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Abstract

An arithmetic circuit is a directed acyclic graph in which the operations are {+,×}. In this
paper, we exhibit several connections between learning algorithms for arithmetic circuits
and other problems. In particular, we show that:

• Efficient learning algorithms for arithmetic circuit classes imply explicit exponential lower
bounds.

• General circuits and formulas can be learned efficiently with membership and equivalence
queries iff they can be learned efficiently with membership queries only.

• Low-query learning algorithms for certain classes of circuits imply explicit rigid matrices.

• Learning algorithms for multilinear depth-3 and depth-4 circuits must compute square roots.

1. Introduction

Revealing a hidden function from a set of examples is a natural and basic problem referred
to as learning. The purpose of this paper is to serve as a guide for learning arithmetic
circuits by pointing out the obstacles along the path of coming up with efficient learning
algorithms for these classes of functions. We achieve this goal by showing a relation between
learning and other problems related to arithmetic circuits.

1.1. Arithmetic Circuits

Arithmetic circuits are the standard computational model for computing polynomials. A
circuit C in the variables X = {x1, . . . , xn} over the field F is a labelled directed acyclic
graph. The inputs (nodes of in-degree zero) are labelled by variables from X or by constants
from the field. The internal nodes are labelled by + or ×, computing the sum and product,
resp., of the polynomials on the tails of incoming edges (subtraction is obtained using the
constant −1). A formula is a circuit whose nodes have out-degree one (namely, a tree). The
output of a circuit (formula) is the polynomial computed at the output node. The size of
a circuit (formula) is the number of gates in it. The depth of the circuit (formula) is the
length of a longest path between an input node and the output node.

A polynomial is multilinear if its linear in each of its variables. In other words, no
variable appears in a power of two or higher. A circuit is multilinear if every gate in the
circuit computes a multilinear polynomial (not just the output gate). This implies that each
multiplication gate in the circuit must compute a product of two polynomials defined over
disjoint sets of variables (in short: variable-disjoint polynomials). A circuit is set-multilinear
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if there exists a partition of the variables X1 ∪ . . . ∪ X` such that no multiplication gate
computes a product of two polynomials containing variables for the same set. This property
is a relaxation of multilinearity, as a multilinear polynomial is a set-multilinear polynomials
w.r.t to the singletons (i.e. Xi = {xi}). Particular examples of set-multilinear polynomials
are the Permanent and the Determinant.

Sometimes we shall think of an arithmetic circuit and of the polynomial that it computes
as the same objects. In particular, the degree of a circuit is defined as the degree of the
polynomial computed by the circuit. Finally, we shall say that C is an (n, s, d)-circuit if it
is an n-variate arithmetic circuit of size s and of degree at most d.

1.2. Arithmetic Circuit Classes

In this paper we will usually refer to a class of arithmetic circuits C. It should be thought of
as either the class of general circuits or formulas, of as some restricted class. In particular,
we will be interested in the following classes:

• s-sparse polynomial is a polynomial that has at most s (non-zero) monomials.

• Depth-3 ΣΠΣ(k) circuits computes polynomials of the form C(x̄) =
∑k

i=1

∏di
j=1 Lij(x̄)

where Lij-s are linear forms. That is, Lij(x̄) = α1x1 + α2x2 + ...+ αnxn + α0.

• Depth-4 ΣΠΣΠ(k) circuits computes polynomials of the form C(x̄) =
∑k

i=1

∏di
j=1 Pij(x̄)

where Pij-s are sparse polynomials.

• Read-once Oblivious Algebraic Branching Programs (ABPs) compute polynomials of
the form C(x̄) = v̄t ·Dn(xσ(n)) ·Dn−1(xσ(n−1)) · . . . ·D1(xσ(1)) · ū when σ : [n] → [n]
is permutation, v̄ and ū are vectors of field elements, and each Di(z) is a matrix with
entries being polynomials in the variable z.

1.3. Exact Learning

Angluin’s model of Exact Learning Angluin (1988) consists of a (computationally-bounded)
learner and an (all-powerful) teacher. The learner’s goal is to output a target function f
from a given function class C. To do so, the learner is allowed to query the value f(x̄)
on any input x̄ (membership query). In addition, the learner is also allowed to propose
a hypothesis f̂ and ask the teacher whether it is equivalent to f (equivalence query). If
this is indeed the case, the learner has achieved his goal. Otherwise, the teacher presents
the learner with a counterexample ā for which f(ā) 6= f̂(ā). We say that a function class
C is exactly learnable if there exists a learner which given any f ∈ C, in time polynomial
in n and |f | (the size of f in the representation scheme) outputs a hypothesis f̂ such that
f(x̄) = f̂(x̄) for all x̄, using membership and equivalence queries.

1.4. Polynomial Identity Testing

Let C be a class of arithmetic circuits defined over some field F. The polynomial identity
testing problem (PIT for short) for C is the question of deciding whether a given circuit
from C computes the identically zero polynomial. This question can be considered both in
the white-box and the black-box models. In the white-box model, the circuit is given to
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us as an input. In the black-box model, we can only access the polynomial computed by
the circuit using (membership) queries. It is easy to see that a deterministic black-box PIT
algorithm is equivalent to a “hitting set”. That is, a set of points H such that for every
C ∈ C: C ≡ 0 iff C|H ≡ 0. In other words, C is identically zero iff it evaluates to zero on
every point in H.

The importance of this fundamental problem stems from its many applications. For
example, the deterministic primality testing algorithm of Agrawal et al. (2004) and the fast
parallel algorithm for perfect matching of Mulmuley et al. (1987) are based on solving PIT
problems.

PIT has a well-known randomized algorithm Schwartz (1980); Zippel (1979); DeMillo
and Lipton (1978) by evaluating the circuit at a random point. However, we are interested
in the problem of obtaining efficient deterministic algorithms for it. This question has
received a lot of attention recently but its deterministic complexity is still far from being
well-understood. For a more detailed discussion, we refer the reader to the excellent survey
Shpilka and Yehudayoff (2010).

1.5. Polynomial Reconstruction

The reconstruction problem for arithmetic circuits can be seen as an algebraic specialization
of the learning problem. Given a black-box (i.e. oracle), access to a degree d polynomial
P ∈ F[x1, x2, . . . , xn] computable by an arithmetic circuit of size s from a circuit class C,
output a circuit from C ∈ C that computes P . More generally, the algorithm is allowed to
output a circuit of size poly(s). Similar to the learning scenario, an efficient reconstruction
algorithm must run in time polynomial in n, s, d.

