−, σ and −σ have the same distribution conditional on graph G. Thus, it is impossible to reliably
estimate the sign of σ based on graph G.

Note that |µ| = 2 corresponds to the Kesten-Stigum bound Kesten and Stigum (1966). It is
shown in Mossel et al. (2015a) that if |µ| < 2, correlated recovery is impossible and thus the min-
imum expected misclassified fraction is 0; Remarkably, Massoulié (2014); Mossel et al. (2013b);
Bordenave et al. (2015) prove that correlated recovery is efficiently achievable if |µ| > 2. Our
results further show that in this case with b→∞ and b = o(log n), the minimum expected misclas-
sified fraction is Q

(√
v
)

and it can also be attained in polynomial-time. The proof of Theorem 3 is
mainly based on two observations. First, it is shown in Mossel et al. (2013a) that the local BP is able
to improve a clustering that is slightly better than a random guess to achieve the minimum expected
misclassified fraction if |µ| > C for a universal constant C > 0. Second, we find that if |µ| > 2,
the recursion v = µ2

4 E [tanh(v +
√
vZ)] derived in the density evolution analysis of local BP has

only two fixed points: 0 and v > 0, where 0 is unstable and v is stable. These two results together
establish that if |µ| > 2, then running the local BP for t iterations with a correlated initialization
provided by a non-trivial detection algorithm is able to attain the minimum expected misclassified
fraction Q

(√
v
)

as t→∞.

2.3. Proof Ideas

The proof of Theorem 2 is based on two useful tools. First, we connect the cluster recovery problem
to the reconstruction problem on trees. Second, we use the density evolution with Gaussian approx-
imations to give a sharp characterization of error probabilities of tree reconstruction problems, in
terms of fixed points of a recursion.

• To bound from below the minimum expected misclassified fraction, we bound the error prob-
ability of inferring σu for a specific vertex u. Following Mossel et al. (2015a), we consider
an oracle estimator, which in addition to the graph structure, the exact labels of all vertices
at distance exactly t from u are also revealed. As in Mossel et al. (2015a), it is possible to
show that the best estimator in this case is given by BP for t levels initialized using the exact
labels at distance t. In contrast, the expected fraction of vertices misclassified by the local BP
algorithm approximately equals to the error probability of inferring σu solely based on the
neighborhood of vertex u of radius t, without having access to the exact labels of vertices at
distance t.

• We characterize the density evolution of the local BP and the BP lower bound using Gaussian
approximations, and get a recursion with the largest fixed point corresponding to the BP
lower bound, and the smallest fixed point corresponding to the expected fraction of vertices
misclassified by the local BP as t → ∞. In the balanced cluster cases, we further show that
there is a unique fixed point for the recursion, and thus the BP lower bound matches the
expected fraction of vertices misclassified by the local BP.

2.4. Numerical Experiments and Open Problems

In the case with ρ = 1/2 and µ 6= ν, we show that v = θ + λh(v) has a unique fixed point and
thus the local BP is optimal; the key idea is to prove that h(v) is concave in this case. Numerical
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Figure 1: Numerical calculations of h′(v) (y axis) versus v ∈ [0, 6] (x axis) with different ρ. It
shows that h(v) is concave when ρ ≥ 0.2 and h(v) becomes convex for v small when ρ ≤ 0.1.
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Figure 2: The plot of θ + λh(v) (y axis) versus v (x axis) in the case ρ = 0.01. Left frame: µ = 50
and ν = 0; right frame: µ = 40 and ν = 1.5. It shows that v = θ+λh(v) has three fixed points: The
smallest one is v corresponding to the performance of local BP; the largest one is v corresponding
the lower bound on expected misclassified fraction; the intermediate one is unstable.

calculations, depicted in Fig. 1, show that h(v) is still concave if ρ ≥ 0.2, suggesting that the local
BP is still optimal in roughly balanced cluster size cases. However, h(v) becomes convex for v
small when ρ ≤ 0.1.

It is intriguing to investigate when v = θ + λh(v) has a unique fixed point. If ρ = 0.01,
numerical experiments, depicted in Fig. 2, shows that v = θ + λh(v) may have multiple fixed
points, suggesting that the local BP may be suboptimal. However, in the case with µ = ν and
ρ 6= 1/2, numerical experiments indicate that there is always a unique fixed point.

Conjecture 4 If µ = ν, then v = θ+λh(v) has a unique fixed point for all ρ ∈ (0, 1/2)∪ (1/2, 1).

9
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Notice that in the case with µ = ν and ρ = 1/2, θ = 0, λ = µ2/4, and h(v) = E [tanh(v +
√
vZ)].

We have shown in Lemma 14 that h is non-decreasing, concave, and limv→0 h
′(v) = 1. Thus if

|µ| < 2, there is a unique fixed point at zero, which is stable; if |µ| > 2, there are two fixed points:
one is zero which is unstable and the other is v > 0 which is stable.

2.5. Notation and Organization of the Paper

For any positive integer n, let [n] = {1, . . . , n}. For any set T ⊂ [n], let |T | denote its cardinal-
ity and T c denote its complement. We use standard big O notations, e.g., for any sequences {an}
and {bn}, an = Θ(bn) if there is an absolute constant c > 0 such that 1/c ≤ an/bn ≤ c. Let
Bern(p) denote the Bernoulli distribution with mean p and Binom(n, p) denote the binomial distri-
bution with n trials and success probability p. All logarithms are natural and we use the convention
0 log 0 = 0. We say a sequence of events En holds with high probability if P {En} → 1.

The rest of this paper is organized as follows. Section 3 focuses on the inference problems on
the tree model. The analysis of the belief propagation algorithm on trees and the proofs of our main
theorems are given in Section 4. The proofs of auxiliary lemmas can be found in Appendix A.

3. Inference Problems on Galton-Watson Tree Model

In this section, we first introduce the inference problems on Galton-Watson trees, and then relate it
to the cluster recovery problem under the stochastic block model.

Definition 5 For a vertex u, we denote by (Tu, τ) the following Poisson two-type branching process
tree rooted at u, where τ is a {±} labeling of the vertices of T . Let τu = + with probability ρ and
τu = −1 with probability ρ̄, where ρ̄ = 1 − ρ. Now recursively for each vertex i in Tu, given its
label τi = +, i will have Li ∼ Pois(ρa) children j with τj = + and Mi ∼ Pois(ρ̄b) children
j with τj = −; given its label τi = −1, i will have Li ∼ Pois(ρb) children j with τj = + and
Mi ∼ Pois(ρ̄c) children j with τj = −.

For any vertex i in Tu, let T ti denote the subtree of Tu of depth t rooted at vertex i, and ∂T ti
denote the set of vertices at the boundary of T ti . With a bit abuse of notation, let τA denote the
vector consisting of labels of vertices in A, where A could be either a set of vertices or a subgraph
in Tu. We first consider the problem of estimating the label of root u given the observation of T tu
and τ∂T tu . Notice that the labels of vertices in T t−1

u are not observed.

Definition 6 The detection problem on the tree with exact information at the boundary is the prob-
lem of inferring τu from the observation of T tu and τ∂T tu . The error probability for an estimator
τ̂u(T tu, τ∂T tu) is defined by

pT t(τ̂u) = ρP {τ̂u = −|τu = +}+ ρ̄P {τ̂u = +|τu = −} .

Let p∗T t denote the minimum error probability among all estimators based on T tu and τ∂T tu .

The optimal estimator in minimizing pT t , is the maximum a posterior (MAP) estimator, which can
be expressed in terms of log likelihood ratio:

τ̂ML = 2× 1{Λtu≥−ϕ} − 1,

10
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where

Λti ,
1

2
log

P
{
T ti , τ∂T ti |τi = +

}
P
{
T ti , τ∂T ti |τi = −

} ,
for all i in Tu, and ϕ = 1

2 log ρ
1−ρ . Thus, the minimum error probability p∗T t is given by

p∗T t =
1

2
− 1

2
E
[∣∣P{τu = +|T tu, τ∂T tu

}
− P

{
τu = −|T tu, τ∂T tu

} ∣∣] . (8)

We then consider the problem of estimating τu given observation of T tu. Notice that in this case
the true labels of vertices in T tu are not observed.

Definition 7 The detection problem on the tree is the problem of inferring τu from the observation
of T tu. The error probability for an estimator τ̂u(T tu) is defined by

qT t(τ̂u) = ρP {τ̂u = −|τu = +}+ ρ̄P {τ̂u = +|τu = −} .

Let q∗T t denote the minimum error probability among all estimators based on T tu.

In passing, we remark that the only difference between Definition 6 and Definition 7 is that the exact
labels at the boundary of the tree is revealed to estimators in the former and hidden in the latter. The
optimal estimator in minimizing qtT , is the maximum a posterior (MAP) estimator, which can be
expressed in terms of the log likelihood ratio:

τ̂MAP = 2× 1{Γtu≥−ϕ} − 1,

where

Γti ,
1

2
log

P
{
T ti |τu = +

}
P {T ti |τu = −}

.

for all i in Tu, and ϕ = 1
2 log ρ

1−ρ . The minimum error probability q∗T t is given by

q∗T t =
1

2
− 1

2
E
[∣∣P{τu = +|T tu

}
− P

{
τu = −|T tu

} ∣∣] , (9)

If d+ = d−, then the distribution of T tu conditional on τu = + is the same as that conditional
on τu = −. Thus, Γtu = 0 and the MAP estimator reduces to the trivial estimator, which always
guesses the label to be + if ρ ≥ 1/2 and − if ρ < 1/2, and q∗T t = min{ρ, ρ̄}. If d+ 6= d−, then
Tu becomes statistically correlated with τu, and it is possible to do better than the trivial estimator
based on T tu.

For the tree model, the likelihoods can be computed exactly via a belief propagation algo-
rithm. The following lemma gives a recursive formula to compute Λti and Γti; no approximations
are needed. Let ∂i denote the set of children of vertex i.

Lemma 8 Recall F (x) = 1
2 log

(
e2xρa+ρ̄b
e2xρb+ρ̄c

)
. For t ≥ 0,

Λt+1
i =

−d+ + d−
2

+
∑
j∈∂i

F (Λtj), (10)

Γt+1
i =

−d+ + d−
2

+
∑
j∈∂i

F (Γtj), (11)

with Λ0
i =∞ if τi = + and Λ0

i = −∞ if τi = −; Γ0
i = 0 for all i.

