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Abstract

Maximum likelihood estimators are often of
limited practical use due to the intensive
computation they require. We propose a fam-
ily of alternative estimators that maximize
a stochastic variation of the composite like-
lihood function. We prove the consistency
of the estimators, provide formulas for their
asymptotic variance and computational com-
plexity, and discuss experimental results in
the context of Boltzmann machines and con-
ditional random fields. The theoretical and
experimental studies demonstrate the effec-
tiveness of the estimators in achieving a pre-
defined balance between computational com-
plexity and statistical accuracy.

1 Introduction

Maximum likelihood estimation is by far the most pop-
ular point estimation technique in machine learning
and statistics. Assuming that the data consists of n,
m-dimensional vectors

D = {X(1), . . . ,X(n)} ⊂ Rm, (1)

and is sampled iid from a parametric distribution pθ0

with θ0 ∈ Θ ⊂ Rr, a maximum likelihood estimator
(mle) θ̂ml

n is a maximizer of the loglikelihood function

ℓn(θ ;D) =

n
∑

i=1

log pθ(X
(i)). (2)

The use of the mle is motivated by its consistency,
i.e. θ̂ml

n → θ0 as n → ∞ with probability 1 (Fer-
guson, 1996). The consistency property ensures that

Appearing in Proceedings of the 12th International Confe-
rence on Artificial Intelligence and Statistics (AISTATS)
2009, Clearwater Beach, Florida, USA. Volume 5 of JMLR:
W&CP 5. Copyright 2009 by the authors.

as the number n of samples grows, the estimator will
converge to the true parameter θ0 governing the data
generation process.

An even stronger motivation for the use of the mle
is that it has an asymptotically normal distribution
with mean vector θ0 and variance matrix (nI(θ0))

−1.
More formally, we have the following convergence in
distribution as n→ ∞ (Ferguson, 1996)

√
n (θ̂ml

n − θ0) N(0, I−1(θ0)), (3)

where I(θ) is the r × r Fisher information matrix

I(θ) = E pθ
{∇ log pθ(X)(∇ log pθ(X))⊤} (4)

with ∇f represents the r × 1 gradient vector of f(θ)
with respect to θ. The convergence (3) is espe-
cially striking since according to the Cramer-Rao lower
bound, the asymptotic variance (nI(θ0))

−1 of the mle
is the smallest possible variance for any estimator.
Since it achieves the lowest possible asymptotic vari-
ance, the mle (and other estimators which share this
property) is said to be asymptotically efficient.

The consistency and asymptotic efficiency of the mle
motivate its use in many circumstances. Unfortu-
nately, in some situations the maximization or even
evaluation of the loglikelihood (2) and its derivatives is
impossible due to computational considerations. This
has lead to the proposal of alternative estimators un-
der the premise that a loss of asymptotic efficiency is
acceptable–in return for reduced computational com-
plexity. Consistency however, is typically viewed as
less negotiable and inconsistent estimators should be
avoided if at all possible.

In this paper, we propose a family of estimators, for
use in situations where the computation of the mle
is intractable. In contrast to previously proposed
approximate estimators, our estimators are statisti-
cally consistent and admit a precise quantification of
both computational complexity and statistical accu-
racy through their asymptotic variance. Due to the
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continuous parameterization of the estimator family,
we obtain an effective framework for achieving a prede-
fined problem-specific balance between computational
tractability and statistical accuracy. For the sake of
concreteness, we focus on the case of estimating the
parameters associated with Markov random fields. In
this case, we provide a detailed discussion of the accu-
racy complexity tradeoff and experimental results for
the Boltzmann machine and conditional random fields.

2 Related Work

There is a large body of work dedicated to tractable
learning techniques. Two popular categories are
Markov chain Monte Carlo (MCMC) and variational
methods. MCMC is a general purpose technique
for approximating expectations and can be used to
approximate the normalization term and other in-
tractable portions of the loglikelihood and its gradient
(Casella and Robert, 2004). Variational methods are
techniques for conducting inference and learning based
on tractable bounds. Despite the substantial work on
MCMC and variational methods, there are few results
that are general enough to be practical while preserv-
ing clear results concerning convergence and approxi-
mation rate.