A key difference between learning and reconstruction is that in the reconstruction prob-
lem we seek to output a circuit that computes the target polynomial as a formal sum of
monomials and not just as a function. This poses an implicit requirement that the underly-
ing field F is larger than the degree of the polynomial it is trying to reconstruct. Otherwise,
the algorithm is allowed to query the polynomial on a sufficiently (polynomially) large
extension field. Particular examples include reconstruction algorithms for sparse polynomi-
als Klivans and Spielman (2001); Lipton and Vishnoi (2003), ΣΠΣ(k) circuits Karnin and
Shpilka (2009) and read-once formulas Bshouty et al. (1995); Shpilka and Volkovich (2014).

In this regard, a natural question is the dependence of the running time on the bit-
complexity of the coefficients in the underlying polynomials. For finite fields, this bit-
complexity corresponds with the log of the field size. Therefore, for simplicity of notation,
we will denote by log |F| the bit-complexity of the coefficients even if the field is infinite.
Going back to the question, ideally, we would like the running time of the algorithm to be
polynomial in the bit-complexity, that is poly(log |F|). Unfortunately, this is not always
the case (see e.g. Karnin and Shpilka (2009)). For a more detailed discussion, we refer the
reader to the excellent survey Shpilka and Yehudayoff (2010).

1.6. Elimination of Equivalence Queries in the Arithmetic Setting

Unlike the Boolean setting, where the equivalence queries are essential (see Angluin (1987)),
in the arithmetic setting, an efficient black-box PIT algorithm can be used to eliminate them.
More specifically, let H be a hitting set for C and let C ∈ C be the target circuit. Given an
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equivalence query Ĉ, the learning algorithm tests if Ĉ|H ≡ C|H, using membership queries
to C. If Ĉ(ā) 6= C(ā) for some ā ∈ H, the algorithm answers the query with ā. Otherwise,
the algorithm stops and outputs Ĉ.

Of course, the above works if C is closed under subtraction, that is C − Ĉ ∈ C, since
by definition C ≡ Ĉ iff C|H ≡ Ĉ|H. This is typically the case when the learning algorithm
is proper1. For example, Beimel et al. Beimel et al. (2000) gave a proper exact learning
algorithm for read-once oblivious ABPs. Later, Forbes & Shpilka Forbes and Shpilka (2013)
devised an efficient black-box PIT algorithm for that class of circuits. As read-once obliv-
ious ABPs are closed under subtraction, this results in a learning algorithm for read-once
oblivious ABPs that uses membership queries only. In the case of general circuits, one can
compare Ĉ and C by evaluating them at random point ā, applying the Schwartz-Zippel
Lemma (see Lemma 19). Yet, this will result in a randomized learning algorithm.

1.7. Circuit Lower Bounds

Attaining explicit lower bounds for both arithmetic and Boolean circuits is one of the biggest
challenges in the theory of computation and has been the focus of much research Baur and
Strassen (1983); Raz et al. (2008); H̊astad (1998); Lachish and Raz (2001); Raz (2009).
Counting arguments show that the vast majority of the functions require circuits of high
complexity. Yet, laying our hands on a specific function remains elusive. Attaining strong
lower bounds have direct implications to the P vs NP question, as well as to questions
related to derandomization.

Let n denote the number of variables. It is not hard to show lower bounds for polynomials
of high degree (i.e. d = 2n). Therefore, the goal is to prove lower bounds for polynomials
of low degree, (typically d = poly(n)). More precisely, what we are after is a low-degree
polynomial computable in time 2O(n) that requires large arithmetics circuits.

So far, the best known lower bounds for arithmetic circuits are Ω(n log n), due to Baur
& Strassen Baur and Strassen (1983). When restricting ourselves to multilinear circuits, we
can get better bounds: Ω(n4/3/ log2 n) for multilinear circuits due to Raz et al. Raz et al.
(2008), and nΩ(logn) for multilinear formulas due to Raz Raz (2009). It is an interesting
open question to improve any of these bounds.

1.8. Matrix Rigidity

The notion of matrix rigidity was introduced by Valiant in Valiant (1977). For r, s ∈ N,
we say that a matrix S is s-sparse if each row of the matrix contains at most s non-zero
entries. A matrix A ∈ Fm×n is (r,s)-rigid if A cannot be written as a sum of two matrices
A = L + S such that rank(L) ≤ r and S is s-sparse. In the same paper, Valiant showed
that if a matrix A with m = O(n) is (Ω(n), nε)-rigid then the linear map A · x̄, induced by
A, cannot be computed by a circuit of size O(n) and depth O(log n). While it is easy to see
that a random matrix satisfies the above conditions, a big body of research was invested in
attempts to construct rigid matrices explicitly. Yet, the best known result is due to Saraf
& Yekhanin Saraf and Yekhanin (2011) that gives a construction of (n/2, s)-rigid matrices
with m = exp(s) · n. For a further discussion of the work on matrix rigidity, we refer the
reader to the excellent survey Lokam (2009).

1. i.e. when the hypotheses of the learning algorithm come from the class it is trying to learn.
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1.9. Square Root Extraction

Given β ∈ F, output α ∈ F such that α2 = β. In addition to being a natural problem,
square root extraction plays an import role in cryptography Goldwasser and Micali (1984);
Rabin (2005). The best known deterministic root extraction algorithms over the finite
fields have polynomial dependence on |F|, i.e. exponential in the bit-complexity of the
coefficients (see e.g. Shoup (1991); Gathen and Gerhard (1999); Gao et al. (2004); Kayal
(2007))2. In other words, the best known algorithm is roughly as efficient as the naive
brute-force algorithm. While in the randomized setting, this dependence is polynomial in
log |F|. In particular, there is no known efficient deterministic root extraction algorithm
when F is large. One reason for that is the two-way connection between modular square
root extraction and finding quadric non-residues. Over fields with characteristic 0 (e.g. Q),
both the deterministic and the randomized complexities are polynomial in log |F| (see e.g.
Lenstra et al. (1982)).

1.10. Our Results

We begin with our main result: exact learning algorithms for arithmetic circuit classes imply
explicit exponential lower bounds. The result is obtained by combining and extending the
techniques of Klivans et al. (2013) with the techniques of Heintz and Schnorr (1980); Agrawal
(2005). In Appendix A, we show a folklore result that PAC and Exact learning models are
essentially equivalent for arithmetic circuits. For that reason, we are not considering the
PAC model in our paper.

