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Abstract
Geodesic convexity generalizes the notion of (vector space) convexity to nonlinear metric spaces.
But unlike convex optimization, geodesically convex (g-convex) optimization is much less devel-
oped. In this paper we contribute to the understanding of g-convex optimization by developing it-
eration complexity analysis for several first-order algorithms on Hadamard manifolds. Specifically,
we prove upper bounds for the global complexity of deterministic and stochastic (sub)gradient
methods for optimizing smooth and nonsmooth g-convex functions, both with and without strong
g-convexity. Our analysis also reveals how the manifold geometry, especially sectional curvature,
impacts convergence rates. To the best of our knowledge, our work is the first to provide global
complexity analysis for first-order algorithms for general g-convex optimization.
Keywords: first-order methods; geodesic convexity; manifold optimization; nonpositively curved
spaces; iteration complexity

1. Introduction

Convex optimization is fundamental to numerous areas including machine learning. Convexity
often helps guarantee polynomial runtimes and enables robust, more stable numerical methods. But
almost invariably, the use of convexity in machine learning is limited to vector spaces, even though
convexity per se is not limited to vector spaces. Most notably, it generalizes to geodesically convex
metric spaces (Gromov, 1978; Bridson and Haefliger, 1999; Burago et al., 2001), through which it
offers a much richer setting for developing mathematical models amenable to global optimization.

Our broader aim is to increase awareness about g-convexity (see Definition 1); while our spe-
cific focus in this paper is on contributing to the understanding of geodesically convex (g-convex)
optimization. In particular, we study first-order algorithms for smooth and nonsmooth g-convex op-
timization, for which we prove iteration complexity upper bounds. Except for a fundamental lemma
that applies to general g-convex metric spaces, we limit our discussion to Hadamard manifolds (Rie-
mannian manifolds with global nonpositive curvature), as they offer the most convenient grounds
for generalization1 while also being relevant to numerous applications (see e.g., Section 1.1).

Specifically, we study optimization problems of the form

min f(x) such that x ∈ X ⊂M, (1)

where f : M → R ∪ {∞} is a proper g-convex function, X is a geodesically convex set and
M is a Hadamard manifold (Bishop and O’Neill, 1969; Gromov, 1978). We solve (1) via first-

1. Hadamard manifolds have unique geodesics between any two points. This key property ensures that the exponential
map is a global diffeomorphism. Unique geodesics also make it possible to generalize notions such as convex sets
and convex functions. (Compact manifolds such as spheres, do not admit globally geodesically convex functions
other than the constant function; local g-convexity is possible, but that is a separate topic).
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order methods under a variety of settings analogous to the Euclidean case: nonsmooth, Lipschitz-
smooth, and strongly g-convex. We present results for both deterministic and stochastic (where
f(x) = E[F (x, ξ)]) g-convex optimization.

Although Riemannian geometry provides tools that enable generalization of Euclidean algo-
rithms (Udriste, 1994; Absil et al., 2009), to obtain iteration complexity bounds we must overcome
some fundamental geometric hurdles. We introduce key results that overcome some of these hur-
dles, and pave the way to analyzing first-order g-convex optimization algorithms.

1.1. Related work and motivating examples

We recollect below a few items of related work and some examples relevant to machine learning,
where g-convexity and more generally Riemannian optimization play an important role.

Standard references on Riemannian optimization are (Udriste, 1994; Absil et al., 2009), but
these primarily consider problems on manifolds without necessarily assuming g-convexity. Con-
sequently, their analysis is limited to asymptotic convergence (except for (Theorem 4.2, Udriste,
1994) that proves linear convergence for functions with positive-definite and bounded Riemannian
Hessians). The recent monograph (Bacák, 2014) is devoted to g-convexity and g-convex optimiza-
tion on geodesic metric spaces, though without any attention to global complexity analysis. Bacák
(2014) also details a noteworthy application: averaging trees in the geodesic metric space of phylo-
genetic trees (Billera et al., 2001).

At a more familiar level, implicitly the topic of “geometric programming” (Boyd et al., 2007)
may be viewed as a special case of g-convex optimization (Sra and Hosseini, 2015). For instance,
computing stationary states of Markov chains (e.g., while computing PageRank) may be viewed as
g-convex optimization problems by placing suitable geometry on the positive orthant; this idea has
a fascinating extension to nonlinear iterations on convex cones (in Banach spaces) endowed with
the structure of a geodesic metric space (Lemmens and Nussbaum, 2012).

Perhaps the most important example of such metric spaces is the set of positive definite matrices
viewed as a Riemannian or Finsler manifold; a careful study of this setup was undertaken by Sra and
Hosseini (2015). They also highlighted applications to maximum likelihood estimation for certain
non-Gaussian (heavy- or light-tailed) distributions, resulting in various g-convex and nonconvex
likelihood problems; see also (Wiesel, 2012; Zhang et al., 2013). However, none of these three
works presents a global convergence rate analysis for their algorithms.

There exist several nonconvex problems where Riemannian optimization has proved quite use-
ful, e.g., low-rank matrix and tensor factorization (Vandereycken, 2013; Ishteva et al., 2011; Mishra
et al., 2013); dictionary learning (Sun et al., 2015; Harandi et al., 2012); optimization under orthog-
onality constraints (Edelman et al., 1998; Moakher, 2002; Shen et al., 2009; Liu et al., 2015); and
Gaussian mixture models (Hosseini and Sra, 2015), for which g-convexity helps accelerate manifold
optimization to substantially outperform the Expectation Maximization (EM) algorithm.

1.2. Contributions

We summarize the main contributions of this paper below.

– We develop a new inequality (Lemma 5) useful for analyzing the behavior of optimization algo-
rithms for functions in Alexandrov space with curvature bounded below, which can be applied to
(not necessarily g-convex) optimization problems on Riemannian manifolds and beyond.
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– For g-convex optimization problems on Hadamard manifolds (Riemannian manifolds with global
nonpositive sectional curvature), we prove iteration complexity upper bounds for several existing
algorithms (Table 1). For the special case of smooth geodesically strongly convex optimization,
a prior linear convergence result that uses line-search is known (Udriste, 1994); our results do not
require line search. Moreover, as far as we are aware, ours are the first global complexity results
for general g-convex optimization.
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Table 1: Summary of results. This table summarizes the non-asymptotic convergence rates we
have proved for various geodesically convex optimization algorithms. s: iterate index; t:
total number of iterates; D: diameter of domain; Lf : Lipschitz constant of f ; c: a constant
dependent onD and on the sectional curvature lower bound κ; G: upper bound of gradient
norms; µ: strong convexity constant of f ; Lg: Lipschitz constant of the gradient; σ: square
root variance of the gradient.