11
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3.1. Connection between the Graph Problem and Tree Problems

For the reconstruction problem on graph, recall that pG(σ̂tBP) denote the expected fraction of ver-
tices misclassified by σ̂tBP as per (2); p∗G is the minimum expected misclassified fraction. For the
reconstruction problems on tree, recall that p∗T t is the minimum error probability of estimating τu
based on T tu and τ∂T tu as per (8); q∗T t is minimum error probability of estimating τu based on T tu
as per (9). In this section, we show that in the limit n → ∞, pG(σ̂tBP) equals to q∗T t , and p∗G is
bounded by p∗T t from the below for any t ≥ 1. Notice that q∗T t and p∗T t depend on n only through
the parameters a, b, and c.

A key ingredient is to show that G is locally tree-like with high probability in the regime b =
no(1). Let Gtu denote the subgraph of G induced by vertices whose distance to u is at most t and
let ∂Gtu denote the set of vertices whose distance from u is precisely t. In the following, for ease
of notation, we write T tu as T t and Gtu as Gt when there is no ambiguity. With a bit abuse of
notation, let σA denote the vector consisting of labels of vertices in A, where A could be either a
set of vertices or a subgraph in G. The following lemma proved in Mossel et al. (2015a) shows that
we can construct a coupling such that (Gt, σGt) = (T t, τT t) with probability converging to 1 when
bt = no(1).

Lemma 9 For t = t(n) such that bt = no(1), there exists a coupling between (G, σ) and (T, τ)
such that (Gt, σGt) = (T t, τT t) with probability converging to 1.

Suppose that (Gt, σGt) = (T t, τT t) holds, then by comparing BP iterations (4) and (5) with the
recursions of log likelihood ratio Γt given in (11), we find that Rtu exactly equals to Γtu, i.e., the BP
algorithm defined in Algorithm 1 exactly computes the log likelihood ratio Γtu for the tree model.
Building upon this intuition, the following lemma shows that pG(σ̂tBP) equals to q∗T t as n→∞.

Lemma 10 For t = t(n) such that bt = no(1),

lim
n→∞

|pG(σ̂tBP)− q∗T t | = 0.

Proof In view of Lemma 9, we can construct a coupling such that (Gt, σGt) = (T t, τT t) with
probability converging to 1. On the event (Gt, σGt) = (T t, τT t), we have that Rtu = Γtu. Hence,

pG(σ̂tBP) = q∗T t + o(1), (12)

where o(1) term comes from the coupling error.

The following lemma shows that p∗G is lower bounded by p∗T t as n→∞.

Lemma 11 For t = t(n) such that bt = no(1),

lim sup
n→∞

(p∗G − p∗T t) ≥ 0.

We pause a while to give some intuition behind the lemma. To lower bound p∗G, it suffices to
lower bound the error probability of estimating σu for a given vertex u based on graph G. To this
end, we consider an oracle estimator, which in addition to the graph structure, the exact labels of
all vertices at distance exactly t from u are also revealed. We further show that once the exact

12
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labels at distance t are conditioned, σu becomes asymptotically independent of the labels of all
vertices at distance larger than t from u. Hence, effectively the oracle estimator is equivalent to
the MAP estimator solely based on the graph structure in Gtu and the exact labels at distance t. By
the coupling lemma, Gtu is a tree with high probability, and thus the error probability of the oracle
estimator asymptotically equals to p∗T t .

4. Gaussian Density Evolution

In the previous subsection, we have argued that in the limit n → ∞, pG(σ̂tBP) equals to q∗T t , and
p∗G is bounded by p∗T t from the below. In this section, we analyze recursions (10) and (11) using
density evolution analysis with Gaussian approximations, and derive simple formulas for p∗T t and
q∗T t in the limit n→∞. Afterwards, we give the proof of Theorem 2.

Notice that Γti is a function of T ti alone. Since the subtrees {T ti }i∈∂u conditional on τu are inde-
pendent and identically distributed, {Γti}i∈∂u conditional on τu are also independent and identically
distributed. Thus, in view of the recursion (11), Γtu can be viewed as a sum of i.i.d. random vari-
ables. When the expected degree of u tends to infinity, due to the central limit theorem, we expect
that the distribution of Γtu conditional on τu is approximately Gaussian. Moreover, the construction
of the subtree T ti conditional on τi is the same as the construction of T tu conditional on τu. There-
fore, for any i ∈ ∂u, the distribution of Γti conditional on τi is the same as the distribution of Γtu
conditional on τu. Similar conclusions hold for Λti as well.

Let Zt± (W t
±) denote a random variable that has the same distribution as Γtu (Λtu) conditional

on τu = ±. The following lemma provides expressions of the mean and variance of Zt+ and Zt−.

Recall that λ = ρ(µ+ν)2

8 and θ = ρ(µ−ν)2

8 + (1−2ρ)ν2

4 .

Lemma 12 For all t ≥ 0,

E
[
Zt+1
±
]

= ±θ ± λE
[
tanh(Zt+ + ϕ)

]
+O(b−1/2), (13)

var
(
Zt+1
±
)

= θ + λE
[
tanh(Zt+ + ϕ)

]
+O(b−1/2). (14)

Recall that (vt : t ≥ 0) satisfies v0 = 0 and

vt+1 = θ + λh(vt) = θ + λE [tanh(vt +
√
vtZ + ϕ] ,

where Z ∼ N (0, 1). Similarly, define (wt : t ≥ 1) by w1 = θ + λ = ρµ2+ρ̄ν2

4 and

wt+1 = θ + λh(wt) = θ + λE [tanh(wt +
√
wtZ + ϕ] .

The following lemma shows that for any fixed t ≥ 0, Zt± and W t
± are approximately Gaussian.

Lemma 13 For any t ≥ 0, as n→∞,

sup
x

∣∣∣∣P{Zt± ∓ vt√
vt

≤ x
}
− P {Z ≤ x}

∣∣∣∣ = O(b−1/2). (15)

Similarly, for any t ≥ 1, as n→∞,

sup
x

∣∣∣∣P{W t
± ∓ wt√
wt

≤ x
}
− P {Z ≤ x}

∣∣∣∣ = O(b−1/2). (16)

13
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Before proving Theorem 2, we also need a key lemma, which shows that h is continuous and
non-decreasing, and h is concave if ϕ = 0.

Lemma 14 h(v) is continuous on [0,∞) and for v ∈ (0,+∞),

h′(v) = E
[(

1− tanh(v +
√
vZ + ϕ)

) (
1− tanh2(v +

√
vZ + ϕ)

)]
≥ 0. (17)

Furthermore, if ϕ = 0, then h′(v) ≥ h′(w) for 0 < v < w <∞.

Finally, we are ready to prove Theorem 2 based on Lemma 13 and Lemma 14.
Proof [Proof of Theorem 2] In view of Lemma 13,

lim
n→∞

P
{

Γtu ≥ −ϕ|τu = −
}

= Q

(
vt − ϕ√

vt

)
,

lim
n→∞

P
{

Γtu ≤ −ϕ|τu = +
}

= Q

(
vt + ϕ
√
vt

)
.

Hence, it follows from Lemma 10 that

lim
n→∞

pG(σ̂tBP) = lim
n→∞

q∗T t = E
[
Q

(
vt + U
√
vt

)]
,

where U = −ϕ with probability 1− ρ and U = ϕ with probability ρ.
We prove that vt+1 ≥ vt for t ≥ 0 by induction. Recall that

v0 = 0 ≤ (ρµ− ρ̄ν)2/4 = θ + λh(v0) = v1.

Suppose vt+1 ≥ vt holds; we shall show the claim also holds for t + 1. In particular, since h is
continuous on [0,∞) and differential on (0,∞), it follows from the mean value theorem that

vt+2 − vt+1 = λ (h(vt+1)− h(vt)) = λh′(x)(vt+1 − vt),

for some x ∈ (vt, vt+1). Lemma 14 implies that h′(x) ≥ 0 for x ∈ (0,∞), it follows that vt+2 ≥
vt+1. Hence, vt is non-decreasing in t. Next we argue that vt ≤ v for all t ≥ 0 by induction,
where v is the smallest fixed point of v = θ + λh(v). For the base case, v0 = 0 ≤ v. If vt ≤ v,
then by the monotonicity of h, vt+1 = θ + λh(vt) ≤ θ + λh(v) = v. Hence, vt ≤ v and thus
limt→∞ vt ≤ v. By the continuity of h, limt→∞ vt is also a fixed point of v = θ + λh(v), and
consequently limt→∞ vt = v. Therefore,

lim
t→∞

lim
n→∞

pG(σ̂tBP) = lim
t→∞

lim
n→∞

q∗T t = E
[
Q

(
v + U
√
v

)]
.

Next, we prove the claim for p∗G. In view of Lemma 13,

lim
n→∞

P
{

Λtu ≥ −ϕ|τu = −
}

= Q

(
wt − ϕ√

wt

)
,

lim
n→∞

P
{

Λtu ≤ −ϕ|τu = +
}

= Q

(
wt + ϕ
√
wt

)
.

14
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Hence, it follows from Lemma 11 that

lim inf
n→∞

p∗G ≥ lim
n→∞

p∗T t = E
[
Q

(
wt + U
√
wt

)]
.

Recall that w1 = θ+λ ≥ wt. By the same argument of proving vt is non-decreasing, one can show
that wt is non-increasing in t. Also, by the same argument of proving vt is upper bounded by v, one
can show that wt is lower bounded by v, where v is the largest fixed point of v = θ + λh(v). Thus,
limt→∞wt = v and v ≤ w1 = θ + λ = (ρµ2 + ρ̄ν2)/4. Therefore,

lim inf
n→∞

p∗G = lim
t→∞

lim inf
n→∞

p∗G ≥ lim
t→∞

lim
n→∞

p∗T t = E
[
Q

(
v + U√

v

)]
.