Theorem 1 Let C be an arithmetic circuit class over the field F. If C is exactly learnable
then for every n ∈ N, there exists an explicit3 multilinear polynomial P ∈ F[x1, x2, . . . , xn]
that requires circuits of size 2Ω(n) from C.

We remark that the learning algorithm need not be proper. The only implicit assumption
is that the functions posed as equivalence queries by the learning algorithm can be evaluated
efficiently from their description. This is a typical situation with all the existing exact
learning algorithms.

Using the connection between lowers bounds and PIT algorithms Kabanets and Im-
pagliazzo (2004), as well as depth reduction techniques Agrawal and Vinay (2008), we are
able to convert efficient learning algorithms for certain (relatively general) circuit classes
into efficient PIT algorithms.

Theorem 2 Let C ∈ {general circuits, general formulas,ΣΠΣΠ circuits} be an arithmetic
circuit class over the field F. If C is exactly learnable then there exists a quasi-polynomial
time black-box PIT algorithm for the class of general arithmetic circuits.

In the case when the learning algorithm is proper or, more generally, outputs circuits of
polynomial size and degree as its hypotheses, we can eliminate the equivalence queries by
implementing the procedure outlined in Section 1.6.

2. In fact, for fields of size pe this dependence is polynomial in p.

3. Computable in time 2O(n).
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Theorem 3 Let C ∈ {general circuits, general formulas,ΣΠΣΠ circuits} be an arithmetic
circuit class over the field F. If C is exactly learnable with hypotheses being general circuits
of polynomial size and degree then C is learnable with membership queries only in quasi-
polynomial time. In addition, if the algorithm is proper, then C can be reconstructed in
quasi-polynomial time.

We see this theorem as evidence that reconstruction is, perhaps, a more natural frame-
work for learning arithmetic circuits.

Zeev Dvir pointed out that the same techniques can be used to show that “low-query”
exact learning algorithms for a certain class of multilinear polynomials give rise to explicit
rigid matrices.

Theorem 4 Let r, s ∈ N. Let C(r,s) be a class of multilinear polynomials of the form:

C(r,s) =
{
P (x̄, ȳ) = x̄t · L · ȳ + x̄t · S · ȳ

∣∣ L, S ∈ Fm×n, rank(L) ≤ r, S is s-sparse.
}

If C(r,s) is exactly learnable with < mn queries, then there exist explicit (r, s)-rigid matrices.

Combined with Valiant (1977), this result has the same flavor as the results of Fortnow
and Klivans (2009); Klivans et al. (2013) and Theorem 1: learning algorithms imply lower
bounds. Using the same techniques, one could show that devising a learning algorithm with
< nm queries for the class of linear maps computable by circuits of size O(n) and depth
O(log n) would entail the same lower bounds. We would like to point out that while the
learning algorithms can output the polynomials in any representation, the bound on the
number of queries is tight since any m×n matrix is learnable using mn membership queries.

On a different note, we study the question of the dependence of the running time of the
learning/reconstruction algorithm on the field size (|F|). In Karnin and Shpilka (2009), a
deterministic reconstruction algorithm for ΣΠΣ(k) circuits was given. The running time
of that algorithm has polynomial dependence on the field size. In addition, in Gupta
et al. (2012), a randomized reconstruction algorithm for multilinear ΣΠΣΠ(2) circuits was
given with polylogarithmic dependence on the field size. Recently, this algorithm was
derandomized in Volkovich (2015) preserving the polylogarithmic dependence on the field
size. The only additional assumption was that the algorithm is given a square root oracle4.
As we can implement such an oracle in deterministic poly(|F|) time (see Section 1.9), this
results in a deterministic reconstruction algorithm with a polynomial dependence on |F|.
To the best of our knowledge, there is no known deterministic reconstruction algorithm for
multilinear ΣΠΣΠ(2) circuits with a sub-polynomial dependence on |F|. Moreover, this still
holds true for multilinear ΣΠΣ(2) circuits and even set-multilinear ΣΠΣ(2) circuits5. Our
next theorem suggests an explanation for this state of affairs. We show that any proper
learning/reconstruction algorithm for these classes of circuits must compute square roots
along its execution.

Theorem 5 Let k ∈ N. Suppose the class of (set)-multilinear ΣΠΣ(2) or ΣΠΣΠ(2) cir-
cuits over the field F is exactly learnable with hypotheses being multilinear ΣΠΣΠ(k) circuits

4. An algorithm that can extract square roots of field elements efficiently.
5. The learning algorithm of Beimel et al. (2000); Klivans and Shpilka (2006) for set-multilinear ΣΠΣ

circuits outputs read-once oblivious ABPs as hypotheses.
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of polynomial size. Then in time polynomial in log |F| the exact learning algorithm can be
deterministically converted into a square root oracle over F.

Given the state of our current techniques (see Section 1.9), the theorem suggests that
any reconstruction algorithm for these classes of circuits must be either randomized or have
a polynomial dependence on the field size. This partially answers an open question of Gupta
et al. (2012) that asks whether it is possible to remove the polynomial dependence on the
field size from the reconstruction algorithm of Karnin and Shpilka (2009) even for ΣΠΣ(2)
circuits.

1.11. Techniques

In this section, we outline the techniques we use to prove our results.

1.11.1. From Exact Learning to Lower Bounds

We combine and extend the techniques of Klivans et al. (2013) with the techniques of Heintz
and Schnorr (1980); Agrawal (2005). Given an exact learner A, the lower bounds of Klivans
et al. (2013) are obtained by running A and diagonalizing against its queries, thus producing
a function that disagrees with the output of A on at least one point. Applying the same
idea naively in the arithmetic setting may result in a polynomial of a high degree. Our goal
would be to produce a multilinear polynomial P that disagrees with the output of A.

In order to maintain the multilinearity of P we use a version of the evaluation matrix that
was defined in Heintz and Schnorr (1980); Agrawal (2005). Given an assignment ā ∈ Fn,
the corresponding row M(ā) of the evaluation matrix is the 2n-length vector containing the
evaluations of all the multilinear monomials on ā (see Definition 4). This matrix represents
the linear map of evaluating a polynomial on a given set of assignments. Specifically, taking
the product ofM(S) with a coefficient vector of a multilinear polynomial results in the vector
of evaluations of the polynomial on the assignments in S. On the other hand, a full-rank
M(S) determines a unique multilinear polynomial with the coefficients being the solution
vector of the corresponding system of linear equations. We use the evaluation matrix to
ensure that the diagonalizing values of the polynomial do not violate the multilinearity
condition by keeping that the rows of M(S) independent throughout the execution of the
algorithm.