Our work draws on the composite likelihood method
for parameter estimation proposed by Lindsay (1988)
which in turn generalized the pseudo likelihood of
Besag (1974). A selection of more recent studies
on pseudo and composite likelihood are (Arnold and
Strauss, 1991, Liang and Yu, 2003, Varin and Vidoni,
2005, Sutton and McCallum, 2007, Hjort and Varin,
2008). Most of the recent studies in this area examine
the behavior of the pseudo or composite likelihood in
a particular modeling situation. We believe that the
present paper is the first to systematically examine sta-
tistical and computational tradeoffs in a general quan-
titative framework. Possible exceptions are (Zhu and
Liu, 2002) which is an experimental study on texture
generation, (Xing et al., 2003) which is focused on in-
ference rather than parameter estimation, and (Liang
and Jordan, 2008) which compares discriminative and
generative risks.

3 Stochastic Composite Likelihood

In many cases, the absence of a closed form expres-
sion for the normalization term prevents the computa-
tion of the loglikelihood (2) and its derivatives thereby
severely limiting the use of the mle. A popular exam-
ple are Markov random fields, wherein the computa-
tion of the normalization term is often intractable (see
Section 5 for more details). In this paper we propose
alternative estimators based on the maximization of a

stochastic variation of the composite likelihood.

We start by defining the pseudo loglikelihood function
(Besag, 1974) associated with the data D of (1),

pℓn(θ ;D) =
n
∑

i=1

m
∑

j=1

log pθ(X
(i)
j |{X(i)

k : k 6= j}). (5)

The maximum pseudo likelihood estimator (mple)

θ̂mpl
n is consistent, but possesses considerably higher

asymptotic variance than that of the mle’s (nI(θ0))
−1.

Its main advantage is that it does not require the com-
putation of the normalization term as it cancels out in
the probability ratio defining conditional distributions

pθ(Xj |{Xk : k 6= j}) = pθ(X)/
∑

X′

j
pθ(X1, . . . ,Xj−1,X

′
j ,Xj+1, . . . ,Xm). (6)

The mle and mple represent two different ways of
resolving the tradeoff between asymptotic variance
and computational complexity. The mle has low
asymptotic variance but high computational complex-
ity while the mple has higher asymptotic variance but
low computational complexity. It is desirable to obtain
additional estimators realizing alternative resolutions
of the accuracy complexity tradeoff. To this end we
define the stochastic composite likelihood whose max-
imization provides a family of consistent estimators
with statistical accuracy and computational complex-
ity spanning the entire accuracy-complexity spectrum.

Stochastic composite likelihood generalizes the likeli-
hood and pseudo likelihood functions by constructing
an objective function that is a stochastic sum of like-
lihood objects. We start by defining the notion of
m-pairs and likelihood objects and then proceed to
stochastic composite likelihood.

Definition 1. An m-pair (A,B) is a pair of sets
A,B ⊂ {1, . . . , n} satisfying A 6= ∅ = A∩B. The likeli-
hood object associated with an m-pair (A,B) and X is

Sθ(A,B) = log pθ(XA|XB) where XS
def
= {Xj : j ∈ S}.

We similarly define likelihood objects with respect to
a dataset D = {X(1), . . . ,X(n)} as

Sθ(n,A,B) =

n
∑

i=1

log pθ(X
(i)
A |X(i)

B ).

The Lindsay (1988) composite loglikelihood function,
is a collection of likelihood objects defined by a finite
sequence of m-pairs (A1, B1), . . . , (Ak, Bk)

cℓn(θ ;D) =

k
∑

j=1

Sθ(n,Aj , Bj)

=

n
∑

i=1

k
∑

j=1

log pθ(X
(i)
Aj

|X(i)
Bj

). (7)
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There exists a certain lack of flexibility associated with
the composite likelihood framework. Since each likeli-
hood object Sθ(n,A,B) is either selected or not, there
is no allowance for some objects to be selected more
frequently than others. Allowing stochastic, rather
than deterministic, selection of likelihood objects pro-
vides a higher degree of flexibility and a richer para-
metric family of estimators. Furthermore, the dis-
crete parameterization of (7) defined by the sequence
(A1, B1), . . . , (Ak, Bk) is less convenient for theoretical
analysis than the continuous parameterization under-
lying the stochastic composite likelihood.