2. Here for simplicity only the dependencies on c and t are shown, while other factors are considered constant and thus
omitted. Please refer to the theorems for complete results.

3. “Yes”: result holds for proper averaging of the iterates; “No”: result holds for the last iterate. Please refer to the
theorems for complete results.
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2. Background

Before we describe the algorithms and analyze their properties, we would like to introduce some
concepts in metric geometry and Riemannian geometry that generalize concepts in Euclidean space.

2.1. Metric Geometry

For generalization of nonlinear optimization methods to metric space, we now recall some ba-
sic concepts in metric geometry, which cover vector spaces and Riemannian manifolds as spe-
cial cases. A metric space is a pair (X, d) of set X and distance function d that satisfies posi-
tivity, symmetry, and the triangle inequality (Burago et al., 2001). A continuous mapping from
the interval [0, 1] to X is called a path. The length of a path γ : [0, 1] → X is defined as
length(γ) := sup

∑n
i=1 d(γ(ti−1), γ(ti)), where the supremum is taken over the set of all parti-

tions 0 = t0 < · · · < tn = 1 of the interval [0, 1], with an arbitrary n ∈ N. A metric space is
a length space if for any x, y ∈ X and ε > 0 there exists a path γ : [0, 1] → X joining x and y
such that length(γ) ≤ d(x, y) + ε. A path γ : [0, 1] → X is called a geodesic if it is parametrized
by the arc length. If every two points x, y ∈ X are connected by a geodesic, we say (X, d) is a
geodesic space. If the geodesic connecting every x, y ∈ X is unique, the space is called uniquely
geodesic (Bacák, 2014).

The properties of geodesic triangles will be central to our analysis of optimization algorithms.
A geodesic triangle 4pqr with vertices p, q, r ∈ X consists of three geodesics pq, qr, rp. Given
4pqr ∈ X , a comparison triangle4p̄q̄r̄ in k-plane is a corresponding triangle with the same side
lengths in two-dimensional space of constant Gaussian curvature k. A length space with curvature
bound is called an Alexandrov space. The notion of angle is defined in the following sense. Let
γ : [0, 1] → X and η : [0, 1] → X be two geodesics in (X, d) with γ0 = η0, we define the angle
between γ and η as α(γ, η) := lim sups,t→0+ ]γ̄sγ̄0η̄t where ]γ̄sγ̄0η̄t is the angle at γ̄0 of the
corresponding triangle 4γ̄sγ̄0η̄t. We use Toponogov’s theorem to relate the angles and lengths of
any geodesic triangle in a geodesic space to those of a comparison triangle in a space of constant
curvature (Burago et al., 1992, 2001).

2.2. Riemannian Geometry

M

x
TxM

Expx(v)

v

Figure 1: Illustration of a manifold. Also shown are tangent space, geodesic and exponential map.

An n-dimensional manifold is a topological space where each point has a neighborhood that
is homeomorphic to the n-dimensional Euclidean space. At any point x on a manifold, tangent
vectors are defined as the tangents of parametrized curves passing through x. The tangent space
TxM of a manifoldM at x is defined as the set of all tangent vectors at the point x. An exponential
map at x ∈ M is a mapping from the tangent space TxM to M with the requirement that a
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vector v ∈ TxM is mapped to the point y := Expx(v) ∈ M such that there exists a geodesic
γ : [0, 1]→M satisfying γ(0) = x, γ(1) = y and γ′(0) = v.

As tangent vectors at two different points x, y ∈ M lie in different tangent spaces, we cannot
compare them directly. To meaningfully compare vectors in different tangent spaces, one needs
to define a way to move a tangent vector along the geodesics, while ‘preserving’ its length and
orientation. We thus need to use an inner product structure on tangent spaces, which is called a
Riemannian metric. A Riemannian manifold (M, g) is a real smooth manifold equipped with an
inner product gx on the tangent space TxM of every point x, such that if u, v are two vector fields
onM then x 7→ 〈u, v〉x := gx(u, v) is a smooth function. On a Riemannian manifold, the notion
of parallel transport (parallel displacement) provides a sensible way to transport a vector along a
geodesic. Intuitively, a tangent vector v ∈ TxM at x of a geodesic γ is still a tangent vector Γ(γ)yxv
of γ after being transported to a point y along γ. Furthermore, parallel transport preserves inner
products, i.e. 〈u, v〉x = 〈Γ(γ)yxu,Γ(γ)yxv〉y.

The curvature of a Riemannian manifold is characterized by its Riemannian metric tensor at
each point. For worst-case analysis, it is sufficient to consider the trigonometry of geodesic trian-
gles. Sectional curvature is the Gauss curvature of a two dimensional submanifold formed as the
image of a two dimensional subspace of a tangent space after exponential mapping. A two dimen-
sional submanifold with positive, zero or negative sectional curvature is locally isometric to a two
dimensional sphere, a Euclidean plane, or a hyperbolic plane with the same Gauss curvature.

2.3. Function Classes on a Riemannian Manifold

We first define some key terms. X ⊂M is called a geodesically convex set if for any x, y ∈ X the
minimal distance geodesic γ connecting x, y lies within X . Throughout the paper, we assume that
the function f is defined on a Riemannian manifoldM, f assumes at least a global minimum point
within X , and x∗ ∈ X is a minimizer of f , unless stated otherwise.

Definition 1 (Geodesic convexity) A function f :M→ R is said to be geodesically convex if for
any x, y ∈M, a geodesic γ such that γ(0) = x and γ(1) = y, and t ∈ [0, 1], it holds that

f(γ(t)) ≤ (1− t)f(x) + tf(y).

It can be shown that an equivalent definition for geodesic convexity is that for any x, y ∈ M, there
exists a tangent vector gx ∈ TxM such that

f(y) ≥ f(x) + 〈gx,Exp−1x (y)〉x,

and gx is called a subgradient of f at x, or the gradient if f is differentiable, and 〈·, ·〉x denotes the
inner product in the tangent space of x induced by the Riemannian metric. In the rest of the paper
we will omit the index of tangent space when it is clear from the context.