Given a membership query ā of A, the algorithm first checks if the value of the polyno-
mial P on ā is predefined by the answers to the previous queries. This is done by checking
the linear dependence between the row vector M(ā) and the rows of M(S). If the value
is predefined, the algorithm computes P (ā) an returns it to A. Otherwise, the algorithm
declares P (ā) = 0 and adds the row vector M(ā) to M(S). Given an equivalence query
h of A, the algorithms finds a point ā ∈ Fn such that the row vector M(ā) is indepen-
dent of the rows of M(S). Given such ā, the algorithm diagonalizes against h by declaring
P (ā) = h(ā)− 1 and returning ā to A as a counterexample.

We note that the rank of the matrix M(S) equals to the number q of queries posed by
A. Therefore, as long as q < 2n, there always exists ā ∈ Fn such that row vector M(a) is
independent of the rows M(S). Moreover, we show that such ā actually exists in {0, 1}n.
This allows the algorithm to be independent of the field size and, in particular, handle
infinite fields. For more details, see Section 3.
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Using the connection between lowers bounds and PIT algorithms Kabanets and Im-
pagliazzo (2004), as well as depth reduction techniques Agrawal and Vinay (2008), we are
able to convert efficient exact learning algorithms into efficient black-box PIT algorithms.
Later on, we use the PIT algorithms to eliminate the equivalence queries.

1.11.2. From Exact Learning to Square Roots

For every α ∈ F, we construct a family of polynomials {Pnα (x̄)}n∈N computable by set-
multilinear ΣΠΣ(2) circuits, that can be evaluated efficiently given α2 (without the knowl-
edge of α). Indeed, for every α ∈ F and n ∈ N the polynomials Pnα (x̄) and Pn−α(x̄) will
be identical. However, for a constant k and sufficiently large n, every (set)-multilinear
ΣΠΣ(k) or even polynomial-size ΣΠΣΠ(k) circuit that computes Pnα must have a factor
of the form xj ± α in one of its multiplication gates. Consequently, any proper exact
learning/reconstruction algorithm A for these classes of circuits must extract square roots.
Moreover, we show how to use such an A as a subroutine, in order to actually compute a
square root given α2 = β ∈ F.

1.12. Related Work

Fortnow & Klivans Fortnow and Klivans (2009) initiated a body of work dedicated to the
study of the relations between learning algorithms and circuit lower bounds. In the same
paper it was shown that an efficient exact learning algorithm for a Boolean circuit class C
implies that the complexity class EXPNP requires circuits of super-polynomial size from C.
Following a line of improvements, Klivans et al. Klivans et al. (2013) replaced EXPNP by
DTIME(nω(1)). In the arithmetic setting, the best result Fortnow and Klivans (2009) gives
super-polynomial lower bounds against the complexity class ZPEXPRP.

Our improvement, therefore, is two-fold: First, we obtain a quantitative improvement
replacing ZPEXPRP by a subclass EXP and getting an exponential lower bound as opposed
to super-polynomial. Second, our lower bound is more structured and constructive since
we give an explicit multilinear polynomial, while the result of Fortnow and Klivans (2009)
is existential.

Bshouty et al. Bshouty et al. (1995) gave deterministic exact learning and randomized
reconstruction algorithms for read-once formulas with addition, multiplication and division
gates. Their algorithm is assumed to be given a square root oracle. They also show that
any reconstruction algorithm for read-once formulas with these operations must compute
square roots. Recently, Shpilka & Volkovich Shpilka and Volkovich (2014) gave a deter-
ministic reconstruction algorithm for read-once formulas with addition and multiplication
gates (no division) which has a polynomial dependence on log(|F|). This demonstrates that
the need for square root extraction is not necessary if we choose to deal with polynomials
rather than rational functions. However, using the ideas of Section 5 with the techniques of
Anderson et al. (2015); Shpilka and Volkovich (2015), one could show that any reconstruc-
tion algorithm for read-twice formulas or even sums of read-once formulas with addition
and multiplication gates must compute square roots.

Several other results Valiant (1984); Kearns and Valiant (1994); Klivans and Sherstov
(2009); Gentry and Halevi (2011) exhibit a two-way connection between learning and cryp-
tography: basing the hardness of learning on cryptography and constructing cryptographic

8



A Guide to Learning Arithmetic Circuits

primitives based on the hardness of learning. In addition, Daniely and Shalev-Shwartz
(2014); Daniely (2015) show hardness of learning DNF formulas and halfspaces based on
another complexity theoretic assumption regarding hardness of refutation of random k-SAT
formulas. These results are incomparable as the hardness of showing lower bounds is inde-
pendent of the question whether one-way functions exist and/or the assumption above. For
a more detailed discussion, we refer the reader to Impagliazzo (1995).

A recent result of Carmosino et al. (2016) establishes a connection between learning and
circuit lower bounds in the opposite direction. It is shown that lower bounds of a certain
kind (i.e. natural properties) for a class of functions imply randomized learning algorithms
for that same class.

1.13. Organization

The paper is organized as follows: We begin by some basic definitions and notation in Section
2, where we also introduce our main tool. In Section 3, we prove our main result (Theorem
1): exact learning algorithms for arithmetic circuit classes imply explicit exponential lower
bounds, as well as Theorems 2 and 3. Next in Section 4, we show how the techniques can
be modified to prove Theorem 4. In Section 5, we show that proper learning algorithms for
certain circuit classes must compute square roots, thus proving Theorem 5. We conclude
with discussion & open questions in Section 6. In Appendix A, we show that PAC and
Exact learning models are essentially equivalent for arithmetic circuits.

2. Preliminaries

For a positive integer n, we denote [n] = {1, . . . , n}. For a polynomial P (x1, . . . , xn), a
variable xi and a field element α, we denote with P |xi=α the polynomial resulting from
setting xi = α. Given a subset I ⊆ [n] and an assignment ā ∈ Fn, we define P |x̄I=āI

to be the polynomial resulting from setting xi = ai for every i ∈ I. We often denote
variables interchangeably by their index or by their label: i versus xi. For v̄ ∈ Nn we define

āv̄
∆
=

n∏
i=1

avii , where 00 ∆
= 1.

2.1. Matrices

In this section we give definitions related to matrices and prepare the ground for our main
tool. For more details about matrices, we refer the reader to Horn and Johnson (1991).