If ϕ = 0 and µ 6= ν, then v1 > 0 and Lemma 14 shows that h′(v) ≥ h′(w) for all 0 < v < w <∞.
Since v1 = θ + λh(0) > 0 and v = θ + λh(v), it must hold that λh′(v) < 1. Thus λh′(v) < 1
for all v ≥ v and consequently θ + λh(v) < v for all v > v. Hence, v = v = v∗, where v∗ is the
unique fixed point of v = (µ−ν)2

16 + (µ+ν)2

16 E [tanh(v +
√
vZ)] . Therefore,

lim inf
n→∞

p∗G ≥ lim
t→∞

lim
n→∞

p∗T t = lim
t→∞

lim
n→∞

q∗T t = lim
t→∞

lim
n→∞

pG(σ̂tBP) = Q(
√
v∗).

Since p∗G is the minimum expected misclassified fraction, it also holds that lim supn→∞ p
∗
G ≤

limn→∞ pG(σ̂tBP) for all t ≥ 1 and consequently

lim sup
n→∞

p∗G ≤ lim
t→∞

lim
n→∞

pG(σ̂tBP).

Combing the last two displayed equations gives that

lim
n→∞

p∗G = lim
t→∞

lim
n→∞

pG(σ̂tBP) = Q(
√
v∗).

4.1. Degree-Uncorrelated Case

As remarked in Section 2.2, in the case ρµ = ρ̄ν, the vertex degrees are statistically uncorrelated
with the cluster structure, and no local algorithms is capable of non-trivial detection. However, it
is still possible that local algorithms combined with some efficient global algorithms achieve the
minimum expected misclassified fraction. In this subsection, we show that it is indeed the case, if
ρ = 1/2, µ = ν with |µ| > 2, and b = o(log n). The algorithm as described in Algorithm 2 is
introduced in Mossel et al. (2013a) and we give the full description for completeness.

Notice that Algorithm 2 runs in time polynomial in n. The algorithm consists of two main steps.
First, we apply some global algorithm to get a correlated clustering when |µ| > 2, for example, the
algorithm studied in Mossel et al. (2013c). Then, we apply the local BP algorithm to boost the
correlated clustering in the first step to achieve the minimum expected misclassified fraction. To
ensure the first and second step are independent of each other, for each vertex u, we first withhold
the (t− 1)-local neighborhood of u, and then apply the global detection algorithms on the reduced
set of vertices. The clustering on the reduced set of vertices is used as the initialization to the local
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Algorithm 2 Local Belief propagation Plus Correlated Recovery

1: Input: n ∈ N, a = c, b > 0, ρ = 1/2, adjacency matrix A ∈ {0, 1}n×n, t ∈ N.
2: Take U ⊂ V to be a random subset of size b

√
nc. Let u∗ ∈ U be a random vertex in U with at

least logn
2 log(logn/b)neighbors in V \U.

3: For u ∈ V \U do

1. Run a polynomial-time estimator capable of correlated recovery on the subgraph induced
by vertices not in Gt−1

u and U , and let W+
u and W−u denote the output of the partition.

2. Relabel W+
u and W−u such that if a > b, then u∗ has more neighbors in W+

u than W−u ;
otherwise, u∗ has more neighbors inW−u thanW+

u . Let αu denote the fraction of vertices
misclassified by the partition (W+

u ,W
−
u ).

3. For all i ∈ ∂Gtu and j ∈ ∂Gt−1
u , define R0

i→j = 1
2 log 1−αu

αu
if i ∈ W+

u , and R0
i→j =

−1
2 log 1−αu

αu
if i ∈W−u .

4. Run t − 1 iterations of message passing as in (4) to compute Rt−1
i→u for all u’s neighbors

i .

5. Compute Rtu as per (5), and let σ̂tBP(u) = + if Rtu ≥ −ϕ; otherwise let σ̂tBP(u) = −.

4: For u ∈ U , let σ̂tBP(u) equal to + or − uniformly at random. Output σ̂tBP.

belief propagation algorithm running on the withheld (t− 1)-local neighborhood of u. In this way,
the outcome of the global detection algorithm based on the reduced set of vertices is independent of
the edges between the withheld t-local neighborhood of u and the reduced set of vertices, as well as
the edges within the withheld set.

There is also a subtle issue to overcome. We run the global detection algorithm once for each
vertex, and the global detection algorithm cannot reliably estimate the sign of the true σ due to
the symmetry between + and −. Therefore, different runs of the global detection algorithm may
have different estimates of the sign of σ. We need a way to coordinate different runs of the global
detection algorithms to have the same estimate of the sign of σ. To this end, a small random subset
U is reserved and a vertex of high degree u∗ in U is served as an anchor. In every runs of the global
detection algorithms, we relabel the partition if necessary, to ensure that u∗ will always have more
neighbors with estimated + labels than neighbors with estimated − labels if a > b, and the other
way around if a < b.

Finally, we caution the reader that in addition to the model parameters a, b, after each run of
the global detection algorithm, the algorithm requires knowing αu, which is the fraction of vertices
misclassified by the partition (W+

u ,W
−
u ). In the main analysis, we assume the exact value of αu is

known for simplicity. One can check that only an estimator α̂u = αu + o(1) with high probability
is needed for Theorem 3 to hold. In Appendix B, we give an efficient and data-driven procedure to
construct such a consistent estimate of αu.

Next, in the limit n → ∞, we give a lower bound on the minimum expected misclassified
fraction, and an upper bound attainable by σ̂tBP. Then we show that the lower and upper bound
match with each other in the double limit, where first n→∞ and then t→∞.
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Recall that the fraction of vertices misclassified by σ̂ is defined up to a global flip of signs of
σ̂ as in (6). The following lemma shows that the minimum expected misclassified fraction is still
lower bounded by p∗T t . Its proof is very similar to the proof of Lemma 11. The key new challenge
is that E [O(σ, σ̂)] does not reduce to the error probability of estimating σu for a given vertex u
directly.

Lemma 15 For t = t(n) such that bt = no(1),

lim sup
n→∞

(
inf
σ̂

E [O(σ, σ̂)]− p∗T t
)
≥ 0,

where p∗T t is defined in (8) under the tree model with ρ = 1/2 and a = c defined in Definition 5.

In the following, we relate the expected fraction of vertices misclassified by σ̂tBP as defined in
Algorithm 2 to an estimation problem on the tree model. In particular, consider the tree model with
ρ = 1/2 and a = c as defined in Definition 5. Fix an α ∈ [0, 1/2]. Let τ̃i = τi with probability
1 − α and τ̃i = −τi with probability for α, independently for all i ∈ Tu. Then τ̃∂T tu is a α-noisy
version of τ∂T tu . Let q̃T t,α denote the minimum error probability of inferring τu based on T tu and
τ̃∂T tu . The optimal estimator achieving q̃T t,α is the MAP estimator given by

τ̂MAP = 2× 1{Γ̃tu≥−ϕ} − 1,

where

Γ̃ti ,
1

2
log

P
{
T ti , τ̃∂T ti |τu = +1

}
P
{
T ti , τ̃∂T ti |τu = −1

}
for all i in Tu. The minimum error probability q̃T t,α is given by

q̃T t,α =
1

2
P
{

Γ̃tu < −ϕ|τu = +
}

+
1

2
P
{

Γ̃tu ≥ −ϕ|τu = −
}

=
1

2
− 1

2
E
[∣∣P{τu = +|T tu, τ̃∂T tu |

}
− P

{
τu = −|T tu, τ̃∂T tu

} ∣∣] ,
It follows from the definition that q̃T t,α is non-decreasing in α. Also, q̃T t,α = p∗T t if α = 0 and

q̃T t,α = q∗T t if α = 1/2. The following lemma shows that the fraction of vertices misclassified by
σ̂tBP as defined in Algorithm 2 is asymptotically no larger than q̃T t,α for some α ∈ [0, 1/2).

Lemma 16 There exists an α ∈ [0, 1/2) such that for t = t(n) with bt = no(1),

lim sup
n→∞

(
E
[
O(σ, σ̂tBP)

]
− q̃T t,α

)
≤ 0.

The following lemma gives a characterization of the distribution of Γ̃tu based on the density
evolution with Gaussian approximations.

Lemma 17 Let Z̃t+ and Z̃−1 denote a random variable that has the same distribution as Γ̃tu con-
ditioning on τu = + and τu = −, respectively. For any t ≥ 1, as n→∞,

sup
x

∣∣∣∣P
{
Z̃t± ∓ ut√

ut
≤ x

}
− P {Z ≤ x}

∣∣∣∣ = O(b−1/2), (18)

where u1 = (1−2α)2µ2

4 and ut+1 = µ2

4 E
[
tanh(ut +

√
utZ)

]
.
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We are ready to prove Theorem 3 by combing Lemma 15, Lemma 16, and Lemma 17.
Proof [Proof of Theorem 3] In view of Lemma 17, for t ≥ 0,

lim
n→∞

P
{

Γ̃tu ≥ 0|τu = −
}

= lim
n→∞

P
{

Γ̃tu ≤ 0|τu = +
}

= Q(
√
ut),

It follows from Lemma 16 that there exists an α ∈ [0, 1/2) such that

lim sup
n→∞

E
[
O(σ, σ̂tBP)

]
≤ lim

n→∞
q̃T t,α = Q(

√
ut).

Let h̃(v) = E [tanh(v +
√
vZ)] . In view of Lemma 14, h̃ is non-decreasing and concave in [0,∞),

and limv→0 h̃
′(v) = 1. Notice that h(0) = 0, and thus 0 is a fixed point of v = µ2

4 h̃(v). Moreover,
by the mean value theorem, for v > 0, h̃(v) = h(0) + h̃′(ξ)v for some ξ ∈ (0, v). Thus µ2

4 h̃(v) =
µ2

4 h̃
′(ξ)v. By the assumption that µ > 2, and limv→0 h̃

′(v) = 1, it follows that there exists a v∗ > 0

such that µ
2

4 h̃(v) > v for all v ∈ (0, v∗). Furthermore, h̃(v) ≤ 1 and hence µ2

4 h̃(v) < v for all v
sufficiently large. Since h̃ is continuous, v = µ2

4 h̃(v) must have nonzero fixed points. Let v denote
the smallest nonzero fixed point. Then v > 0, µ

2

4 h̃(v) > v for all v ∈ (0, v), and µ2

4 h̃
′(v) < 1.