Definition 2 (Strong convexity) A function f : M → R is said to be geodesically µ-strongly
convex if for any x, y ∈M,

f(y) ≥ f(x) + 〈gx,Exp−1x (y)〉x +
µ

2
d2(x, y).

or, equivalently, for any geodesic γ such that γ(0) = x, γ(1) = y and t ∈ [0, 1],

f(γ(t)) ≤ (1− t)f(x) + tf(y)− µ

2
t(1− t)d2(x, y).
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Definition 3 (Lipschitzness) A function f :M→ R is said to be geodesically Lf -Lipschitz if for
any x, y ∈M,

|f(x)− f(y)| ≤ Lfd(x, y).

Definition 4 (Smoothness) A differentiable function f : M → R is said to be geodesically Lg-
smooth if its gradient is Lg-Lipschitz, i.e. for any x, y ∈M,

‖gx − Γxygy‖ ≤ Lgd(x, y)

where Γxy is the parallel transport from y to x.

Observe that compared to the Euclidean setup, the above definition requires a parallel transport
operation to “transport” gy to gx. It can be proved that if f is Lg-smooth, then for any x, y ∈M,

f(y) ≤ f(x) + 〈gx,Exp−1x (y)〉x +
Lg
2
d2(x, y).

3. Convergence Rates of First-order Methods

In this section, we analyze the global complexity of deterministic and stochastic gradient methods
for optimizing various classes of g-convex functions on Hadamard manifolds. We assume access to
a projection oracle PX that maps a point x ∈M to PX (x) ∈ X ⊂M such that

d(x,PX (x)) < d(x, y), ∀y ∈ X \ {PX (x)},

where X is a geodesically convex set and maxy,z∈X d(y, z) ≤ D. General projected subgradient /
gradient algorithms on Riemannian manifolds take the form

xs+1 = PX (Expxs(−ηsgs)), (2)

where s is the iterate index, gs is a subgradient of the objective function, and ηs is a step-size. For
brevity, we will use the word ‘gradient’ to refer to both subgradient and gradient, deterministic or
stochastic; the meaning should be apparent from the context.

While it is easy to translate first-order optimization algorithms from Euclidean space to Rie-
mannian manifolds, and similarly to prove asymptotic convergence rates (since locally Riemannian
manifolds resemble Euclidean space), it is much harder to carry out non-asymptotic analysis, at
least due to the following two difficulties:

• Non-Euclidean trigonometry is difficult to use. Trigonometric geometry in nonlinear spaces
is fundamentally different from Euclidean space. In particular, for analyzing optimization al-
gorithms, the law of cosines in Euclidean space

a2 = b2 + c2 − 2bc cos(A), (3)

where a, b, c are the sides of a Euclidean triangle with A the angle between sides b and c,
is an essential tool for bounding the squared distance between the iterates and the mini-
mizer(s). Indeed, consider the Euclidean update xs+1 = xs − ηsgs. Applying (3) to the
triangle4xsxxs+1, with a = xxs+1, b = xsxs+1, c = xxs, and A = ]xxsxs+1, we get the
frequently used formula

‖xs+1 − x‖2 = ‖xs − x‖2 − 2ηs〈gs, xs − x〉+ η2s‖gs‖2

However, this nice equality does not exist for nonlinear spaces.
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• Linearization does not work. Another key technique used in bounding squared distances is
inspired by the proximal algorithms. Here, gradient-like updates are seen as proximal steps
for minimizing a series of linearizations of the objective function. Specifically, let ψ(x;xs) =
f(xs)+ 〈gs, x−xs〉 be the linearization of the convex function f , and let gs ∈ ∂f(xs). Then,
xs+1 = xs − ηsgs is the unique solution to the following minimization problem

min
x

{
ψ(x;xs) +

1

2ηs
‖x− xs‖2

}
.

Since ψ(x;xs) is convex, we thus have (see e.g. Tseng (2009)) the recursively useful bound

ψ(xs+1;xs) +
1

2ηs
‖xs+1 − x‖2 ≤ ψ(x;xs) +

1

2ηs
‖xs − x‖2 −

ηs
2
‖gs‖2.

But in nonlinear space there is no trivial analogy of a linear function. For example, for any
given y ∈M and gy ∈ TyM, the function

ψ(x; y) = f(y) + 〈gy,Exp−1y (x)〉,

is geodesically both star-concave and star-convex in y, but neither convex nor concave in
general. Thus a nonlinear analogue of the above result does not hold.

We address the first difficulty by developing an easy-to-use trigonometric distance bound for
Alexandrov space with curvature bounded below. When specialized to Hadamard manifolds, our
result reduces to the analysis in (Bonnabel, 2013), which in turn relies on (Cordero-Erausquin
et al., 2001, Lemma 3.12). However, unlike (Cordero-Erausquin et al., 2001), our proof assumes no
manifold structure on the geodesic space of interest, and is fundamentally different in its techniques.

3.1. Trigonometric Distance Bound

As noted above, a main hurdle in analyzing non-asymptotic convergence of first-order methods in
geodesic spaces is that the Euclidean law of cosines does not hold any more. For general nonlin-
ear spaces, there are no corresponding analytical expressions. Even for the (hyperbolic) space of
constant negative curvature −1, perhaps the simplest and most studied nonlinear space, the law of
cosines is replaced by the hyperbolic law of cosines:

cosh a = cosh b cosh c− sinh b sinh c cos(A), (4)

which does not align well with the standard techniques of convergence rate analysis. With the
goal of developing analysis for nonlinear space optimization algorithms, our first contribution is
the following trigonometric distance bound for Alexandrov space with curvature bounded below.
Owing to its fundamental nature, we believe that this lemma may be of broader interest too.

Lemma 5 If a, b, c are the sides (i.e., side lengths) of a geodesic triangle in an Alexandrov space
with curvature lower bounded by κ, and A is the angle between sides b and c, then

a2 ≤
√
|κ|c

tanh(
√
|κ|c)

b2 + c2 − 2bc cos(A). (5)
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Proof sketch. The complete proof contains technical details that digress from the main focus of this
paper, so we leave them in the appendix. Below we sketch the main steps.