Definition 2. The stochastic composite loglikelihood
(scl) associated with a finite sequence of m-pairs
(A1, B1), . . . , (Ak, Bk) is

scℓn(θ ;D) =
1

n

n
∑

i=1

k
∑

j=1

βjZij log pθ(X
(i)
Aj

|X(i)
Bj

). (8)

where βj > 0 and Zij ∼ Ber(λj) are independent bi-
nary Bernoulli rv with parameters λj ∈ [0, 1].

In other words, the scl is a stochastic version of (7)
where for each sample X(i), i = 1, . . . , n, the likeli-
hood objects S(A1, B1), . . . , S(Ak, Bk) are selected in-
dependently with probabilities λ1, . . . , λk. The pos-
itive weights βj provide additional flexibility by em-
phasizing different components more than others.

In analogy to the mle and the mple, the maximum
scl estimator (mscle) θ̂msl

n estimates θ0 by maximiz-
ing the scl function. In contrast to the loglikeli-
hood and pseudo loglikelihood functions, the scl func-
tion and its maximizer are random variables that de-
pend on the indicator variables Zij in addition to D.
As such, its behavior should be summarized by ex-
amining its expectation or its behavior in the limit
n→ ∞. Different selections of the continuous param-
eters (λ, β) ∈ [0, 1]k × Rk

+ underlying the scl function
result in different asymptotic variance and computa-
tional complexity. As a result the accuracy and com-
plexity of θ̂msl

n become continuous functions over the
parametric space [0, 1]k × Rk

+ which include as spe-
cial cases the mle, mple, and maximum quasi likeli-
hood (Hjort and Varin, 2008) estimators. Different se-
lections of (λ, β) ∈ [0, 1]k × Rk

+ represent estimators

θ̂msl
n achieving different resolutions of the accuracy-

complexity tradeoff.

4 Statistical Properties of θ̂msl

n

The statistical properties of the mscle depend on the
selection probabilities and positive weights (λ, β) ∈
[0, 1]k×Rk

+ while the computational properties depend

only on λ. Under some mild conditions θ̂msl
n may be

shown to be a consistent estimator whose asymptotic

distribution is Gaussian with a certain variance ma-
trix that is larger or equal to the optimal variance
expressed by the inverse Fisher information. For sim-
plicity, we assume that X is discrete and pθ(x) > 0.

Definition 3. A sequence of m-pairs
(A1, B1), . . . , (Ak, Bk) ensures identifiability of pθ

if the map {pθ(XAj
|XBj

) : j = 1, . . . , k} 7→ pθ(X) is
injective. In other words, there exists only a single col-
lection of conditionals {pθ(XAj

|XBj
) : j = 1, . . . , k}

that does not contradict the joint pθ(X).

Proposition 1 below generalizes the Shannon-
Kolmogorov information inequality.

Proposition 1. Let (A1, B1), . . . , (Ak, Bk) be a se-

quence of m-pairs that ensures identifiability of pθ, θ ∈
Θ and α1, . . . , αk positive constants. Then

k
∑

j=1

αk D(pθ(XAj
|XBj

) || pθ′(XAj
|XBj

)) ≥ 0

where equality holds iff θ = θ′.

Proof. The inequality follows from applying Jensen’s
inequality for each conditional KL divergence

−D(pθ(XAj
|XBj

) || pθ′(XAj
|XBj

))

= E pθ
log

pθ′(XAj
|XBj

)

pθ(XAj
|XBj

)
≤ logEpθ

pθ′(XAj
|XBj

)

pθ(XAj
|XBj

)

= log 1 = 0.