Because h̃ is concave, h̃′(v) ≤ h̃′(v) for all v ≥ v. Thus µ2

4 h̃(v) > v for all v > v. Therefore, v is
the unique nonzero fixed point and also the largest fixed point. It follows that if u1 < v, then {ut} is
a non-decreasing sequence upper bounded by v. If u1 > v, then {ut} is a non-increasing sequence
lower bounded by v. Since u1 > 0, it follows that limt→∞ ut = v. Hence,

lim sup
n→∞

inf
σ̂

E [O(σ, σ̂)] ≤ lim
t→∞

lim sup
n→∞

E
[
O(σ, σ̂tBP)

]
≤ lim

t→∞
lim
n→∞

q̃T t,α = Q(
√
v). (19)

It follows from Theorem 2 and Lemma 15 that

lim inf
n→∞

inf
σ̂

E [O(σ, σ̂)] ≥ lim
t→∞

lim
n→∞

p∗T t = Q(
√
v). (20)

The theorem follows by combining the last two displayed equations.
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Appendix A. Additional Proofs

A.1. Proof of Lemma 8

By definition, Λ0
i = +∞ if τi = + and Λ0

i = −∞ if τi = −, and Γ0
i = 0 for all i. We prove the

claim for Γti with t ≥ 1; the claim for Λti with t ≥ 1 follows similarly.
A key point is to use the independent splitting property of the Poisson distribution to give an

equivalent description of the numbers of children of each type for any vertex in the tree. Instead of
separately generating the number of children of each type, we can first generate the total number
of children and then independently and randomly select the type of each child. For every vertex i
in Tu, let Ni denote the total number of its children. If τi = + then Ni ∼ Pois(d+), and for each
child j ∈ ∂i, independently of everything else, τj = + with probability ρa/d+ and τj = − with
probability ρ̄b/d+, where d+ = ρa+ ρ̄b. If τi = − then Ni ∼ Pois(d−), and for each child j ∈ ∂i,
independently of everything else, τj = + with probability ρb/d− and τj = + with probability
ρ̄c/d−, where d− = ρb + ρ̄c. With this view, the observation of the total number of children Ni

of vertex i gives some information, and then the conditionally independent messages from those
children give additional information on τi. Specifically,

Γt+1
i =

1

2
log

P
{
T t+1
i |τi = +

}
P
{
T t+1
i |τi = −

} (a)
=

1

2
log

P {Ni|τi = +}
P {Ni|τi = −}

+
1

2

∑
j∈∂i

log
P
{
T tj |τi = +

}
P
{
T tj |τi = −

}
(b)
=
−d+ + d−

2
+

1

2
Ni log

d+

d−
+

1

2

∑
j∈∂i

log

∑
x∈{±} P {τj = x|τi = +}P

{
T tj |τj = x

}
∑

x∈{±} P {τj = x|τi = −}P
{
T tj |τj = x

}
(c)
=
−d+ + d−

2
+

1

2

∑
j∈∂i

log
ρaP

{
T tj |τj = +

}
+ ρ̄bP

{
T tj |τj = −

}
ρbP {T ti |τj = +}+ 1

2 ρ̄cP {T
t
i |τj = −}

(d)
=
−d+ + d−

2
+

1

2

∑
j∈∂i

log
e2Γtjρa+ ρ̄b

e2Γtjρb+ ρ̄c
,

where (a) holds because Ni and T tj for j ∈ ∂u are independent conditional on τi; (b) follows
because Ni ∼ Pois(d+) if τi = + and Ni ∼ Pois(d−) if τi = −, and T tj is independent of
τi conditional on τj ; (c) follows from the definition of Tu as τj ∼ 2 ∗ Bern(ρa/d+) − 1 (resp.
2 ∗ Bern(ρb/d−)− 1) conditional on τi = + (resp. −); (d) follows from the definition of Γtj .

A.2. Proof of Lemma 11

We will show that as n → ∞, p∗G is bounded by p∗T t from the below for any t ≥ 1. Before that,
we need a key lemma which shows that conditional on (Gt, σ∂Gt), σu is almost independent of the
graph structure outside of Gt. The proof is similar to that of (Mossel et al., 2015a, Proposition 4.2)
which deals with the special case ρ = 1/2 and a = c. The key challenge here is that when ρ 6= 1/2
or a 6= c, the overall effect of the non-edges depends on σ and some extra care has to be taken (see
(23) for details).
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Lemma 18 For t = t(n) such that bt = no(1), there exists a sequence of events En such that
P {En} → 1 as n→∞, and on event En,

P
{
σu = x|Gt, σ∂Gt

}
= (1 + o(1))P {σu = x|G, σ∂Gt} , ∀x ∈ {±}. (21)

Moreover, on event En, (Gt, σGt) = (T t, τT t) holds.

Proof Recall that Gt is the subgraph of G induced by vertices whose distance from u is at most t.
Let At denote the set of vertices in Gt−1, Bt denote the set of vertices in Gt, and Ct denote the set
of vertices inG but not inGt. ThenAt∪∂Gt = Bt andAt∪∂Gt∪Ct = V. Define sA =

∑
i∈At σi

and sC =
∑

i∈Ct σi. Let

En = {(σC , Gt) : |sC | ≤ n0.6, |B| ≤ n0.1, (Gt, σGt) = (T t, τT t)}.

By the assumption bt = no(1), it follows that (Gt, σGt) = (T t, τT t) and |B| = no(1) with probability
converging to 1 (see (Mossel et al., 2015a, Proposition 4.2) for a proof). Note that sC = 2X − |C|
for some X ∼ Binom(|C|, ρ). Letting αn = n0.6, in view of the Bernstein inequality,

P
{∣∣sC − (2ρ− 1)|C|

∣∣ > αn
}

= P
{∣∣X − ρ|C|∣∣ > αn/2

}
≤ 2e

− −α2n/4
|C|/2+αn/3 = o(1),

where the last equality holds because |C| ≤ n and αn/
√
n → ∞. In conclusion, we have that

P {En} → 1 as n→∞.
To prove that (21) holds, it suffices to show that on event En,

P
{
σu = x|Gt, σ∂Gt

}
= (1 + o(1))P

{
σu = x|Gt, σ∂Gt , σC

}
, ∀x ∈ {±}. (22)

In particular, on event En,

P {σu = x|G, σ∂Gt} =
∑
σC

P {σu = x, σC |G, σ∂Gt}

=
∑
σC

P {σC |G, σ∂Gt}P {σu = x|G, σ∂Gt , σC}

=
∑
σC

P {σC |G, σ∂Gt}P
{
σu = x|Gt, σ∂Gt , σC

}
= (1 + o(1))P

{
σu = x|Gt, σ∂Gt

}
,

where the third equality holds, because conditional on (Gt, σ∂Gt , σC), σu is independent of the
graph structure outside of Gt; the last equality follows due to (22). Hence, we are left to show the
desired (22) holds.

Recall that G = (V,E). For any two sets U1, U2 ⊂ V , define

ΦU1,U2(G, σ) =
∏

(u,v)∈U1×U2

φuv(G, σ),

where (u, v) denotes an unordered pair of vertices and

φuv(G,L, σ) =



a/n if σu = σv = +, (u, v) ∈ E
c/n if σu = σv = −, (u, v) ∈ E
b/n if σu 6= σv, (u, v) ∈ E

1− a/n if σu = σv = +, (u, v) /∈ E
1− c/n if σu = σv = −, (u, v) /∈ E
1− b/n if σu 6= σv, (u, v) /∈ E
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Then the joint distribution of σ and G is given by

P {σ,G, σ̃} = 2−nΦB,B ΦC,C Φ∂Gt,C ΦA,C .

Notice that A and C are disconnected. We claim that on event En, ΦA,C only depend on σC through
the o(1) term. In particular, on event En,

ΦA,C(G, σ) =
∏

(u,v)∈A×C

φuv(G, σ)

=
(

1− a

n

)(|A|+sA)(|C|+sC)/4 (
1− c

n

)(|A|−sA)(|C|−sC)/4
(

1− b

n

)(|A||C|−sAsC)/2

= (1 + o(1))
(

1− a

n

)ρ(|A|+sA)|C|/2 (
1− c

n

)ρ̄(|A|−sA)|C|/2
(

1− b

n

)(|A||C|−sA(2ρ−1)|C|)/2

, (1 + o(1))K(σA, |C|), (23)

where the second equality holds because u ∈ A and v ∈ C implies that (u, v) /∈ E and thus φuv
is either 1 − a/n, 1 − c/n, or 1 − b/n, depending on σu and σv; the third equality holds because
(|A| + |sA|)|sC − (2ρ − 1)|C|| ≤ 2αn|B| = o(n); the last equality holds for some K(σA, |C|)
which only depends on σA and |C|. As a consequence,

P {σ,G, En} = (1 + o(1))2−n K(σA, , |C|) ΦB,B ΦC,C Φ∂Gt,C .

It follows that

P
{
σu = x,Gt, σ∂Gt , σC , En

}
= (1 + o(1))2−n

∑
σA\{u}

K(σA, |C|) ΦB,B

and thus

P
{
σu = x,Gt, σ∂Gt , En

}
=
∑
σC

P
{
σu = x,Gt, σ∂Gt , σC , En

}
= (1 + o(1))2−n

∑
σA\{u}

K(σA, |C|) ΦB,B

∑
σC

1{|sC |≤n0.6}.

By Bayes’ rule,

P
{
σu = x|Gt, σ∂Gt , En

}
=

P
{
σu = x,Gt, σ∂Gt , En

}
P {Gt, σ∂Gt , En}

= (1 + o(1))

∑
σA\{u}

K(σA, |C|) ΦB,B∑
σA
K(σA, |C|) ΦB,B

= (1 + o(1))
P
{
σu = x,Gt, σ∂Gt , σC , En

}
P {Gt, σ∂Gt , σC , En}

= (1 + o(1))P
{
σu = x|Gt, σ∂Gt , σC , En

}
.

Hence, the desired (22) follows on event En.

24



DENSITY EVOLUTION IN STOCHASTIC BLOCK MODEL

Proof [Proof of Lemma 11] In view of the definition of p∗G given in (3),

p∗G =
1

2
− 1

2

∣∣P {σu = +|G} − P {σu = −|G}
∣∣.