Our first observation is that by the famous Toponogov’s theorem (Burago et al., 1992, 2001),
we can upper bound the side lengths of a geodesic triangle in an Alexandrov space with curvature
bounded below by the side lengths of a comparison triangle in the hyperbolic plane, which satisfies
(cf. (4)):

cosh(
√
|κ|a) = cosh(

√
|κ|b) cosh(

√
|κ|c)− sinh(

√
|κ|b) sinh(

√
|κ|c) cos(A). (6)

Second, we observe that it suffices to study κ = −1, which corresponds to (4), since Eqn. (6) can
be seen as Eqn. (4) with side lengths a =

√
|κ|a′, b =

√
|κ|b′, c =

√
|κ|c′ (see Lemma 19).

Finally, we observe that in (4), ∂2

∂b2
cosh(a) = cosh(a). Letting g(b, c, A) := cosh(

√
rhs(b, c, A)),

where rhs(b, c, A) is the right hand side of (5), we then see that it is sufficient to prove the following:

1. cosh(a) and g(b, c, A) are equal at b = 0.

2. the first partial derivatives of cosh(a) and g(b, c, A) w.r.t. b agree at b = 0.

3. ∂2

∂b2
g(b, c, A) ≥ g(b, c, A) for b, c ≥ 0 (Lemma 16).

These three steps, if true, lead to the proof of cosh(a) ≤ g(b, c, A) for b, c ≥ 0, thus proving a
special case of Lemma 5 for space with constant sectional curvature−1 as shown in Lemma 17, 18.
Combing this special case with our first two observations concludes the proof of the lemma.

Remark 6 Inequality (5) provides an upper bound on the side lengths of a geodesic triangle in an
Alexandrov space with curvature bounded below. Some examples of such spaces are Riemannian
manifolds, including hyperbolic space, Euclidean space, sphere, orthogonal groups, and compact
sets on a PSD manifold. However, our derivation does not rely on any manifold structure, thus it
also applies to certain cones and convex hypersurfaces (Burago et al., 2001).

We now recall a lemma showing that metric projection in Hadamard manifold is nonexpansive.

Lemma 7 (Bacák (2014)) Let (M, g) be a Hadamard manifold. Let X ⊂ X be a closed convex
set. Then the mapping PX (x) := {y ∈ X : d(x, y) = infz∈X d(x, z)} is single-valued and
nonexpansive, that is, we have for every x, y ∈M

d(PX (x),PX (y)) ≤ d(x, y).

In the sequel, we use the notation ζ(κ, c) ,
√
|κ|c

tanh(
√
|κ|c)

for the curvature dependent quantity

from inequality (5). From Lemma 5 and Lemma 7 it is straightforward to prove the following
corollary, which characterizes an important relation between two consecutive updates of an iterative
optimization algorithm on Riemannian manfiold with curvature bounded below.

Corollary 8 For any Riemannian manifoldM where the sectional curvature is lower bounded by
κ and any point x, xs ∈ X , the update xs+1 = PX (Expxs(−ηsgs)) satisfies

〈−gs,Exp−1xs (x)〉 ≤ 1

2ηs

(
d2(xs, x)− d2(xs+1, x)

)
+
ζ(κ, d(xs, x))ηs

2
‖gs‖2. (7)
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Proof Denote x̃s+1 := Expxs(−ηsgs). Note that for the geodesic triangle 4xsx̃s+1x, we have
d(xs, x̃s+1) = ηs‖gs‖, while d(xs, x̃s+1)d(xs, x) cos(]x̃s+1xsx) = 〈−ηsgs,Exp−1xs (x)〉. Now let
a = x̃s+1x, b = x̃s+1xs, c = xsx,A = ]x̃s+1xsx, apply Lemma 5 and simplify to obtain

〈−gs,Exp−1xs (x)〉 ≤ 1

2ηs

(
d2(xs, x)− d2(x̃s+1, x)

)
+
ζ(κ, d(xs, x))ηs

2
‖gs‖2,

whereas by Lemma 7 we have d2(x̃s+1, x) ≥ d2(xs+1, x), which then implies (7).

It is instructive to compare (7) with its Euclidean counterpart (for which actually ζ = 1):

〈−gs, x− xs〉 = 1
2ηs

(
‖xs − x‖2 − ‖xs+1 − x‖2

)
+ ηs

2 ‖gs‖
2.

Note that as long as the diameter of the domain and the sectional curvature remain bounded, ζ is
bounded, and we get a meaningful bound in a form similar to the law of cosines in Euclidean space.

Corollary 8 furnishes the missing tool for analyzing non-asymptotic convergence rates of man-
ifold optimization algorithms. We now move to the analysis of several such first-order algorithms.

3.2. Convergence Rate Analysis

Nonsmooth convex optimization. The following two theorems show that both deterministic and
stochastic subgradient methods achieve a curvature-dependent O(1/

√
t) rate of convergence for

g-convex on Hadamard manifolds.

Theorem 9 Let f be g-convex and Lf -Lipschitz, the diameter of domain be bounded by D, and
the sectional curvature lower-bounded by κ ≤ 0. Then, the projected subgradient method with a
constant stepsize ηs = η = D

Lf

√
ζ(κ,D)t

and x1 = x1,xs+1 = Expxs

(
1
s+1Exp−1xs (xs+1)

)
satisfies

f (xt)− f(x∗) ≤ DLf

√
ζ(κ,D)

t
.

Proof Since f is g-convex, it satisfies f(xs)− f(x∗) ≤ 〈−gs,Exp−1xs (x∗)〉, which combined with
Corollary 8 and the Lf -Lipschitz condition yields the upper bound

f(xs)− f(x∗) ≤ 1

2η

(
d2(xs, x

∗)− d2(xs+1, x
∗)
)

+
ζ(κ,D)L2

fη

2
. (8)

Summing over s from 1 to t and dividing by t, we obtain

1

t

t∑
s=1

f(xs)− f(x∗) ≤ 1

2tη

(
d2(x1, x

∗)− d2(xt+1, x
∗)
)

+
ζ(κ,D)L2

fη

2
. (9)

Plugging in d(x1, x
∗) ≤ D and η = D

Lf

√
ζ(κ,D)t

we further obtain

1

t

t∑
s=1

f(xs)− f(x∗) ≤ DLf

√
ζ(κ,D)

t
.
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It remains to show that f(xt) ≤ 1
t

∑t
s=1 f(xs), which can be proved by an easy induction.