For equality to hold we need each term to be 0 which
follows only if pθ(XAj

|XBj
) ≡ pθ′(XAj

|XBj
) for all j

which, assuming identifiability, holds iff θ = θ′.

Proposition 2. Let λ ∈ [0, 1]k and

(A1, B1), . . . , (Ak, Bk) be a sequence of m-pairs

for which {(Aj , Bj) : ∀j such that λj > 0} ensures

identifiability. We also assume that Θ ⊂ Rr is an

open set and pθ(x) > 0 and is continuous and smooth

in θ. Then there exists a strongly consistent sequence

of scl maximizers, i.e. θ̂msl
n → θ0 as n → ∞ with

probability 1.

The proof technique below generalizes Wald’s proof for
the consistency of the mle.

Proof. The scl function, modified slightly by a linear
combination with a term that is constant in θ is

scℓ′(θ) =
1

n

n
∑

i=1

k
∑

j=1

βj

(

Zij log pθ(X
(i)
Aj

|X(i)
Bj

)

− λj log pθ0
(X

(i)
Aj

|X(i)
Bj

)
)

.
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By the strong law of large numbers, the above expres-
sion converges as n→ ∞ to its expectation

µ(θ) = −
k
∑

j=1

βjλj D(pθ(XAj
|XBj

) || pθ0
(XAj

|XBj
)).

If we restrict ourselves to the compact set S = {θ :
c1 ≤ ‖θ − θ0‖ ≤ c2} then | log pθ(x)| < K(x) <
∞, ∀θ ∈ S. As a result, the conditions for the uniform
strong law of large numbers (Ferguson, 1996) hold on
S leading to

P

{

lim
n→∞

sup
θ∈S

|scl′(θ) − µ(θ)| = 0

}

= 1. (9)

By Proposition 1, µ(θ) is non-positive and is zero
iff θ = θ0. Since the function µ(θ) is continuous
it attains its negative supremum on the compact S:
supθ∈S µ(θ) < 0. Combining this fact with (9) we
have that there exists N such that for all n > N the
scl maximizers on S achieves strictly negative values
of scℓ′(θ) with probability 1. However, since scℓ′(θ)
can be made to achieve values arbitrarily close to zero
under θ = θ0, we have that θ̂msl

n 6∈ S for n > N . Since

c1, c2 were chosen arbitrarily θ̂msl
n → θ0 with probabil-

ity 1.

The above proposition indicates that to guarantee con-
sistency, the sequence of m-pairs needs to satisfy Def-
inition 3. It can be shown that a selection equivalent
to the pseudo likelihood function, i.e.,

Ai = {i}, Bi = {1, . . . ,m} \Ai, i = 1, . . . , k, (10)

ensure identifiability and consequently the consistency
of the mscle estimator. Furthermore, every selection of
m-pairs that includes as a subset (10) similarly guar-
antees identifiability and consistency.

Proposition 3. Making the assumptions of Proposi-

tion 2 as well as convexity of Θ ⊂ Rr we have

√
n(θ̂msl

n − θ0) N (0,ΥΣΥ) (11)

where Υ−1 =
∑k

j=1 βjλjVar θ0
(Vj), Vj =∇Sθ0

(Aj , Bj),

and Σ = Var θ0
(
∑k

j=1 βjλjVj).

The notation Var θ0
(Y ) represents the covariance ma-

trix of the random vector Y under pθ0
while the nota-

tions
p→ , in the proof below denote convergences

in probability and in distribution (Ferguson, 1996).

Proof. By the mean value theorem and convexity of Θ
there exists η ∈ (0, 1) for which θ′ = θ0 + η(θ̂msl

n − θ0)
and

∇scℓn(θ̂msl
n ) = ∇scℓn(θ0) + ∇2scℓn(θ′)(θ̂msl

n − θ0)

where ∇f(θ) and ∇2f(θ) are the r× 1 gradient vector
and r × r matrix of second order derivatives of f(θ).

Since θ̂n maximizes the scl, ∇scℓn(θ̂msl
n ) = 0 and

√
n(θ̂msl

n − θ0) = −√
n(∇2scℓn(θ′))−1∇scℓn(θ0).