Consider estimating σu based on G. For any t ∈ N, suppose a genie reveals the labels of all vertices
whose distance from u is precisely t, and let σ̂Oracle,t denote the optimal oracle estimator given by

σ̂Oracle,t(u) = 2× 1{P{σu=+|G,σ∂Gt}≥P{σu=−|G,σ∂Gt}} − 1.

Let pG(σ̂Oracle,t) denote the error probability of the oracle estimator, which is given by

pG(σ̂Oracle,t) =
1

2
− 1

2

∣∣P {σu = +|G, σ∂Gt} − P {σu = −|G, σ∂Gt}
∣∣

Since σ̂Oracle,t(u) is optimal with the extra information σ∂Gt , it follows that pG(σ̂Oracle,t) ≤ p∗G for
all t and n. Lemma 18 implies that there exists a sequence of events En such that P {En → 1} and
on event En,

P {σu = x|G, σ∂Gt} = (1 + o(1))P
{
σu = x|Gt, σ∂Gt

}
, ∀x ∈ {±},

and (Gt, σGt) = (T t, τT t). It follows that

pG(σ̂Oracle,t) =
1

2
− 1

2
E
[∣∣P {σu = +|G, σ∂Gt} − P {σu = −|G, σ∂Gt}

∣∣1{En}]+ o(1)

=
1

2
− 1

2
E
[∣∣P{σu = +|Gt, σ∂Gt

}
− P

{
σu = −|Gt, σ∂Gt

} ∣∣1{En}]+ o(1)

=
1

2
− 1

2
E
[∣∣P{τu = +|T t, τ∂T t

}
− P

{
τu = −|T t, τ∂T t

} ∣∣1{En}]+ o(1)

=
1

2
− 1

2
E
[∣∣P{τu = +|T t, τ∂T t

}
− P

{
τu = −|T t, τ∂T t

} ∣∣]+ o(1)

= p∗T t + o(1).

Hence,

lim sup
n→∞

(p∗G − p∗T t) ≥ lim sup
n→∞

(pG(σ̂Oracle,t)− p∗T t) = 0.

A.3. Proof of Lemma 12

We first prove the claims for Zt+1
− . By the definition of Γtu and the change of measure, we have

E
[
g(Γtu)|τu = −

]
= E

[
g(Γtu)e−2Γtu |τu = +

]
,

where g is any measurable function such that the expectations above are well-defined. It follows
that

E
[
g(Zt−)

]
= E

[
g(Zt+)e−2Zt+

]
. (24)
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Define ψ(x) , log(1 + x) − x + x2/2. It follows from the Taylor expansion that |ψ(x)| ≤ |x|3.
Then

F (x) =
1

2
log

(
e2xρa+ ρ̄b

e2xρb+ ρ̄c

)
=

1

2
log

b

c
+

1

2
log

(
e2x(ρa)/(ρ̄b) + 1

e2x(ρb)/(ρ̄c) + 1

)
=

1

2
log

b

c
+

1

2
log

(
1 +

e4β − 1

1 + e−2x(ρ̄c)/(ρb)

)
=

1

2
log

b

c
+

(
e4β − 1

)
2

f(x)−
(
e4β − 1

)2
4

f2(x) +
1

2
ψ
(

(e4β − 1)f(x)
)
,

where β = 1
2 log

√
ac
b and f(x) = 1

1+e−2x(ρ̄c)(ρb)
. Since |ψ(x)| ≤ |x|3 and |f(x)| ≤ 1, it follows

that

F (x) =
1

2
log

b

c
+

(
e4β − 1

)
2

f(x)−
(
e4β − 1

)2
4

f2(x) +O
(
|e4β − 1|3

)
, (25)

Therefore, in view of (11),

Γt+1
u =

−d+ + d−
2

+
∑
`∈∂u

F (Γt`)

=
−d+ + d−

2
+

1

2

∑
`∈∂u

[
log

b

c
+
(

e4β − 1
)
f(Γt`)−

(
e4β − 1

)2
2

f2(Γt`) +O
(
|e4β − 1|3

)]
.

By conditioning the label of vertex u is −, it follows that

E
[
Zt+1
−
]

=
−d+ + d−

2
+

1

2
log(b/c)d− +

(
e4β − 1

)
2

(
ρbE

[
f(Zt+)

]
+ ρ̄cE

[
f(Zt−)

])
−
(
e4β − 1

)2
4

(
ρbE

[
f2(Zt+)

]
+ ρ̄cE

[
f2(Zt−)

])
+O

(
b|e4β − 1|3

)
.

In view of (24), we have that

ρbE
[
f(Zt+)

]
+ ρ̄cE

[
f(Zt−)

]
= ρbE

[
f(Zt+)(1 + e−2Zt+(ρ̄c)/(ρb))

]
= ρb, (26)

ρbE
[
f2(Zt+)

]
+ ρ̄cE

[
f2(Zt−))

]
= ρbE

[
f2(Zt+)(1 + e−2Zt+(ρ̄c)/(ρb))

]
= ρbE

[
f(Zt+)

]
. (27)

Hence,

E
[
Zt+1
−
]

=
−d+ + d−

2
+

1

2
log(b/c)d− +

(
e4β − 1

)
2

ρb−
(
e4β − 1

)2
ρb

4
E
[
f(Zt+)

]
+O

(
b|e4β − 1|3

)
.

Notice that

log
b

c
= − log

(
1 +

c− b
b

)
=
b− c
b

+
(b− c)2

2b2
+O

(
|b− c|3

b3

)
. (28)
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As a consequence,

− d+ + d− + log(b/c)d− +
(

e4β − 1
)
ρb

= −ρa− ρ̄b+ b+ ρ̄(c− b) + log(b/c)(b+ ρ̄(c− b)) + ρ
ac− b2

b

= −ρa− ρ̄b+ b+ ρ̄(c− b) + (b− c)− ρ̄(b− c)2

b
+

(b− c)2

2b
+ ρ

ac− b2

b
+O

(
|b− c|3

b2

)
= ρ(−a+ b− c+ ac/b) + (1/2− ρ̄)(b− c)2/b+O

(
|b− c|3

b2

)
= ρ(a− b)(c− b)/b+ (ρ− 1/2)(b− c)2/b+O

(
|b− c|3

b2

)
= ρµν + (ρ− 1/2)ν2 +O(b−1/2),

where the last equality holds due to (a− b)/
√
b = µ and (c− b)/

√
b = ν for fixed constants µ and

ν. Moreover,(
e4β − 1

)2
ρb =

ρ(ac− b2)2

b3
= ρ

(
a− b√
b

+
c− b√
b

+
(a− b)(c− b)

b
√
b

)2

= ρ(µ+ ν)2) +O(b−1/2),

and b|e4β − 1|3 = O(b−1/2). Assembling the last four displayed equations gives that

E
[
Zt+1
−
]

=
1

2
ρµν +

(2ρ− 1)ν2

4
− ρ(µ+ ν)2

4
E
[
f(Zt+)

]
+O(b−1/2).

Finally, recall that ϕ = 1
2 log ρ

1−ρ and thus∣∣∣∣f(x)− 1

1 + e−2(x+ϕ)

∣∣∣∣ =
e−x(ρ̄/ρ)|1− c/b|

(1 + e−x(ρ̄c)/(ρb))(1 + e−x(ρ̄/ρ))
≤ |1− c/b| = O(b−1/2). (29)

It follows that

E
[
Zt+1
−
]

=
1

2
ρµν +

(2ρ− 1)ν2

4
− ρ(µ+ ν)2

4
E
[

1

1 + e−2(Zt++ϕ)

]
+O(b−1/2)

= −ρ(µ− ν)2

8
+

(2ρ− 1)ν2

4
− ρ(µ+ ν)2

8
E
[
tanh(Zt+ + ϕ)

]
+O(b−1/2),

where in the last equality we used the fact that 1
1+e−x = 1

2(tanh(x) + 1). Recall that λ = ρ(µ+ν)2

8

and θ = ρ(µ−ν)2

8 + (1−2ρ)ν2

4 . Therefore, we get the desired equality:

E
[
Zt+1
−
]

= −θ − λE
[
tanh(Zt+ + ϕ)

]
+O(b−1/2).

Next we calculate var(Zt+1
− ). For Y =

∑L
i=1Xi, where L is Poisson distributed, and {Xi} are

i.i.d. with finite second moments, one can check that var(Y ) = E [L]E
[
X2

1

]
. In view of (11),

var(Zt+1
− ) = ρbE

[
F 2(Zt+)

]
+ ρ̄cE

[
F 2(Zt−)

]
,
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In view of (25) and the fact that e4β − 1 = o(1), we have that

F 2(x) =
1

4
log2

(
b

c

)
+

1

2
log

b

c

(
e4β − 1

)
f(x) +

1

4

(
e4β − 1

)2
(1− log(b/c))f2(x) +O

(
|e4β − 1|3

)
,

Thus,

var(Zt+1
− ) =

1

4
log2

(
b

c

)
d− +

1

2
log

b

c

(
e4β − 1

) [
ρbE

[
f(Zt+)

]
+ ρ̄cE

[
f(Zt−)

]]
+

1

4

(
e4β − 1

)2
(1− log(b/c))

[
ρbE

[
f2(Zt+)

]
+ ρ̄cE

[
f2(Zt−)

]]
+O

(
b|e4β − 1|3

)
Applying (26) and (27), we get that

var(Zt+1
− ) =

1

4
log2

(
b

c

)
d− +

ρb
(
e4β − 1

)
2

log
b

c
+
ρb
(
e4β − 1

)2
4

(
1− log

b

c

)
E
[
f(Zt+)

]
+O

(
b|e4β − 1|3

)
.

In view of (28), we have that

log2(b/c)d− + 2ρb
(

e4β − 1
)

log(b/c) = log2(b/c)(b+ ρ̄(c− b)) + 2ρ
ac− b2

b
log(b/c)

=
(b− c)2

b
+ 2ρ(b− c)ac− b

2

b2
+O

(
|b− c|3

b2

)
= ν2 − 2ρν(µ+ ν) +O(b−1/2),

and that

ρb
(

e4β − 1
)2

(1− log(b/c)) =
ρ(ac− b2)2

b3
(1− log(b/c)) = ρ(µ+ ν)2 + o(1).

Moreover, we have shown that b|e4β − 1|3 = O(b−1/2). Assembling the last three displayed equa-
tions give that

var(Zt+1
− ) =

ν2

4
− ρν(µ+ ν)

2
+
ρ(µ+ ν)2

4
E
[
f(Zt+)

]
+O(b−1/2).