We note that Theorem 9 and our following results are all generalizations of known results in
Euclidean space. Indeed, setting curvature κ = 0 we can recover the Euclidean convergence rates
(in some cases up to a difference in small constant factors). However, for Hadamard manifolds
κ < 0 and the theorem implies that the algorithms may converge more slowly. Also worth noting is
that we must be careful in how we obtain the “average” iterate xt on the manifold.

Theorem 10 If f is g-convex, the diameter of the domain is bounded by D, the sectional curvature
of the manifold is lower bounded by κ ≤ 0, and the stochastic subgradient oracle satisfies E[g̃(x)] =
g(x) ∈ ∂f(x),E[‖g̃s‖2] ≤ G2, then the projected stochastic subgradient method with stepsize
ηs = η = D

G
√
ζ(κ,D)t

, and x1 = x1, xs+1 = Expxs

(
1
s+1Exp−1xs (xs+1)

)
satisfies the upper bound

E[f (xt)− f(x∗)] ≤ DG
√
ζ(κ,D)

t
.

Proof The proof structure is very similar, except that for each equation we take expectation with
respect to the sequence {xs}ts=1. Since f is g-convex, we have

E[f(xs)− f(x∗)] ≤ 〈−E[g̃s],Exp−1xs (x∗)〉,

which combined with Corollary 8 and E[‖g̃s‖2] ≤ G2 yields

E[f(xs)− f(x∗)] ≤ 1

2η
E
[
d2(xs, x

∗)− d2(xs+1, x
∗)
]

+
ζ(κ,D)G2η

2
. (10)

Now arguing as in Theorem 9 the proof follows.

Strongly convex nonsmooth functions. The following two theorems show that both subgradient
method and stochastic subgradient method achieve a curvature dependent O(1/t) rate of conver-
gence for g-strongly convex functions on Hadamard manifolds.

Theorem 11 If f is geodesically µ-strongly convex and Lf -Lipschitz, and the sectional curvature
of the manifold is lower bounded by κ ≤ 0, then the projected subgradient method with ηs = 2

µ(s+1)
satisfies

f (xt)− f(x∗) ≤
2ζ(κ,D)L2

f

µ(t+ 1)
,

where x1 = x1, and xs+1 = Expxs

(
2
s+1Exp−1xs (xs+1)

)
.

Proof Since f is geodesically µ-strongly convex, we have

f(xs)− f(x∗) ≤ 〈−gs,Exp−1xs (x∗)〉 − µ

2
d2(xs, x

∗),

10
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which combined with Corollary 8 and Lf -Lipschitz condition yields

f(xs)− f(x∗) ≤
(

1

2ηs
− µ

2

)
d2(xs, x

∗)− 1

2ηs
d2(xs+1, x

∗) +
ζ(κ,D)L2

fηs

2
(11)

=
µ(s− 1)

4
d2(xs, x

∗)− µ(s+ 1)

4
d2(xs+1, x

∗) +
ζ(κ,D)L2

f

µ(s+ 1)
. (12)

Multiply (12) by s and sum over s from 1 to t; then divide the result by t(t+1)
2 to obtain

2

t(t+ 1)

t∑
s=1

sf(xs)− f(x∗) ≤
2ζ(κ,D)L2

f

µ(t+ 1)
. (13)

The final step is to show f(xt) ≤ 2
t(t+1)

∑t
s=1 sf(xs), which again follows by an easy induction.

Theorem 12 If f is geodesically µ-strongly convex, the sectional curvature of the manifold is
lower bounded by κ ≤ 0, and the stochastic subgradient oracle satisfies E[g̃(x)] = g(x) ∈
∂f(x),E[‖g̃s‖2] ≤ G2, then the projected subgradient method with ηs = 2

µ(s+1) satisfies

E[f (xt)− f(x∗)] ≤ 2ζ(κ,D)G2

µ(t+ 1)

where x1 = x1, and xs+1 = Expxs

(
2
s+1Exp−1xs (xs+1)

)
.

Proof The proof structure is very similar to the previous theorem, except that now we take expec-
tations over the sequence {xs}ts=1. We leave the details to the appendix for brevity.

Theorems 11 and 12 are generalizations of their Euclidean counterparts (Lacoste-Julien et al.,
2012), and follow the same proof structures. Our upper bounds depend linearly on ζ(κ,D), which
implies that with κ < 0 the algorithms may converge more slowly. However, note that for strongly
convex problems, the distances from iterates to the minimizer are shrinking, thus the inequality (11)
(or its stochastic version) may be too pessimistic, and better dependency on κ may be obtained with
a more refined analysis. We leave this as an open problem for the future.

Smooth convex optimization. The following two theorems show that gradient descent algorithm
achieves a curvature dependent O(1/t) rate of convergence, whereas stochastic gradient achieves a
curvature dependent O(1/t+

√
1/t) rate for smooth g-convex functions on Hadamard manifolds.

Theorem 13 If f :M→ R is g-convex with an Lg-Lipschitz gradient, the diameter of domain is
bounded by D, and the sectional curvature of the manifold is bounded below by κ, then projected
gradient descent with ηs = η = 1

Lg
satisfies for t > 1 the upper bound

f(xt)− f(x∗) ≤ ζ(κ,D)LgD
2

2(ζ(κ,D) + t− 2)
.

11
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Proof For simplicity we denote ∆s = f(xs)− f(x∗). First observe that with η = 1
Lg

the algorithm
is a descent method. Indeed, we have

∆s+1 −∆s ≤ 〈gs,Exp−1xs (xs+1)〉+
Lg
2
d2(xs+1, xs) = −‖gs‖

2

2Lg
. (14)

On the other hand, by the convexity of f and Corollary 8 we obtain

∆s ≤ 〈−gs,Exp−1xs (x∗)〉 ≤ Lg
2

(
d2(xs, x

∗)− d2(xs+1, x
∗)
)

+
ζ(κ,D)‖gs‖2

2Lg
. (15)

Multiplying (14) by ζ(κ,D) and adding to (15), we get

ζ(κ,D)∆s+1 − (ζ(κ,D)− 1)∆s ≤
Lg
2

(
d2(xs, x

∗)− d2(xs+1, x
∗)
)
. (16)

Now summing over s from 1 to t− 1, a brief manipulation shows that

ζ(κ,D)∆t +
t−1∑
s=2

∆s ≤ (ζ(κ,D)− 1)∆1 +
LgD2

2 . (17)

Since for s ≤ t we proved ∆t ≤ ∆s, and by assumption ∆1 ≤ LgD2

2 , for t > 1 we get

∆t ≤
ζ(κ,D)LgD

2

2(ζ(κ,D) + t− 2)
,

yielding the desired bound.