Lemma 1 Let A ∈ Fn×m and v̄ ∈ Fn. There exists an algorithm that given A and v̄ solves
the system A · b̄ = v̄ using poly(n,m) field operations. That is, the algorithm returns a
solution if one exists, or b̄ = ⊥ otherwise.

Definition 2 (Tensor Product) Let A ∈ Fm×n and B ∈ Fk×`. Then the tensor product
of A and B, A⊗B ∈ Fmk×n` is defined as:

A⊗B =

a11B . . . a1nB
...

...
a1mB . . . amnB

 .
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Fact 3 rank(A⊗B) = rank(A) · rank(B).

We now introduce our main tool - the evaluation matrix. This tool has been previous
used in Heintz and Schnorr (1980) and Agrawal (2005) to show that efficient black-box PIT
algorithms imply circuit lower bounds. In this paper we will focus on evaluation matrices
for multilinear polynomials. Let n ∈ N and ā ∈ Fn. A row of such matrix is a (row) vector
of length 2n listing the evaluations of all n-variate multilinear monomials to ā. Formally:

Definition 4 (Evaluation Matrix) Let ā ∈ Fn and v̄ ⊆ {0, 1}n. We define M(ā) ∈
F1×2n as M(ā)1,v̄ = āv̄. We now extend the definition to sets of assignments.

Let S ⊆ Fn. We define M(S) ∈ F|S|×2n as M(S)ā = M(ā) for ā ∈ S, when M(∅) ∈ F1×2n ∆
=

0̄.
We say that ā is independent of S if rank(M(S ∪ {ā})) > rank(M(S)).

To provide additional intuition, we list several important and useful properties of M(S)
which we will apply in our proofs.

Lemma 5 Let n ∈ N and S ⊆ Fn. Then we have the following:

1. Let ā ∈ Fn and P ∈ F[x1, x2, . . . , xn] be a multilinear polynomial. Denote by c̄ the
vector of coefficients of P . Then P (ā) = M(ā) · c̄.

2. ā is independent of S iff M(S)t · b̄ = M(ā)t has no solution.

3. Suppose S = S1×S2× · · · ×Sn when S1, S2, . . . Sn ⊆ F are of size |Si| = 2 for i ∈ [n].
Then M(S) = M(S1)⊗M(S2)⊗ · · · ⊗M(Sn).

4. rank (M ({0, 1}n)) = 2n.

5. Suppose |S| < 2n. Then there exists ā ∈ {0, 1}n such that ā is independent of S.
Moreover, given S such ā can be found using poly(n, |S|) field operations.

Proof

1. By inspection.

2. rank(M(S ∪ {ā})) > rank(M(S)) iff the (row) vector M(ā) can not be we written as
a linear combination of the rows of M(S).

3. By inspection. In terms of the dimensions, note that for each i: Si ⊆ F1. Therefore,
by definition M(Si) ∈ F2×2. While S ⊆ Fn and thus M(S) ∈ F2n×2n .

4. M({0, 1}) =

[
1 0
1 1

]
. By the previous part: rank(M({0, 1}n)) = rank(M({0, 1}))n =

2n.

5. Since rank(M(S)) < 2n and rank(M({0, 1}n)) = 2n, the existence of such ā ∈ {0, 1}n
follows from the exchange property of the rank. Therefore, we can find such ā, by
going over all the assignments in {0, 1}n and checking if M(S)t · b̄ = M(ā)t has a
solution (using Lemma 1).

10
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3. From Learning to Lower Bounds

In this section we prove our main result (Theorem 1): exact learning algorithms for arith-
metic circuit classes imply explicit exponential lower bounds, as well as Theorems 2 and 3.
We begin with our main result.

Algorithm 1 Hard Polynomial from Exact Learner

Input: n ∈ N, ᾱ ∈ Fn, an exact learner A, ` as in the statement of Lemma 6.
Output: P (ᾱ).

1 S ← ∅, ū - a vector indexed by elements of S. That is, ū ∈ FS

Run A with n, s = 2n/4`.
/* Answering a membership query. */

2 Given a membership query point ā ∈ Fn by A:
Compute b̄ such that M(S)t · b̄ = M(ā)t (using Lemma 1) if b̄ = ⊥ then (ā is independent
of S)

3 S ← S ∪ {ā}; ū(ā)← 0 Answer ū(ā) to A
4 else
5 Answer b̄t · ū to A
/* Answering an equivalence query. */

6 Given an equivalence query hypothesis h(x̄) : Fn → F by A:
Find an assignment ā ∈ {0, 1}n independent of S (using by Lemma 5) S ← S ∪ {ā};
ū(ā)← h(ā)− 1 Answer ā to A /* After the interaction with A. */

7 while |S| < 2n do (complete the matrix to full rank)
8 Find an assignment ā ∈ {0, 1}n independent of S (using by Lemma 5) S ← S ∪ {ā};

ū(ā)← 0
9 Compute c̄ such that M(S) · c̄ = ū Output M(ᾱ) · c̄

Lemma 6 Let C be an arithmetic circuit class over the field F. Suppose there exist an exact
leaner A for C that learns circuits from C in time s` for ` ∈ N when n ≤ s. Then for every
n ∈ N in time 2O(n) Algorithm 1 computes a multilinear polynomial P ∈ F[x1, x2, . . . , xn]
that requires circuits of size 2Ω(n) from C, invoking A as a subroutine.

Proof First, observe that throughout the execution of the algorithm the rows of M(S) are
linearly independent. Indeed, in the beginning S is empty. Going forward, the algorithm
adds elements to S and thus rows to M(S) (in Lines 3, 6 and 7) making sure the rank is
increasing (Lemma 5). In addition, the algorithm adds elements to S only when |S| < 2n.
Indeed, elements are added following a query from A. Yet, the number of queries it at most
s` ≤ 2n/4. Consequently, in Line 9, |S| = 2n and M(S) is a full rank 2n × 2n matrix. Note
the that algorithm computes the same (final) set S and vector ū in every execution. Let us
denote them by Sf and uf , respectively. Therefore, the exists a unique vector c̄ ∈ F2n such
that M(Sf ) · c̄ = ūf .

Next, we claim consistency with the queries to A. Let ā ∈ Fn be a membership query
point by A. Consider S and ū at the time of the query. If ā was independent of S, then

11
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ā ∈ Sf and ūf (ā) = 0. Therefore, M(Sf ) · c̄ = ūf implies that

P (ā) = M(ā) · c̄ = ūf (ā) = 0.