(12)

By Proposition 2 we have θ̂msl
n

p→ θ0 which implies that

θ′
p→ θ0 as well. Furthermore, by the law of large num-

bers and the fact that ifWn
p→W then g(Wn)

p→ g(W )
for continuous g,

(∇2scℓn(θ′))−1 p→ (∇2scℓn(θ0))
−1 (13)

p→





k
∑

j=1

βjλjE θ0
∇2Sθ0

(Aj , Bj)





−1

= −





k
∑

j=1

βjλjVar θ0
(∇Sθ0

(Aj , Bj))





−1

.

For the remaining term in (12) we have

√
n∇scℓn(θ0) =

k
∑

j=1

βj

√
n

1

n

n
∑

i=1

Wij

where the random vectors Wij =Zij∇ log pθ(X
(i)
Aj

|X(i)
Bj

)

have expectation 0 and variance matrix Var θ0
(Wij) =

λjVar θ0
(∇Sθ0

(Aj , Bj)). By the central limit theorem

√
n

1

n

n
∑

i=1

Wij  N (0, λjVar θ0
(∇Sθ0

(Aj , Bj))) .

The sum
√
n∇scℓn(θ0) =

∑k
j=1 βj

√
n 1

n

∑n
i=1Wij is

asymptotically Gaussian as well with mean zero since
it converges to a sum of Gaussian distributions with
mean zero. Since in the general case the random vari-
ables

√
n 1

n

∑n
i=1Wij , j = 1, . . . , k are correlated, the

asymptotic variance matrix of
√
n∇scℓn(θ0) needs to

account for cross covariance terms leading to

√
n∇scℓn(θ0) N



0,Var θ0





k
∑

j=1

βjλj∇Sθ0
(Aj , Bj)







.

(14)

We finish the proof by combining (12), (13) and (14)
using Slutsky’s theorem.

5 Stochastic Composite Likelihood for

Markov Random Fields

Markov random fields (MRF) are some of the more
popular statistical models for complex high dimen-
sional data. Approaches based on pseudo likelihood
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and composite likelihood are naturally well-suited in
this case due to the cancellation of the normalization
term in the probability ratios defining conditional dis-
tributions. More specifically, a MRF with respect to a
graph G = (V,E), V = {1, . . . ,m} with a clique set C
is given by the following exponential family model

Pθ(x) = exp

(

∑

C∈C

θCfC(xC) − logZ(θ)

)

,

Z(θ) =
∑

x

exp

(

∑

C∈C

θcfC(xC)

)

. (15)

The primary bottlenecks in obtaining the maxi-
mum likelihood are the computations logZ(θ) and
∇ logZ(θ). Their computational complexity is expo-
nential in the graph’s treewidth and for many cyclic
graphs, such as the Ising model or the Boltzmann ma-
chine, it is exponential in |V | = m.

In contrast, the conditional distributions that form the
composite likelihood of (15) are given by

Pθ(xA|xB) = (16)

�Z(θ)
∑

x′

(A∪B)c

exp
(

∑

C∈C θCfC((xA, xB , x
′
(A∪B)c)C)

)

�Z(θ)
∑

x′

(A∪B)c

∑

x′′

A

exp

(

∑

C∈C

θCfC((x′′A, xB , x′(A∪B)c)C)

) .

The computation of (16) depends on the size of the
sets A and (A ∪ B)c and their intersections with the
cliques in C. In general, selecting small |Aj | and Bj =
(Aj)

c leads to efficient computation of the composite
likelihood and its gradient. For example, in the case
of |Aj | = l, |Bj | = m− l with l ≪ m we have that k ≤
m!/(l!(m − l)!) and the complexity of computing the
cℓ(θ) function and its gradient may be shown to require
time that is at most exponential in l and polynomial
in m.

Computing the scℓ(θ) function and its gradient de-
pends on the Bernoulli parameters λ ∈ [0, 1]k and the
sequence of m-pairs (A1, B1), . . . , (Ak, Bk). Selecting
a sequence of m pairs that includes all Ai = {i}, Bi =
{1, . . . ,m}\Ai pairs ensures consistency. Adding pairs
(Aj , Bj) with larger sets |Aj | enables obtaining a spe-
cific complexity number within a wide spectrum of
available complexities by choosing appropriate mixing
parameters λ.