Theorem 14 If f : M → R is g-convex with Lg-Lipschitz gradient, the diameter of domain is
bounded by D, the sectional curvature of the manifold is bounded below by κ, and the stochastic
gradient oracle satisfies E[g̃(x)] = g(x) = ∇f(x),E[‖∇f(x) − g̃s‖2] ≤ σ2, then the projected
stochastic gradient algorithm with ηs = η = 1

Lg+1/α where α = D
σ

√
1

ζ(κ,D)t satisfies for t > 1

E[f(xt)− f(x∗)] ≤
ζ(κ,D)LgD

2 + 2Dσ
√
ζ(κ,D)t

2(ζ(κ,D) + t− 2)
,

where x2 = x2, xs+1 = Expxs
(
1
sExp−1xs (xs+1)

)
for 2 ≤ s ≤ t−2, xt = Expxt−1

(
ζ(κ,D)

ζ(κ,D)+t−2Exp−1xt−1
(xt)

)
.

Proof As before we write ∆s = f(xs)− f(x∗). First we observe that

∆s+1 −∆s ≤ 〈gs,Exp−1xs (xs+1)〉+
Lg
2
d2(xs+1, xs) (18)

= 〈g̃s,Exp−1xs (xs+1〉+ 〈gs − g̃s,Exp−1xs (xs+1)〉+
Lg
2
d2(xs+1, xs) (19)

≤ 〈g̃s,Exp−1xs (xs+1)〉+
α

2
‖gs − g̃s‖2 +

1

2

(
Lg +

1

α

)
d2(xs+1, xs) (20)

12
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Taking expectation, and letting η = 1
Lg+1/α , we obtain

E[∆s+1 −∆s] ≤
ασ2

2
− E[‖g̃s‖2]

2
(
Lg + 1

α

) . (21)

On the other hand, using convexity of f and Corollary 8 we get

∆s ≤ 〈−gs,Exp−1xs (x∗)〉 ≤
Lg + 1

α

2
E
[
d2(xs, x

∗)− d2(xs+1, x
∗)
]

+
ζ(κ,D)E[‖g̃s‖2]

2
(
Lg + 1

α

) . (22)

Multiply (21) by ζ(κ,D) and add to (22), we get

E[ζ(κ,D)∆s+1 − (ζ(κ,D)− 1)∆s] ≤
Lg + 1

α

2
E
[
d2(xs, x

∗)− d2(xs+1, x
∗)
]

+
αζ(κ,D)σ2

2
.

Summing over s from 1 to t− 1 and simplifying, we obtain

E[ζ(κ,D)∆t +
t−1∑
s=2

∆s] ≤ E[(ζ(κ,D)− 1)∆1] +
LgD

2

2
+

1

2

(
D2

α
+ αζ(κ,D)tσ2

)
. (23)

Now set α = D

σ
√
ζ(κ,D)t

, and note that ∆1 ≤ LgD2

2 ; thus, for t > 1 we get

E
[
ζ(κ,D)∆t +

∑t−1

s=2
∆s

]
≤ ζ(κ,D)LgD

2

2
+Dσ

√
ζ(κ,D)t.

Finally, due to g-convexity of f it is easy to verify by induction that

E[f(xt)− f(x∗)] ≤
E[ζ(κ,D)∆t +

∑t−1
s=2 ∆s]

ζ(κ,D) + t− 2
.

Smooth and strongly convex functions. Next we prove that gradient descent achieves a curvature
dependent linear rate of convergence for geodesically strongly convex and smooth functions on
Hadamard manifolds.

Theorem 15 If f : M → R is geodesically µ-strongly convex with Lg-Lipschitz gradient, and
the sectional curvature of the manifold is bounded below by κ, then the projected gradient descent
algorithm with ηs = η = 1

Lg
, ε = min{ 1

ζ(κ,D) ,
µ
Lg
} satisfies for t > 1

f(xt)− f(x∗) ≤ (1− ε)t−2LgD2

2
.

Proof As before we use ∆s = f(xs)− f(x∗). Observe that with η = 1
Lg

we have descent:

∆s+1 −∆s ≤ 〈gs,Exp−1xs (xs+1)〉+
Lg
2
d2(xs+1, xs) = −‖gs‖

2

2Lg
. (24)

13
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On the other hand, by the strong convexity of f and Corollary 8 we obtain the bounds

∆s ≤ 〈−gs,Exp−1xs (x∗)〉 − µ

2
d2(xt, x

∗) (25)

≤ Lg − µ
2

d2(xs, x
∗)− Lg

2
d2(xs+1, x

∗) +
ζ(κ,D)‖gs‖2

2Lg
. (26)

Multiply (24) by ζ(κ,D) and add to (25) to obtain

ζ(κ,D)∆s+1 − (ζ(κ,D)− 1)∆s ≤
Lg − µ

2
d2(xs, x

∗)− Lg
2
d2(xs+1, x

∗) (27)

Let ε = min{ 1
ζ(κ,D) ,

µ
Lg
}, multiply (27) by (1− ε)−(s−1) and sum over s from 1 to t− 1, we get

ζ(κ,D)(1− ε)−(t−2)∆t ≤ (ζ(κ,D)− 1)∆1 +
Lg − µ

2
d2(x1, x

∗). (28)

Observe that since ∆1 ≤ LgD2

2 , it follows that ∆t ≤ (1−ε)t−2LgD2

2 , as desired.