Otherwise, M(S)t · b̄ = M(ā)t for some b̄ ∈ F|S|. As S ⊆ Sf , we can extend the vector b̄ to
b̄e ∈ F2n by adding zeros in the entries indexed by Sf \ S. Observe that

M(Sf )t · b̄e = M(S)t · b̄ and b̄te · ūf = b̄t · ū.

Therefore, we obtain:

P (ā) = M(ā) · c̄ = b̄t ·M(S) · c̄ = b̄te ·M(Sf ) · c̄ = b̄te · ūf = b̄t · ū.

Let h(x̄) : Fn → F be a hypothesis by A and let ā ∈ {0, 1}n be the assignment computed in
Line 6. Repeating the previous reasoning we get that:

P (ā) = M(ā) · c̄ = ūf (ā) = h(ā)− 1 6= h(ā).

Finally, suppose P was computable by a circuit of size s from C. By the definition, A
should output a hypothesis h such that h ≡ P . However, as we saw previously, for every
hypothesis h by A there exists an assignment ā ∈ {0, 1}n such that P (ā) 6= h(ā) leading to
a contradiction.

For the running time, by Lemmas 1 and 5, the algorithm uses 2O(n) field operations.
Note that we implicitly assume that h(ā) can be computed efficiently given the description
of h(x̄), which is the typical case with all the existing algorithms.

Theorem 1 follows as a corollary of the Lemma. Next, we use the connection between
lower bounds and PIT algorithms, and depth reduction techniques to obtain an efficient
PIT algorithm, thus proving Theorem 2. We require the following results.

Lemma 7 (Kabanets and Impagliazzo (2004)) Let F be a field. Suppose that for
every n ∈ N there exists an explicit multilinear polynomial P ∈ F[x1, x2, . . . , xn] that requires
general circuits of size 2Ω(n). Then there exists an algorithm that given n, d, s ∈ N in time
(nd)O(log s) outputs a hitting set H for general (n, s, d)-circuits.

Lemma 8 (Agrawal and Vinay (2008)) Let F be a field. Suppose that a multilinear
polynomial P ∈ F[x1, x2, . . . , xn] requires ΣΠΣΠ circuits of size 2Ω(n). Then P also requires
general circuits of size 2Ω(n).

Theorem 2 follows as corollary from the following Lemma.

Lemma 9 Suppose that the class C ∈ {general circuits, general formulas,ΣΠΣΠ circuits}
is exactly learnable. Then there exists an algorithm that given n, d, s ∈ N in time (nd)O(log s)

outputs a hitting set H for general (n, s, d)-circuits.

Proof By Theorem 1, for every n ∈ N there exists an explicit multilinear polynomial P ∈
F[x1, x2, . . . , xn] that requires circuits of size 2Ω(n) from C. Since C ∈ {general circuits, general formulas,ΣΠΣΠ circuits},
by Lemma 8 each such P ∈ F[x1, x2, . . . , xn] actually requires general circuits of size 2Ω(n).

12
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Finally, by Lemma 7 there exists an algorithm that given n, d, s ∈ N in time (nd)O(log s)

outputs a hitting set H for general (n, s, d)-circuits.

We prove Theorem 3 by implementing the procedure outlined in Section 1.6.
Proof [Proof of Theorem 3.] Let A be an exact learner for C and let C ∈ C be a (n, s, d)-
circuit from C given via oracle access. We run A on C. Given a membership query ā ∈ Fn,
we simply answer by C(ā). Now, suppose that we are given an equivalence query hypoth-
esis Ĉ. By the properties of A, Ĉ is a (n, poly(s),poly(d))-circuit. As all the classes being
considered are closed under subtraction, the same holds for true C − Ĉ as well. Let H be
the hitting set from Lemma 9 with the appropriate parameters. We test if Ĉ|H ≡ C|H using
membership queries to C. If Ĉ(ā) 6= C(ā) for some ā ∈ H, then we answer the query with
ā. Otherwise, the we stop and output Ĉ.

4. From Learning to Rigidity

In this section we discuss the proof Theorem 4. In similar fashion to Definition 4, we can
define a slightly different evaluation matrix.

Definition 10 Let ā ∈ Fm, b̄ ∈ Fn and i ∈ [m], j ∈ [n]. Define M̂(ā, b̄) ∈ F1×mn as
M̂(ā, b̄)1,(i,j) = āi · b̄j. With the extension: for S ⊆ Fn × Fm, M̂(S) ∈ F|S|×mn when

M̂(S)(ā,b̄) = M̂(ā, b̄) for (ā, b̄) ∈ S.

In the spirit of Lemma 5, we observe that:

1. Given ā ∈ Fm, b̄ ∈ Fn and a matrix A ∈ Fm×n we have that āt ·A · b̄ = M̂(ā, b̄) · v(A),
when v(A) is a vector of length mn containing the entries of A indexed by (i, j).

2. Let S = {(ei, ej)}i∈[m],j∈[n] when ei represents the i-th vector of the standard basis.

Then rank(M̂(S)) = mn.

Given the above, one can use an argument similar to the one in Lemma 6 and Algo-
rithm 1 to show that if C(r,s) is exactly learnable with q < mn queries, then the rank of
the corresponding evaluation matrix will be q. Therefore, the algorithm could diagonalize
against the output hypothesis (Lines 6 and 6), thus producing a vector which corresponds
to a (r, s)-rigid matrix. We leave the formalization of the proof of Theorem 4 as an exercise
for the reader.

5. From Learning to Square Roots

In this section, we establish a connection between learning and square root extraction, thus
proving Theorem 5.

We begin by formally presenting the models of depth-4 and depth-3 multilinear circuits
and some related definitions. Similar definitions were given in Dvir and Shpilka (2006);
Saraf and Volkovich (2011); Karnin et al. (2013).
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Definition 11 A depth-4 ΣΠΣΠ(k) circuit C has four layers of alternating Σ and Π gates
(the top Σ gate is at level one) and it computes a polynomial of the form

C(x̄) =

k∑
i=1

Fi(x̄) =

k∑
i=1

di∏
j=1

Pij(x̄)

where the Pij(x̄)-s are polynomials computed by the last two layers of ΣΠ gates of the circuit
and are the inputs to the Π gates at the second level.

A multilinear ΣΠΣΠ(k) circuit is a ΣΠΣΠ(k) circuit in which each multiplication gate
Fi computes a multilinear polynomial. The requirement that the Fi-s compute multilinear
polynomials implies that for each i ∈ [n] the polynomials {Pij}j∈[di]

are variable-disjoint.
In other words, each Fi induces a partition of the input variables. Yet in general, different
multiplication gates may induce different partitions. A set-multilinear ΣΠΣΠ(k) circuit is
a multilinear ΣΠΣΠ(k) circuit in which all the Fi-s induce the same partition.