6 Controlling Efficiency through β

As Proposition 3 indicates, the weight vector β and
selection probabilities λ play an important role in
the statistical accuracy of the estimator through its
asymptotic variance. The computational complexity,

on the other hand, is determined by λ independently
of β. Conceptually, we are interested in resolving the
accuracy-complexity tradeoff jointly for both β, λ be-
fore estimating θ by maximizing the scl function. We
simplify this objective by choosing the selection prob-
abilities λ based on available computational resources
and computing time. Since the computational com-
plexity does not depend on β we can then proceed to
select the β that maximizes the statistical accuracy of
the estimator given the selection probabilities λ.

Selecting β that minimizes the asymptotic variance is
somewhat ambiguous as ΥΣΥ in Proposition 3 is an
r×r positive semidefinite matrix. A common solution
is to consider the determinant as a one dimensional
measure of the size of the variance matrix, and mini-
mize

J(β) = log det(ΥΣΥ) = log det Σ + 2 log det Υ (17)

There are two significant drawbacks associated with
the optimization of (17). It depends on the true
parameter value θ0 which is not known at training
time. Additionally, introducing a secondary optimiza-
tion problem into the iterative maximization of the scl
function undermines the motivation of scl as a compu-
tationally efficient approximate estimation technique.

We propose to address both issues by constructing
an estimator for the determinants log det Σ, log det Υ
based on the empirical variance

Var pθ0
(g(X)) ≈ E p̃(g(X) − E p̃(g(X)))2

where p̃(z) = 1
n

∑

i δ{z=x(i)} is the empirical dis-
tribution associated with the available training
set. We note that the corresponding estimators
of log det Σ, log det Υ can be computed without the
knowledge of θ̂msl

n . As a consequence, we can deter-
mine the optimal β before solving the scl maximization
problem.

Estimating log det Σ, log det Υ can be performed very
quickly due to a decomposition similar to the
inclusion-exclusion principle. However, we omit the
details due to lack of space.

7 Experiments

We demonstrate the asymptotic properties of θ̂msl
n for

the Boltzmann machine and explore the complexity-
accuracy tradeoff associated with several stochastic
versions of scℓ(θ) for CRFs.

7.1 Boltzmann Machines

We illustrate the improvement in asymptotic vari-
ance of the mscle associated with adding higher or-
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Figure 1: Asymptotic variance matrix, as measured by trace (left) and determinant (right), as a function of the
selection probabilities for different stochastic versions of the scl function.

der likelihood components with increasing probabil-
ities in context of the Boltzmann machine pθ(x) =
exp(

∑

i<j θijxixj − logψ(θ)), x ∈ {0, 1}m. To be able
to accurately compute the asymptotic variance we use
m = 5 with θ being a

(

5
2

)

dimensional vector with half
the components +1 and half −1. Since the asymptotic
variance of θ̂msl

n is a matrix we summarize its size using
either its trace or determinant.

We plot in Figure 1 the asymptotic variance, rela-
tive to the minimal variance of the mle, for the cases
of full likelihood (FL), pseudo likelihood (|Aj | = 1)
PL1, stochastic combination of pseudo likelihood and
2nd order pseudo likelihood (|Aj | = 2) components
αPL2 + (1 − α)PL1, stochastic combination of 2nd
order pseudo likelihood and 3rd order pseudo likeli-
hood (|Aj | = 3) components αPL3 + (1 − α)PL2, and
stochastic combination of 3rd order pseudo likelihood
and 4th order pseudo likelihood (|Aj | = 4) components
αPL4 + (1 − α)PL3.