It must be emphasized that the proofs of Theorems 13, 14, and 15 contain some additional dif-
ficulties beyond their Euclidean counterparts. In particular, the term ∆s does not cancel nicely due
to the presence of the curvature term ζ(κ,D), which necessitates use of a different Lyapunov func-
tion to ensure convergence. Consequently, the stochastic gradient algorithm in Theorem 14 requires
some unusual looking averaging scheme. In Theorem 15, since the distance between iterates and
the minimizer is shrinking, better dependency on κ may also be possible if one replaces ζ(κ,D) by
a tighter constant.

4. Experiments

To empirically validate our results, we compare the performance of a stochastic gradient algorithm
with a full gradient descent algorithm on the matrix Karcher mean problem. Averaging PSD ma-
trices have applications in averaging data of anisotropic symmetric positive-definite tensors, such
as in diffusion tensor imaging (Pennec et al., 2006; Fletcher and Joshi, 2007) and elasticity theory
(Cowin and Yang, 1997). The computation and properties of various notions of geometric means
have been studied by many (e.g. Moakher (2005); Bini and Iannazzo (2013); Sra and Hosseini
(2015)). Specifically, the Karcher mean of a set of N symmetric positive definite matrices {Ai}Ni=1

is defined as the PSD matrix that minimizes the sum of squared distance induced by the Riemannian
metric:

d(X,Y ) = ‖ log(X−1/2Y X−1/2)‖F
The loss function

f(X; {Ai}Ni=1) =

N∑
i=1

‖ log(X−1/2AiX
−1/2)‖2F

is known to be nonconvex in Euclidean space but geometrically 2N -strongly convex , enabling the
use of geometrically convex optimization algorithms. The full gradient update step is

Xs+1 = X1/2
s exp

(
−ηs

N∑
i=1

log(X1/2
s A−1i X1/2

s )

)
X1/2
s

14
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For stochastic gradient update, we set

Xs+1 = X1/2
s exp

(
−ηsN log(X1/2

s A−1i(s)X
1/2
s )

)
X1/2
s

where each index i(s) is drawn uniformly at random from {1, . . . , N}. The step-sizes ηs for gradient
descent and stochastic gradient method have to be chosen according to the smoothness constant or
the strongly-convex constant of the loss function. Unfortunately, unlike the Euclidean square loss,
there is no cheap way to compute the smoothness constant exactly. In (Bini and Iannazzo, 2013) the
authors proposed an adaptive procedure to estimate the optimal step-size. Empirically, however, we
observe that an Lg estimate of 5N always guarantees convergence. We compare the performance
of three algorithms that can be applied to this problem:

• Gradient descent (GD) with ηs = 1
5N set according to the estimate of the smoothness constant

(Theorem 15).

• Stochastic gradient method for smooth functions (SGD-sm) ηs = 1
Lg+1/α withα = D

σ

√
1

ζ(κ,D)t ,
where the parameters are set according to the estimates of the smoothness constant, domain
diameter and gradient variance (Theorem 14).

• Stochastic subgradient method for strongly convex functions (SGD-st) with ηs = 1
N(s+1) set

according to the 2N -strong convexity of the loss function (Theorem 12).

Our data are 100 × 100 random PSD matrices generated using the Matrix Mean Toolbox (Bini
and Iannazzo, 2013). All matrices are explicitly normalized so that their norms all equal 1. We
compare the algorithms on four datasets withN ∈ {102, 103}matrices to average and the condition
number Q of each matrix being either 102 or 108. For all experiments we initialize X using the
arithmetic mean of the dataset. Figure 4 shows f(X) − f(X∗) as a function of number of passes
through the dataset. We observe that the full gradient algorithm with fixed step-size achieves linear
convergence, whereas the stochastic gradient algorithms have a sublinear convergence rate, but is
much faster during the initial steps.

5. Discussion

In this paper, we make contributions to the understanding of geodesically convex optimization on
Hadamard manifolds. Our contributions are twofold: first, we develop a user-friendly trigonometric
distance bound for Alexandrov space with curvature bounded below, which includes several com-
monly known Riemannian manifolds as special cases; second, we prove iteration complexity upper
bounds for several first-order algorithms on Hadamard manifolds, which are the first such analy-
ses up to the best of our knowledge. We believe that our analysis is a small step, yet in the right
direction, towards understanding and realizing the power of optimization in nonlinear spaces.

5.1. Future Directions

Many questions are not yet answered. We summarize some important ones in the following:

• A long-time question is whether the famous Nesterov’s accelerated gradient descent algo-
rithms have nonlinear space counterparts. The analysis of Nesterov’s algorithms typically

15
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Figure 2: Comparing gradient descent and stochastic gradient methods in matrix Karcher mean
problems. Shown are loglog plots of three algorithms on different datasets. GD: gra-
dient descent (Theorem 15); SGD-sm: stochastic gradient method for smooth functions
(Theorem 14); SGD-st: stochastic (sub)gradient method for strongly convex functions
(Theorem 12). We varied two parameters: size of the dataset n ∈ {102, 103} and condi-
tional number Q ∈ {102, 108}. Data generating process, initialization and step-size are
described in the main text. It is validated from the figures that GD converges at a linear
rate, SGD-sm converges asymptotically at the O(1/

√
t) rate, and SGD-st converges at

the O(1/t) rate.
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relies on a proximal gradient projection interpretation. In nonlinear space, we have not been
able to find an analogy to such a projection. Further study is needed to see if similar anal-
ysis can be developed, or a different approach is required, or Nesterov’s algorithms have no
nonlinear space counterparts.

• Another interesting direction is variance reduced stochastic gradient methods for geodesically
convex functions. For smooth and convex optimization in Euclidean space, these methods
have recently drawn great interests and enjoyed remarkable empirical success. We hypoth-
esize that similar algorithms can achieve faster convergence over naive incremental gradient
methods on Hadamard manifolds.