Finally, in view of (29), we get that

var(Zt+1
− ) =

ν2

4
− ρν(µ+ ν)

2
+
ρ(µ+ ν)2

4
E
[

1

1 + e−2(Zt++ϕ)

]
+O(b−1/2)

=
ρ(µ− ν)2

8
+

(1− 2ρ)ν2

4
+
ρ(µ+ ν)2

8
E
[
tanh(Zt+ + ϕ)

]
+O(b−1/2)

= θ + λE
[
tanh(Zt+ + ϕ)

]
+O(b−1/2).

The claims for Zt+1
+ can be proved similarly as above. We provide another proof by exploiting

the symmetry. In particular, note that our tree model is parameterized by (ρ, a, b, c) with labels +
and −. Consider another parametrization (ρ′, a′, b′, c′) with labels +′ and −′, where ρ′ = ρ̄, a′ = c,
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b′ = b, c′ = a, +′ = −, −′ = +. Let Z̃t+′ and Z̃t−′ denote the random variables corresponding to
Zt+ and Zt−, respectively. Then, one can check that Z̃t+′ has the same distribution as −Zt− and Z̃t−′
has the same distribution as −Zt+. We have shown that

E
[
Z̃t+1
−′
]

= −ρ
′(µ′ − ν ′)2

8
+

(2ρ′ − 1)(ν ′)2

4
− ρ′(µ′ + ν ′)2

8
E
[
tanh(Z̃t+′ + ϕ′)

]
+O(b−1/2),

where µ′ = a′−b′
b′ = c−b

b = ν and similarly ν ′ = µ, and ϕ′ = −ϕ = 1
2 log 1−ρ

ρ . It follows that

E
[
Zt+1

+

]
=
ρ̄(µ− ν)2

8
− (2ρ̄− 1)µ2

4
− ρ̄(µ+ ν)2

8
E
[
tanh(Zt− + ϕ)

]
+O(b−1/2), (30)

Applying g(x) = tanh(x− ϕ) into (24), we get that

E
[
tanh(Zt+ + ϕ)

]
+ e−2ϕE

[
tanh(Zt− + ϕ)

]
= E

[
tanh(Zt+ + ϕ)

(
1 + e−2(Zt++ϕ)

)]
= E

[
1− e−2(Zt++ϕ)

]
= 1− e−2ϕ,

where the last equality by the change of measure: E
[
e−Z

t
+

]
= 1. Hence,

E
[
tanh(Zt− + ϕ)

]
=

1− e−2ϕ − E
[
tanh(Zt+ + ϕ)

]
e−2ϕ

=
ρ− ρ̄− ρE

[
tanh(Zt+ + ϕ)

]
1− ρ

.

It follows from (30) that

E
[
Zt+1

+

]
=
ρ̄(µ− ν)2

8
− (2ρ̄− 1)µ2

4
− (µ+ ν)2(ρ− ρ̄)

8
+
ρ(µ+ ν)2

8
E
[
tanh(Zt+ + ϕ)

]
+O(b−1/2)

=
ρ(µ− ν)2

8
+

(1− 2ρ)ν2

4
+
ρ(µ+ ν)2

8
E
[
tanh(Zt+ + ϕ)

]
+O(b−1/2)

= θ + λE
[
tanh(Zt+ + ϕ)

]
+O(b−1/2).

Finally, note that

var(Zt+1
+ ) = var(Z̃t+1

−′ ) = −E
[
Z̃t+1
−′
]

+O(b−1/2) = E
[
Zt+1

+

]
+O(b−1/2).

Combing the last two displayed equations completes the proof.

A.4. Proof of Lemma 13

The following lemma is useful for proving the distributions of Zt+ and Zt− are approximately Gaus-
sian.

Lemma 19 (Analog of Berry-Esseen inequality for Poisson sums (Korolev and Shevtsova, 2012,
Theorem 3).) Let Sd = X1 + · · ·+XNd , where Xi : i ≥ 1 are independent, identically distributed
random variables with finite second moment, and for some d > 0, Nd is a Pois(d) random variable
independent of (Xi : i ≥ 1). Then

sup
x

∣∣∣∣P
{
Sd − E [Sd]√

var(Sd)
≤ x

}
− P {Z ≤ x}

∣∣∣∣ ≤ CBEE
[
|X1|3

]√
d(E

[
X2

1

]
)3
,

where E [Sd] = dE [X1], var(Sd) = dE
[
X2

1

]
, and CBE = 0.3041.
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Proof [Proof of Lemma 13] We prove the lemma by induction over t. We first consider the base
case. For Zt, the base case t = 0 trivially holds, because Γ0

u ≡ 0 and v0 = 0. For W t, we need to
check the base case t = 1. Recall that Λ0

` = ∞ if τ` = + and Λ0
` = −∞ if τ` = −. Notice that

F (∞) = 1
2 log(a/b) and F (−∞) = 1

2 log(b/c). Hence,

Λ1
u =
−d+ + d−

2
+

Nd∑
i=1

Xi, (31)

where conditional on τu = ±, Nd ∼ Pois(d±) is independent of {Xi}; {Xi} are i.i.d. such that
conditional on τu = +, Xi = 1

2 log(a/b) with probability (ρa)/d+ and Xi = 1
2 log(b/c) with

probability (ρ̄b)/d+; conditional on τu = −, Xi = 1
2 log(a/b) with probability (ρb)/d− and Xi =

1
2 log(b/c) with probability (ρ̄c)/d−. Taylor expansion yields that

log(a/b) = log

(
1 +

a− b
b

)
=
a− b
b
− µ2

2b
+O

(
b−3/2

)
log(b/c) = − log

(
1 +

c− b
b

)
=
b− c
b

+
ν2

2b
+O

(
b−3/2

)
,

Since F is monotone,

E
[
X2

1

]
≥ min{| log(a/b)|2, | log(b/c)|2} = Ω

(
min

{
(a− b)2

b2
,
(c− b)2

b2

})
= Ω(b−1)

E
[
|X1|3

]
≤ max{| log(a/b)|3, | log(b/c)|3} = O

(
|a− b|3 + |b− c|3

b3

)
= O(b−3/2).

Thus, in view of Lemma 19, we get that

sup
x

∣∣∣∣P
W 1

± − E
[
W 1
±
]√

var
(
W 1
±
) ≤ x

− P {Z ≤ x}
∣∣∣∣ ≤ O(b−1/2).

By conditioning the label of u is −, it follows from (31) that

E
[
W 1
−
]

=
1

2
[−d+ + d− + log(a/b)ρb+ log(b/c)ρ̄c] = −ρµ

2 + ρ̄ν2

4
+O(b−1/2) = −w1 +O(b−1/2)

var
(
W 1
−
)

=
1

4
log2(a/b)ρb+

1

4
log2(b/c)ρ̄b =

ρµ2 + ρ̄ν2

4
+O(b−1/2) = w1 +O(b−1/2),

where we used the fact that w1 = θ + λ = ρµ2+ρ̄ν2

4 by definition. Similarly, by conditioning the
label of u is +, it follows that

E
[
W 1

+

]
=

1

2
[−d+ + d− + log(a/b)ρa+ log(b/c)ρ̄b] =

ρµ2 + ρ̄ν2

4
+O(b−1/2) = w1 +O(b−1/2)

var
(
W 1

+

)
=

1

4
log2(a/b)ρa+

1

4
log2(b/c)ρ̄b =

ρµ2 + ρ̄ν2

4
+O(b−1/2) = w1 +O(b−1/2).

Hence, we get the desired equality:

sup
x

∣∣∣∣P{W 1
± ∓ w1√
w1

≤ x
}
− P {Z ≤ x}

∣∣∣∣ ≤ O(b−1/2).
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In view of (10) and (11), Λt and Γt satisfy the same recursion. Moreover, by definition, vt and
wt also satisfy the same recursion. Thus, to finish the proof of the lemma, it suffices to show that:
suppose (15) holds for t, then it also holds for t + 1. We prove the claim for Zt+1

− ; the claim for
Zt+1

+ follows similarly. In view of the recursion given in (11),

Zt+1
− =

−d+ + d−
2

+

Nd∑
i=1

Yi,

where Nd ∼ Pois(d) is independent of {Yi}; {Yi} are i.i.d. such that Yi = F (Zt+) with probability
ρb/d− and Yi = F (Zt−) with probability ρ̄c/d−. Since F is monotone, F (∞) = log(a/b), and
F (−∞) = log(b/c), it follows that

E
[
Y 2

1

]
≥ min{| log(a/b)|2, | log(b/c)|2} = Ω(b−1)

E
[
|Y1|3

]
≤ max{| log(a/b)|3, | log(b/c)|3} = O(b−3/2).

In view of Lemma 19, we get that

sup
x

∣∣∣∣P
Zt+1

− − E
[
Zt+1
−
]√

var
(
Zt+1
−
) ≤ x

− P {Z ≤ x}
∣∣∣∣ = O(b−1/2). (32)

It follows from Lemma 12 that

E
[
Zt+1
−
]

= −θ − λE
[
tanh(Zt+ + ϕ)

]
+O(b−1/2).

var
(
Zt+1
−
)

= θ + λE
[
tanh(Zt+ + ϕ)

]
+O(b−1/2).

Using the area rule of expectation, we have that

E
[
tanh(Zt+ + ϕ)

]
=

∫ 1

0
tanh′(t)P

{
Zt+ + φ ≥ t

}
dt−

∫ 0

−1
tanh′(t)P

{
Zt+ + ϕ ≤ t

}
=

∫ 1

0
tanh′(t)P {vt +

√
vtZ + ϕ ≥ t}dt−

∫ 0

−1
tanh′(t)P {vt +

√
vtZ + ϕ ≤ t}+O(b−1/2)

= E [tanh(vt +
√
vtZ + ϕ)] +O(b−1/2).

where the second equality follows from the induction hypothesis and the fact that | tanh′(t)| ≤ 1.
Recall that vt+1 = θ + λE

[
tanh(vt +

√
vtZ + ϕ)

]
. Hence, E

[
Zt+1
−
]

= −vt+1 + O(b−1/2) and
var
(
Zt+1
−
)

= vt+1 +O(b−1/2). As a consequence, in view of (32), the desired (15) holds for Zt+1
− .