Note that if the circuit is of size s then each Pij is s-sparse. A depth-3 ΣΠΣ(k) circuit
can be a seen a special case of ΣΠΣΠ(k) circuit in which the polynomials Pij are linear
forms (in particular, n-sparse).

We say that a circuit is minimal if no proper subsum of the Fi-s computes the zero
polynomial. In other words, C cannot be “shrunk”. We say that the circuit C is simple if
gcd(F1, . . . , Fk) = 1. Saraf & Volkovich showed that the multiplication gates of a multilinear
depth-4 computing the zero polynomial must compute sparse polynomials. This is referred
to as the “Sparsity Bound” for multilinear ΣΠΣΠ(k) circuits. Previously, Dvir & Shpilka
Dvir and Shpilka (2006) proved a similar statement for ΣΠΣ(k) circuits. (See Dvir and
Shpilka (2006) for more details).

Lemma 12 (Saraf and Volkovich (2011)) There exists an non-decreasing function ϕ(k, s)
such that if C(x̄) =

∑k
i=1 Fi(x̄) is a simple and minimal, multilinear ΣΠΣΠ(k) circuit of

size s computing the zero polynomial, then the polynomial computed by each Fi in the circuit
is ϕ(k, s)-sparse, where ϕ(k, s) ≤ s5k2.

We now move the proof of Theorem 5.

Definition 13 For n ∈ N and α ∈ F we define the polynomials Φα
n(x1, . . . , xn)

∆
=

n∏
i=1

(xi+α),

Pαn (x̄)
∆
= Φα

n(x̄) + Φ−αn (x̄), Qαn(x̄)
∆
= α · Φα

n(x̄)− α · Φ−αn (x̄) and Bα(z)
∆
=

[
z 1
α2 z

]
.

The following lemma ties the above together:

Lemma 14 Let n ∈ N and α ∈ F. Then

Bα(xn) ·Bα(xn−1) · . . . ·Bα(x1) ·
[
2
0

]
=

[
Pαn
Qαn

]
.
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Before giving the proof, we observe that Pαn has even symmetry w.r.t α (i.e. Pαn = P−αn )
while Qαn has odd symmetry w.r.t α (i.e. −Qαn = Q−αn ). In addition, we remark that
the lemma actually shows that the polynomials Pαn and Qαn are computable by read-once
oblivious ABPs (see Section 1.2 for definition). This is not a coincidence. The results of
Beimel et al. (2000); Klivans and Shpilka (2006) show that set-multilinear ΣΠΣ circuits can
be simulated by read-once oblivious ABPs of small width.

Proof Fix α ∈ F. The proof is by induction on n. For n = 1 we get Bα(x1) =

[
2x1

2α2

]
=[

Pα1
Qα1

]
. Suppose n ≥ 2. By the induction hypothesis:

Bα(xn−1) · . . . ·Bα(x1) ·
[
2
0

]
=

[
Pαn−1

Qαn−1

]
.

Therefore:

Bα(xn) ·Bα(xn−1) · . . . ·Bα(x1) ·
[
2
0

]
= Bα(xn) ·

[
Pαn−1

Qαn−1

]
=

[
xn · Pαn−1 +Qαn−1

α2 · Pαn−1 + xn ·Qαn−1

]
=

[
Pαn
Qαn

]
.

Corollary 15 Let n ∈ N and α2 = β ∈ F. Then the polynomial Pαn (x̄) is computable by
a set-multilinear ΣΠΣΠ(2) circuit of size 4n. In addition, given an assignment ā ∈ Fn,
Pαn (ā) can be evaluated using O(n) field operations given β (without the knowledge of α).

Before giving the proof of the main claim of the section, we require the following result
that gives an efficient deterministic factorization algorithm for multilinear sparse polyno-
mials.

Lemma 16 (Shpilka and Volkovich (2010)) There is a deterministic algorithm that
given a multilinear s-sparse polynomial P ∈ F[x1, x2, . . . , xn] outputs the irreducible factors,
h1, . . . , hk of P using poly(n, s) field operations. Furthermore, each hi is s-sparse.

Lemma 17 Suppose there exists an exact leaner A that learns multilinear ΣΠΣΠ(2) cir-
cuits of size s over F in time T (s, |F|) when n ≤ s, with hypotheses being multilinear
ΣΠΣΠ(k) circuits of size at most s` for some k, ` ∈ N. Then given β ∈ F in time
T (poly(`, k), |F|) · 2poly(`,k) Algorithm 2 outputs α ∈ F such that α2 = β, using A as a
subroutine.

Proof First, we show that the algorithm can successfully answer the queries of A. Corol-
lary 15 allows the algorithm to answer a membership query. In addition, recall that two
multilinear polynomials are equivalent iff they agree on the Boolean cube {0, 1}n. As Ĉ
and Pαn (ā) are both multilinear polynomials, this take care of an equivalence query. Conse-
quently, A will output a multilinear ΣΠΣΠ(k) circuit of size at most (4n)` computing Pαn .
Therefore, the correctness of Algorithm 2 boils down to the following claim: there exist Fi
and xj such that xj±α is an irreducible factor of Fi. Assume for the contradiction that this
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Algorithm 2 Square Root Extraction from Exact Learner for multilinear ΣΠΣΠ(2) circuits

Input: β ∈ F, exact learner A, k and ` as in the statement of Lemma 17
Output: α such that α2 = β

10 Run A with n = 10`(k + 2)2 · log(`(k + 2)2), s = 4n on Pαn . /* 2n > ϕ
(
k + 2, (8n)`

)
*/

/* Answering a membership query. */

11 Given a membership query point ā ∈ Fn by A:
Use Corollary 15 to evaluate Pαn (ā) /* Answering an equivalence query. */

12 Given an equivalence query hypothesis Ĉ:

Test if Ĉ|{0,1}n ≡ Pαn |{0,1}n /* as outlined in Section 1.6. */

/* After the interaction with A. */

13 Let C =
∑k

i=1 Fi be the output of A Use Lemma 16 to factor all the Fi-s into irreducible
factors For each factor of the form xj + γ: if γ2 = β then Output γ;

is not the case. Consider the following ΣΠΣΠ(k+2) circuit: C ′
∆
= Φα

n+Φ−αn −F1− . . .−Fk.
By construction, C ′ ≡ 0. Let C ′′ be the minimal zero subcircuit of C ′ that contains Φα

n. As
Φα
n+Φ−αn 6≡ 0, C ′′ must contain at least one (non-zero) Fi. We now claim that C ′′ is simple.