• Finally, since in applications it is often favorable to replace exponential mapping with com-
putationally cheap retractions, it is important to understand the effect of this approximation
on convergence rate. Analyzing this effect is of both theoretical and practical interests.
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Appendix A. Proof of Lemma 1

Lemma 16 Let

g(b, c) = cosh

√
c

tanh(c)
b2 + c2 − 2bc cos(A)

then
∂2

∂b2
g(b, c) ≥ g(b, c), b, c ≥ 0

Proof If c = 0, g(b, c) = cosh(b) = ∂2

∂b2
g(b, c). Now we focus on the case when c > 0. If c > 0,

Let u =
√

(1 + x)b2 + c2 − 2bc cos(A) where x = x(c). We have

u2 = (1 + x)b2 − 2bc cos(A) + c2 ≥ c2(x+ sin2A)

1 + x
= u2min > 0

∂2

∂b2
g(b, c) =

(
1 + x− c2

(
x+ sin2A

) 1

u2

)
cosh(u) + c2

(
x+ sin2A

) sinh(u)

u3

Since g(b, c) = cosh(u) > 0, it suffices to prove

∂2

∂b2
g(b, c)

g(b, c)
− 1 = x

(
1− c2

x

(
x+ sin2A

) 1

u2
+
c2

x

(
x+ sin2A

) tanh(u)

u3

)
≥ 0
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so it suffices to prove

h1(u) =
u3

u− tanh(u)
≥ c2

x
(x+ sin2A)

Solving for h′1(u) = 0, we get u = 0. Since limu→0+ h1(u) = 0 and h1(u) > 0, ∀u > 0, h1(u) is
monotonically increasing on u > 0. Thus h1(u) ≥ h1(umin),∀u > 0. Note that c

2

x (x+ sin2A) =
1+x
x u2min, thus it suffices to prove

h1(umin) =
u3min

umin − tanh(umin)
≥ (1 + x)u2min

x

or equivalently
tanh(umin)

umin
≥ 1

1 + x

Now fix c and notice that tanh(umin)
umin

as a function of sin2A is monotonically decreasing. Therefore
its minimum is obtained at sin2A = 1, where u2min = u2∗ = c2, i.e. u∗ = c. So it only remains to
show

tanh(u∗)

u∗
=

tanh(c)

c
≥ 1

1 + x
, ∀c > 0

or equivalently
1 + x ≥ c

tanh(c)
,∀c > 0

which is true by our definition of g.

Lemma 17 Suppose h(x) is twice differentiable on [r,+∞) with three further assumptions:

1. h(r) ≤ 0,

2. h′(r) ≤ 0,

3. h′′(x) ≤ h(x), ∀x ∈ [r,+∞),

then h(x) ≤ 0, ∀x ∈ [r,+∞)

Proof It suffices to prove h′(x) ≤ 0, ∀x ∈ [r,+∞). We prove this claim by contradiction.
Suppose the claim doesn’t hold, then there exist some t > s ≥ r so that h′(x) ≤ 0 for any x in

[r, s], h′(s) = 0 and h′(x) > 0 is monotonically increasing in (s, t]. It follows that for any x ∈ [s, t]
we have

h′′(x) ≤ h(x) ≤
∫ x

r
h′(u)du ≤

∫ x

s
h′(u)du ≤ (x− s)h′(x) ≤ (t− s)h′(x)

Thus by Grönwall’s inequality,
h′(t) ≤ h′(s)e(t−s)2 = 0

which leads to a contradiction with our assumption h′(t) > 0.
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Lemma 18 If a, b, c are the sides of a (geodesic) triangle in a hyperbolic space of constant curva-
ture −1, and A is the angle between b and c, then

a2 ≤ c

tanh(c)
b2 + c2 − 2bc cos(A)

Proof For a fixed but arbitrary c ≥ 0, define hc(x) = f(x, c) − g(x, c). By Lemma 16 it is easy
to verify that hc(x) satisfies the assumptions of Lemma 17. Apply Lemma 17 to hc with r = 0 to
show hc ≤ 0 in [0,+∞). Therefore f(b, c) ≤ g(b, c) for any b, c ≥ 0. Finally use the fact that
cosh(x) is monotonically increasing on [0,+∞).

Corollary 19 If a, b, c are the sides of a (geodesic) triangle in a hyperbolic space of constant
curvature κ, and A is the angle between b and c, then

a2 ≤
√
|κ|c

tanh(
√
|κ|c)

b2 + c2 − 2bc cos(A)

Proof For hyperbolic space of constant curvature κ < 0, the law of cosines is

cosh(
√
|κ|a) = cosh(

√
|κ|b) cosh(

√
|κ|c)− sinh(

√
|κ|b) sinh(

√
|κ|c) cosA

which corresponds to the law of cosines of a geodesic triangle in hyperbolic space of curvature −1
with side lengths

√
|κ|a,

√
|κ|b,

√
|κ|c. Applying Lemma 18 we thus get

|κ|a2 ≤
√
|κ|c

tanh(
√
|κ|c)

|κ|b2 + |κ|c2 − 2|κ|bc cos(A)

and the corollary follows directly.

Appendix B. Proof of Theorem 12

Theorem 12 If f is geodesically µ-strongly convex, the sectional curvature of the manifold is
lower bounded by κ ≤ 0, and the stochastic subgradient oracle satisfies E[g̃(x)] = g(x) ∈
∂f(x),E[‖g̃s‖2] ≤ G2, then the projected subgradient method with ηs = 2

µ(s+1) satisfies

E[f (xt)− f(x∗)] ≤ 2ζ(κ,D)G2

µ(t+ 1)

where x1 = x1, and xs+1 = Expxs

(
2
s+1Exp−1xs (xs+1)

)
.

Proof Since f is geodesically µ-strongly convex, we have

E[f(xs)− f(x∗)] ≤ 〈−E[g̃s],Exp−1xs (x∗)〉 − µ

2
E[d2(xs, x

∗)]
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which combined with Corollary 8 and E[‖g̃s‖2] ≤ G2 yields

E[f(xs)− f(x∗)] ≤
(

1

2ηs
− µ

2

)
E
[
d2(xs, x

∗)
]
− 1

2ηs
E
[
d2(xs+1, x

∗)
]

+
ζ(κ,D)G2ηs

2

=
µ(s− 1)

4
E
[
d2(xs, x

∗)
]
− µ(s+ 1)

4
E
[
d2(xs+1, x

∗)
]

+
ζ(κ,D)G2

µ(s+ 1)
(29)

Multiply (29) by s and sum over s from 1 to t, then divide the result by t(t+1)
2 we get

E

[
2

t(t+ 1)

t∑
s=1

sf(xs)− f(x∗)

]
≤ 2ζ(κ,D)G2

µ(t+ 1)
(30)

The final step is to show f(xt) ≤ 2
t(t+1)

∑t
s=1 sf(xs) by induction.
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