A.5. Proof of Lemma 14

By definition,

h(v) = E
[
tanh

(
v +
√
vZ + ϕ

)]
.
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Since | tanh(x)| ≤ 1, the continuity of h follows from the dominated convergence theorem. We
next show h′(v) exists for v ∈ (0,∞). Notice that tanh′(x+

√
xZ+ϕ) = (1− tanh2(x+

√
xZ+

ϕ))(1 + x−1/2Z/2) for x ∈ (0,∞), and∣∣ (1− tanh2(x+
√
xZ + ϕ)

)
(1 + x−1/2Z/2)

∣∣ ≤ 1 + x−1/2|Z|/2.

Since |Z| is integrable, by the dominated convergence theorem, E
[
tanh′(x+

√
xZ + ϕ)

]
exists

and is continuous in x over (0,∞). Therefore, x → E
[
tanh′(x+

√
xZ + ϕ)

]
is integrable over

x ∈ (0,∞). It follows that

h(v) = E
[
tanh(ϕ) +

∫ v

0
tanh′(x+

√
xZ + ϕ)dx

]
= tanh(ϕ) +

∫ v

0
E
[
tanh′(x+

√
xZ + ϕ)

]
dx,

where the second equality holds due to Fubini’s theorem. Hence,

h′(v) = E
[(

1− tanh2(v +
√
vZ + ϕ)

)
(1 + v−1/2Z/2)

]
.

Using the integration by parts, we can get that

E
[(

1− tanh2(v +
√
vZ + ϕ)

)√
vZ
]

=

∫ ∞
−∞

(1− tanh2(v + x+ ϕ)
x√
2πv

e−x
2/2vdx

= −v
∫ ∞
−∞

(1− tanh2(v + x+ ϕ)

(
1√
2πv

e−x
2/2v

)′
dx

= −v(1− tanh2(v + x+ ϕ)
1√
2πv

e−x
2/2v

∣∣∣∣+∞
−∞

+ v

∫ ∞
−∞

(1− tanh2(v + x+ ϕ)′
1√
2πv

e−x
2/2vdx

= −2vE
[
tanh(v +

√
vZ + ϕ)(1− tanh2(v +

√
vZ + ϕ))

]
.

By combing the last two displayed equations, we get (17).
Next, we prove the concavity of h in the special case with ϕ = 0. We will use the following

equality coming from the change of measure: For k ∈ N,

E
[
tanh2k(

√
vZ + v)

]
= E

[
tanh2k−1(

√
vZ + v)

]
.

It follows from Lemma 14 that

h′(v) = E
[(

1− tanh(v +
√
vZ)

) (
1− tanh2(v +

√
vZ)

)]
= E

[(
1− tanh2(

√
vZ + v)

)2]
= E

[(
1− tanh2

(√
v
∣∣Z +

√
v
∣∣))2] ,

where the last equality holds because tanh2(x) is even in x. For 0 < v < w <∞ and all z ∈ R,

tanh2
(√
w
∣∣z +

√
v
∣∣) ≥ tanh2

(√
v
∣∣z +

√
v
∣∣) .

Thus,

h′(v) = E
[(

1− tanh2
(√
v
∣∣Z +

√
v
∣∣))2] ≥ E

[(
1− tanh2

(√
w
∣∣Z +

√
v
∣∣))2] . (33)
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Let X = |Z +
√
v| and Y = |Z +

√
w|. Then for any x ≥ 0,

P {X ≤ x} = P
{
−x−

√
v ≤ Z ≤ x−

√
v
}
≥ P

{
−x−

√
w ≤ Z ≤ x−

√
w
}

= P {Y ≤ x} .

Hence,X is first-order stochastically dominated by Y . Since
(
1− tanh2 (

√
wx)

)2 is non-increasing
in x for x ≥ 0, it follows that

E
[(

1− tanh2
(√
wX

))2] ≥ E
[(

1− tanh2
(√
wY
))2]

.

Thus by (33),

h′(v) ≥ E
[(

1− tanh2
(√
w
∣∣Z +

√
w
∣∣))2] = h′(w).

A.6. Proof of Lemma 15

The proof is very similar to the proof of Lemma 11; the key new challenge is that E [O(σ, σ̂)] does
not directly reduce to the error probability of estimating σu based on graph G. We need a key
lemma.

Lemma 20 Fix any t ≥ 1 and any two different vertices i and j. For estimator σ̂(G) of σ based
on G,

E
[(

1{σ̂i 6=σi} −
1

2

)(
1{σ̂i 6=σj} −

1

2

)]
≤
(

1

2
− p∗T t

)2

+ o(1). (34)

Proof Fix any t ≥ 1. Recall that Gtu denotes the subgraph induced by vertices whose distance from
u is at most t and ∂Gtu denotes the set of vertices whose distance from u is precisely t. Let (Ti, τTi)
and (Tj , τTj ) denote two independent copies of the tree model with ρ = 1/2 and a = c defined in
Definition 5. The coupling lemma given in Lemma 9 and Lemma 18 can be strengthened so that
there exists a sequence of events En such that P {En} → 1 and on event En, (Gti, σGti) = (T ti , τT ti ),
(Gtj , σGtj ) = (T tj , τT tj ), and

P
{
σi, σj

∣∣G, σ∂Gti , σ∂Gtj} = (1 + o(1))P
{
σi
∣∣G, σ∂Gti}P

{
σj
∣∣G, σ∂Gtj} (35)

P
{
σi
∣∣G, σ∂Gti} = (1 + o(1))P

{
σi
∣∣Gti, σ∂Gti} (36)

P
{
σj
∣∣G, σ∂Gtj} = (1 + o(1))P

{
σj
∣∣Gtj , σ∂Gtj} . (37)

For u = i, j, define

Xu = P
{
σu = +|G, σ∂Gtu

}
− P

{
σu = −|G, σ∂Gtu

}
Yu = P

{
τu = +|T tu, τ∂T tu

}
− P

{
τu = −|T tu, τ∂T tu

}
.
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Then for any estimator σ̂(G), we have that

E
[(
1{σ̂i 6=σi} − 1/2

) (
1{σ̂i 6=σj} − 1/2

)]
= E

[
E
[(
1{σ̂i 6=σi} − 1/2

) (
1{σ̂i 6=σj} − 1/2

) ∣∣G, σ∂Gti , σ∂Gtj]1{En}]+ o(1)

= E
[
E
[(
1{σ̂i 6=σi} − 1/2

)
|G, σ∂Gti

]
E
[(

1{σ̂j 6=σj} − 1/2
) ∣∣G, σ∂Gtj]1{En}]+ o(1)

≤ 1

4
E
[
|Xi||Xj |1{En}

]
+ o(1)

=
1

4
E
[
|Yi||Yj |1{En}

]
+ o(1) =

1

4
E [|Yi||Yj |] + o(1)

=
1

4
E [|Yi|]E [|Yj |] + o(1) = (1/2− p∗T t)

2 + o(1),

where the first and fourth equality follows due to P {En} → 1; the second equality holds due to (35);
the first inequality holds due to the fact that P

{
σi 6= x|G, σ∂Gti

}
is maximized at x = − if Xi ≥ 0

and at x = + if Xi < 0; the third inequality holds due to (36), (37), (Gti, σGti) = (T ti , τT ti ), and
(Gtj , σGtj ) = (T tj , τT tj ) ; the firth equality follows because (Ti, τTi) and (Tj , τTj ) are independent;
the last equality follows because p∗T t = 1/2 − E [|Yu|] /2 by definition. Hence we get the desired
(34).

Proof [Proof of Lemma 15] Fix any estimator σ̂(G). Notice that by definition of O(σ, σ̂),

O(σ, σ̂) =
1

2
−
∣∣∣∣ 1n ∑

i∈[n]

1{σ̂i 6=σi} −
1

2

∣∣∣∣.
Therefore,

E [O(σ, σ̂)] =
1

2
− E

∣∣∣∣ 1n ∑
i∈[n]

1{σ̂i 6=σi} −
1

2

∣∣∣∣
 ≥ 1

2
− E

 1

n

∑
i∈[n]

1{σ̂i 6=σi} −
1

2

21/2

, (38)

where we used the Cauchy-Schwartz in the last inequality. Furthermore,

E

 1

n

∑
i∈[n]

1{σ̂i 6=σi} −
1

2

2 =
1

4n
+
n− 1

n
E
[(

1{σ̂1 6=σ1} −
1

2

)(
1{σ̂2 6=σ2} −

1

2

)]
,

where we used the symmetry among vertices. Applying Lemma 20, we get that

E

 1

n

∑
i∈[n]

1{σ̂i 6=σi} −
1

2

2 ≤ (1

2
− p∗T t

)2

+ o(1).

Combining the last displayed equation with (38) and noticing that p∗T t ≤ 1/2, we get the desired
equality E [O(σ, σ̂)] ≥ p∗T t+o(1). Since σ̂ is arbitrary, it follows that inf σ̂ E [O(σ, σ̂)] ≥ p∗T t+o(1)
and the proof is complete.
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A.7. Proof of Lemma 16

Before the main proof, we need a key lemma, which gives a recursive formula of Γ̃ti on the tree
model. Its proof is almost identical to the proof of Lemma 8 and thus omitted.

Lemma 21 For t ≥ 0,

Γ̃t+1
i =

1

2

∑
j∈∂i

log
exp

(
2Γ̃tj

)
a+ b

exp
(

2Γ̃tj

)
b+ a

. (39)

with Γ̃0
i = 1

2 log 1−α
α if τ̃i = + and Γ̃0

i = −1
2 log 1−α

α if τ̃i = −.