Indeed, the only irreducible factors of Φα
n are of the form xj + α. However, by assumption

none of them is a factor of Fi. Finally, observe that size of C ′′ is at most (4n)`+(4n) ≤ (8n)`.
By Lemma 12, Φα

n must be ϕ
(
k + 2, (8n)`

)
-sparse. That is, 2n ≤ ϕ

(
k + 2, (8n)`

)
, in con-

tradiction to the choice of n.

Theorem 5 follows as a corollary.

6. Discussion & Open Questions

In this paper we show several consequences from efficient learnability of various classes of
arithmetic circuits. In particular, we show that efficient exact learning algorithms for general
circuits and formulas imply efficient black-box PIT algorithms for these circuits. The proof
goes via constructing explicit lower bounds and applying the hardness-randomness paradigm
of Kabanets and Impagliazzo (2004), which is so far limited to general circuit/formulas only.
Can one give a more direct proof of this implication? In particular, a proof that will cover a
larger family of arithmetic circuit classes? Further more, as outlined in Section 1.6, efficient
black-box PIT algorithms can be used to eliminate equivalence queries. As a consequence,
one might be able to show that a “rich enough” arithmetic circuit class is effiently learnable
iff it is efficiently reconstructible. We note that there is a long standing open problem
to transform explicit lower bounds for a class C into an efficient PIT algorithm for that
class (see e.g. Shpilka and Yehudayoff (2010)). As we show that efficient exact learning
algorithms imply explicit lower bounds, our question might be easier.

Another natural question is: can one devise or explain the lack of progress for recon-
struction algorithms for multilinear formulas with bounded read? We note that there no
efficient reconstruction algorithms even for a sum of two read-once formulas. We would
like to point out that using the ideas of Section 5 with the techniques of Anderson et al.
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(2015); Shpilka and Volkovich (2015), one could show that any reconstruction algorithm for
read-twice formulas or even sums of read-once formulas must compute square roots.

Finally, can one prove other consequences from efficient learnability of arithmetic cir-
cuits? In particular, can one show that certain learning algorithms imply integer factoriza-
tion?
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Appendix A. PAC and Exact Learning are essentially equivalent for
Arithmetic Circuits

In this section we give a formal proof to a folklore result. We begin by formally defining
the model.

In Valiant’s PAC Learning model, we have a (computationally bounded) learner that is
given a set of samples of the form (x̄, f(x̄)) from some fixed function f ∈ C, where x̄ is
chosen according to some unknown distribution D. Given ε > 0 and δ > 0, the learner’s
goal is to output a hypothesis “functionally close” to f w.h.p. Formally, we say that a
function class C is PAC learnable if there exists a learner which given any f ∈ C, ε > 0 and
δ > 0 in time polynomial in n, 1/ε, 1/δ, |f | outputs with probability 1 − ε a hypothesis f̂
such that f̂ is a 1− δ close to f under D. In a more general model, the learner is allowed
membership queries (as in the exact learning model). In this case, we say that C is PAC
learnable with membership queries.

We show that both PAC and Exact learning models are, essentially, equivalent in the
arithmetic setting. In fact we show that if an arithmetic circuit class C is PAC learnable with
membership queries then C is learnable with membership queries only. In addition, if the
learning algorithm is proper and F is sufficiently large then the algorithm actually outputs a
circuit from C. The celebrated result of Blum (1994) shows that if one-way functions exist,
then this is not the case for Boolean functions.

It is also known Angluin (1987) that both randomized and exact learners can be used
to obtain a PAC learner with membership queries.

Definition 18 (Distance) Let f, g : Fn → F be functions. We define their (relative)

distance as ∆(f, g)
∆
= Prā∈Fn [f(ā) 6= g(ā)]. For δ > 0 we say that f is δ-far from g if

∆(f, g) > δ; otherwise we say that f is δ-close to g.

We give the Schwartz-Zippel Lemma which provides a bound on the number of zeros of
a polynomial.

Lemma 19 (Zippel (1979); Schwartz (1980)) Let P ∈ F[x1, x2, . . . , xn] be a non-zero
polynomial of degree at most d and let V ⊆ F. Then Pr ā∈V n [P (ā) = 0] ≤ d

|V | .

The following is an important property of low-degree polynomials: Self-Correctability.

Lemma 20 (Beaver and Feigenbaum (1990)) Let n, d ∈ N and F be a field of size
|F| > d + 2. Let f : Fn → F be a function that is 1/d-close to a degree d polynomial P ∈
F[x1, x2, . . . , xn]. Then there exists a randomized algorithm CORRECT that uses poly(n, d)
field operations and oracle calls to f such that for any ā ∈ Fn: Pr[CORRECTf (ā) 6= P (ā)] ≤
2−10n.
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The following is obtained by standard techniques:

Observation 21 Let f : Fn → F be a function that is 1/d-close to a degree d polynomial
P ∈ F[x1, x2, . . . , xn] and let C be a Boolean circuit of size s computing f . Then there exists
a circuit Ĉ of size poly(s, n, d) that computes P . Moreover, there is randomized algorithm
that given C output Ĉ with high probability in time poly(s, n, d).

We now give our main claim:

Lemma 22 Let C be an arithmetic circuit class over the field F. If C is PAC learnable with
membership queries then, C is learnable with membership queries only. In addition, if the
learning algorithm is proper and F = poly(d) is sufficiently large, then C can be reconstructed
efficiently.

Proof Let A be an exact learner for C and let C ∈ C be a (n, s, d)-circuit given via oracle
access. We run A on C with δ = 1/d and ε = 1/n. Whenever A asks for a random sample
point, we pick ā ∈ Fn at random and return (ā, C(ā)). Let h(x̄) : Fn → F be the output of
A. We have that ∆(h,C) ≤ 1/d. We can compute a Boolean Circuit C ′ for h. Applying
Observation 21, in randomized time poly(n, s, d), we can compute a circuit Ĉ such that
Ĉ ≡ C.

If A is proper, h is a (n,poly(s), poly(d))-circuit from C. By Lemma 19, if h 6≡ C then
∆(h,C) ≥ 1−poly(d)/ |F| which is larger than 1 > d when F = poly(d). Therefore, h ≡ C.
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