The graph demonstrates the computation-accuracy
tradeoff as follows: (a) pseudo likelihood is the fastest
but also the least accurate, (b) full likelihood is the
slowest but the most accurate, (c) adding higher or-
der components reduces the asymptotic variance but
also requires more computation, (d) the variance re-
duces with the increase in the selection probability α of
the higher order component, and (e) adding 4th order
components brings the variance very close the lower
limit and with each successive improvement becoming
smaller and smaller according to a law of diminishing
returns.

7.2 Conditional Random Fields

To demonstrate the complexity-accuracy tradeoff in a
more realistic scenario we experimented with regular-
ized maximum scl estimators for conditional random
fields (CRF). We trained and tested the CRF models

on local sentiment prediction data obtained in Mao
and Lebanon (2007). The data consisted of 249 movie
review documents having an average of 30.5 sentences
each with an average of 12.3 words from a 12633 word
vocabulary. Each sentence was manually labeled as
one of five sentimental designations: very negative,
negative, objective, positive, or very positive.

Figure 2 contains the contour plots of train and
test loglikelihood as a function of the scl parame-
ters: weight β and selection probability λ. The like-
lihood components were mixtures of full and pseudo
(|Aj | = 1) likelihood (rows 1,3) and pseudo and 2nd
order pseudo (|Aj | = 2) likelihood (rows 2,4). Aj

identifies a set of labels corresponding to adjacent sen-
tences over which the probabilistic query is evaluated.
Results were averaged over 100 cross validation it-
erations with 50% train-test split. We used BFGS
quasi-Newton method for maximizing the regularized
scl functions. Figure 2 demonstrates how the train
loglikelihood increases with increasing the weight and
selection probability of full likelihood in rows 1,3 and
of 2nd order pseudo likelihood in rows 2,4. This in-
crease in train loglikelihood is also correlated with an
increase in computational complexity as higher order
likelihood components require more computation.

It is interesting to contrast the test loglikelihood be-
havior in the case of mild (σ = 10) and stronger
(σ = 1) L2 regularization. In the case of weaker or
no regularization, the test loglikelihood shows differ-
ent behavior than the train loglikelihood. Adding a
lower order component such as pseudo likelihood acts
as a regularizer that prevents overfitting. Thus, in
cases that are prone to overfitting reducing higher or-
der likelihood components improves both performance
as well as complexity. This represents a win-win sit-
uation in contrast to the classical view where the mle
has the lowest variance and adding lower order compo-
nents reduces complexity but increases the variance.
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Figure 2: Train (left) and test (right) loglikelihood contours for maximum scl estimators for the CRF model. L2

regularization parameters are σ2 = 1 (rows 1,2) and σ2 = 10 (rows 3,4). Rows 1,3 are stochastic mixtures of full
(FL) and pseudo (PL1) loglikelihood components while rows 2,4 are pseudo (PL1) and 2nd order pseudo.
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Figure 3: Scatter plot representing complexity and negative loglikelihood (left:train, right:test) of scl functions
for CRFs with regularization parameter σ2 = 1/2. The points represent different stochastic combinations of full
and pseudo likelihood components. The shaded region represents impossible accuracy/complexity demands.

Figure 3 displays the complexity and negative loglike-
lihoods (left:train, right:test) of different scl estima-
tors, sweeping through λ and β, as points in a two
dimensional space. The shaded area near the origin
is unachievable as no scl estimator can achieve high
accuracy and low computation at the same time. The
optimal location in this 2D plane is the curved bound-
ary of the achievable region with the exact position on
that boundary depending on the required solution of
the computation-accuracy tradeoff. Note that a par-
ticular λ indeed has a dominant β, however relative
comparison of λ is meaningless as its choice is a func-
tion of available computational resources and time.

8 Discussion

The proposed estimator family facilitates computa-
tionally efficient estimation in complex graphical mod-
els. In particular, different parameterizations of the
stochastic likelihood enables the resolution of the
complexity-accuracy tradeoff in a domain and problem
specific manner. The framework is generally suited for
Markov random fields, including conditional graphi-
cal models and is theoretically motivated. When the
model is prone to overfit, stochastically mixing lower
order components with higher order ones acts as a
regularizer and results in a win-win situation of im-
proving test-set accuracy and reducing computational
complexity at the same time.
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