Let V + = {i ∈ V : σi = +} and V − = {i ∈ V : σi = −}. For an Erdős-Rényi random graph
with edge probability b/n, it is well-known that if b → ∞ and b = o(log n), the maximum degree
is at least logn

log(logn/b) with high probability (see (Hajek et al., 2014, Appendix A) for a proof). Thus,

with high probability, at least one vertex in U has more than logn
2 log(logn/b) neighbors in V \U , so that

u∗ is well-defined. Due to the symmetry between + and −, without loss of generality, assume that
σu∗ = +. By the assumption that |µ| > 2 and b = no(1/ log logn), it is proved in (Mossel et al.,
2013a, Lemma 5.7) that there exists an α ∈ (0, 1/2) and a polynomial-time estimator such that
for any u ∈ V \U , when we apply the estimator in Step 3.1 of Algorithm 2, its output satisfies
|W+

u ∆V +| ≤ αn and |W−u ∆V −| ≤ αn after relabeling defined in Step 3.2 of Algorithm 2. Recall
that αu is the fraction of vertices misclassified by the partition (W+

u ,W
−
u ). Thus, αu ≤ α.

Fix a vertex u ∈ V \U . For all i ∈ ∂Gtu, let σ̃i = + if i ∈ W+
u and σ̃i = − if i ∈ W−u after

the labeling defined in Step 3.2 of Algorithm 2. It is argued in (Mossel et al., 2013a, Section 5.2)
that for each i ∈ ∂Gtu, independently at random, σ̃i = σi with probability 1 − αu, and σ̃i = −σi
with probability αu. Consider the tree model (Tu, τ) with ρ = 1/2 and a = c, where for each
vertex i ∈ Tu, independently at random, τ̃i = τi with probability 1 − αu and τ̃i = −τi with
probability αu. By the coupling lemma given in Lemma 9, we can construct a coupling such that
(Gtu, σGtu , σ̃∂Gtu) = (T tu, τT tu , τ̃∂T tu) holds with probability converging to 1. Moreover, on the event
(Gtu, σGtu , σ̃∂Gtu) = (T tu, τT t , τ̃∂T tu), we have that Rtu = Γ̃tu in view of the definition of Rtu given in
Algorithm 2, and the recursive formula of Γ̃tu given in Lemma 21. Hence,

pG(σ̂tBP) = q̃T t,αu + o(1),

where the o(1) term comes from the coupling error. Since q̃T t,α is non-decreasing in α, it follows
that

pG(σ̂tBP) ≤ q̃T t,α + o(1).

By the definition of O(σ̂, σ) given in (6),

E [O(σ̂BP, σ)] ≤ pG(σ̂tBP),

and the lemma follows by combining the last two displayed equations.
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A.8. Proof of Lemma 17

Recall that ut+1 = µ2

4 E
[
tanh(ut +

√
utZ)

]
with u1 = (1−2α)2µ2

4 . In the case ρ = 1/2 and µ = ν,
θ = 0 and λ = µ2

4 , and hence ut and vt satisfy the same recursion. Also, comparing (39) to (11),
Γ̃ and Γ satisfy the same recursion with ρ = 1/2 and µ = ν. Therefore, in view of the proof of
Lemma 13, to prove the lemma, it suffices to show that in the base case with t = 1,

sup
x

∣∣∣∣P
{
Z̃1
± ∓ u1√
u1

≤ x

}
− P {Z ≤ x}

∣∣∣∣ = O(b−1/2), (40)

Recall that Γ̃0
i = 1

2 log 1−α
α if τ̃i = + and Γ̃0

i = −1
2 log 1−α

α if τ̃i = −. Also, for all i ∈ ∂u,
independently at random τ̃i = τi with probability 1 − α, and τ̃i = τi with probability α. Let
x∗ = 1

2 log a−α(a−b)
b+α(a−b) , d = a+b

2 and η = b+(a−b)α
a+b . Thus, in view of the recursion given in (39),

Γ̃1
u =

∑Nd
i=1Xi, where conditional on τu = ±, Nd ∼ Pois(d) is independent of {Xi}; {Xi}

are i.i.d. such that conditional on τu = +, Xi = x∗ with probability 1 − η and Xi = −x∗ with
probability η; conditional on τu = −, Xi = x∗ with probability η and Xi = −x∗ with probability
1− η. Taylor expansion yields that

x∗ =
(1− 2α)(a− b)

2b
+O(b−1).

By conditioning the label of u is −, it follows that

E
[
Z̃1
−

]
= −d(1− 2η)x = −(1− 2α)(a− b)

2
x = −(1− 2α)2(a− b)2

4b
+O(b−1/2)

= −u1 +O(b−1/2),

var
(
Z̃1
−

)
= dx2 =

(1− 2α)2(a− b)2

4b
+O(b−1/2) = u1 +O(b−1/2).

In view of Lemma 19, we get that

sup
x

∣∣∣∣P

Z̃1
± − E

[
Z̃1
±

]
√

var
(
Z̃1
±

) ≤ x
− P {Z ≤ x}

∣∣∣∣ ≤ O(b−1/2).

Hence, we proved (40) for Z̃1
−. By symmetry between − and +, the desired (40) also holds for Z̃1

+.

Appendix B. A Data-driven Choice of the Parameter α in Algorithm 2

Algorithm 2 requires the knowledge ofαu, which is given byαu = |W+
u ∆V +|/n = |W−u ∆V −|/n.

In this section, we show that there exists an efficient estimator α̂u such that α̂u = αu + o(1) with
high probability. Our estimation procedure is given in Algorithm 3.

Lemma 22 Let α̂u be the output of Algorithm 3. Then with probability converging to 1, α̂u =
αu + o(1).
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Algorithm 3 Estimation of αu
1: Take U ⊂ V to be a random subset of size b

√
nc and S ⊂ V to be a random subset of size

bn/ log bc. Let u∗ ∈ U be a random vertex in U with at least logn
2 log(logn/b)neighbors in V \U\S.

2: For u ∈ V \U\S do

1. Run a polynomial-time estimator capable of correlated recovery on the subgraph induced
by vertices not inGt−1

u and U∪S, and letW+
u andW−u denote the output of the partition.

2. Relabel W+
u and W−u such that if a > b, then u∗ has more neighbors in W+

u than W−u ;
otherwise, u∗ has more neighbors in W−u than W+

u .

3. Take T ⊂ W+
u ∪W−u to be a random subset of size b

√
nc. Let T0 ⊂ T denote the set

of vertices with at least logn
2 log(logn/b) neighbors in S. Let T1 denote a random subset of T0

with size b logn
b c.

4. Run a polynomial-time estimator capable of correlated recovery on the subgraph induced
by vertices not in Gt−1

u and U ∪ T . Let W+ and W− denote the output of the partition.
Relabel (W+,W−) in the same way as (W+

u ,W
−
u ).

5. Let T+
1 consists of vertices i ∈ T1 with more neighbors in W+ than W−; let T−1 =

T1\T+
1 . Define α̂u =

|T+
1 ∩W

−
u |+|T−1 ∩W

+
u |

|T1| .

Proof We assume a > b in the proof; the case a < b can be proved similarly. Let k∗ = logn
2 log(logn/b) .

For any vertex i in T , let di denote its number of neighbors in S. Then di is stochastically lower
bounded by Binom(|S|, b/n). Since |S| = bn/ log bc, it follows that (see (Hajek et al., 2014,
Appendix A) for a proof)

− logP {di ≥ k∗} ≤
1

2
log n− log logn.

Because {di}i∈T are independent, the cardinality of set T0 is stochastically lower bounded by
Binom(b

√
nc, log n/

√
n). Therefore, with high probability |T0| ≥ 1

2 log n and thus T1 is well-
defined.

Define the event E1 to be that T+
1 = T1 ∩ V + and T−1 = T1 ∩ V −. We claim that P {E1} → 1.

In fact, fix any vertex i ∈ T1, suppose σi = + without loss of generality and letN (i) denote the set
of its neighbors in V \T . Let

|W+∆V +|/n ≤ δn, |W−∆V −| ≤ δn.

Then δ ∈ [0, 1/2). Notice that di is independent of the partition W+ and W−. Thus, conditional
on di, |N (i)∩W+| is stochastically lower bounded by Binom(di,

a
a+b −

(a−b)δ
a+b ) and |N (i)∩W−|

is stochastically upper bounded by Binom(di,
b

a+b + (a−b)δ
a+b ). It follows from the Chernoff bound
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that conditional on di,

P
{
|N (i) ∩W+| < (a− b)di

2(a+ b)

}
≤ e−Ω(di(a−b)2/a2),

P
{
|N (i) ∩W−| > (a− b)di

2(a+ b)

}
≤ e−Ω(di(a−b)2/a2).

Due to di ≥ k∗ for all i ∈ T0, it yields that

P
{
|N (i) ∩W+| < |N (i) ∩W−|

}
≤ 2e−Ω(k∗(a−b)2/a2).

Applying the union bound, we get that

P
{
∃i ∈ T1 ∩ V +, |N (i) ∩W+| < |N (i) ∩W−|

}
≤ 2 log n

b
e−Ω(k∗(a−b)2/a2).

By the assumption that a− b/
√
a = O(1) and b = o(log n), it follows that

log n

b
e−Ω(k∗(a−b)2/a2) ≤ log n

b
exp

(
−Ω

(
log n

b log(log n/b)

))
= o(1),

Combing the last two displayed equations gives that with high probability, for all i ∈ T1 ∩ V +,
|N (i)∩W+| > |N (i)∩W−| and thus i ∈ T+

1 . Similarly, one can show that with high probability,
for all i ∈ T1 ∩ V −, |N (i) ∩W+| < |N (i) ∩W−| and thus i ∈ T−1 . Hence, P {E1} → 1.

Finally, we show α̂u = αu + o(1) with high probability. Let Wu = W+
u ∪W−u . Notice that

T1 is randomly chosen and independent of the partition (W+
u ,W

−
u ). Hence for i ∈ T1, it lies in

(W−u ∩ V +) ∪ (W+
u ∩ V −) with probability αu. Therefore,

|T1 ∩ V + ∩W−u |+ |T1 ∩ V − ∩W+
u | ∼ Binom(|T1|, αu).

Define the event E2 to be

|T1 ∩ V + ∩W−u |+ |T1 ∩ V − ∩W+
u |

|T1|
= αu

(
1 + (b/ log n)1/4

)
.

Then it follows from the Chernoff bounds that P {E2} → 1. By the union bound, P {E1 ∩ E2} → 1.
Notice that on the event E1 ∩ E2,

α̂u =
|T1 ∩ V + ∩W−u |+ |T1 ∩ V − ∩W+

u |
|T1|

= αu

(
1 + (b/ log n)1/4

)
.

Therefore, we conclude that α̂u = αu + o(1) with high probability.
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