
 153

The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training

∗Dumitru Erhan†, ∗Pierre-Antoine Manzagol, ∗Yoshua Bengio, ‡Samy Bengio and ∗Pascal Vincent
∗DIRO, Université de Montréal, Montréal, Québec, Canada

{erhandum, manzagop, bengioy, vincentp}@iro.umontreal.ca
‡Google, Mountain View, California, USA

bengio@google.com

Abstract

Whereas theoretical work suggests that deep ar-
chitectures might be more efficient at represent-
ing highly-varying functions, training deep ar-
chitectures was unsuccessful until the recent ad-
vent of algorithms based on unsupervised pre-
training. Even though these new algorithms have
enabled training deep models, many questions
remain as to the nature of this difficult learning
problem. Answering these questions is impor-
tant if learning in deep architectures is to be fur-
ther improved. We attempt to shed some light
on these questions through extensive simulations.
The experiments confirm and clarify the advan-
tage of unsupervised pre-training. They demon-
strate the robustness of the training procedure
with respect to the random initialization, the pos-
itive effect of pre-training in terms of optimiza-
tion and its role as a regularizer. We empirically
show the influence of pre-training with respect to
architecture depth, model capacity, and number
of training examples.

1 Introduction: Deep Architectures

Deep learning methods attempt to learn feature hierarchies.
Features at higher levels are formed by the composition of
lower level features. Automatically learning multiple lev-
els of abstraction would allow a system to induce com-
plex functions mapping the input to the output directly
from data, without depending heavily on human-crafted
features. Such automatic learning is especially important

†This work was done while Dumitru Erhan was at Google

Appearing in Proceedings of the 12th International Confe-rence
on Artificial Intelligence and Statistics (AISTATS) 2009, Clearwa-
ter Beach, Florida, USA. Volume 5 of JMLR: W&CP 5. Copyright
2009 by the authors.

for higher-level abstractions, which humans often do not
know how to specify explicitly in terms of raw sensory in-
put. As the amount of data and the range of applications
of machine learning methods continue to grow, such abil-
ity to automatically learn powerful features might become
increasingly important. Because deep learning strategies
are based on learning internal representations of data, an-
other important advantage they offer is the ability to natu-
rally leverage (a) unsupervised data and (b) data from sim-
ilar tasks (the multi-task setting) to boost performance on
large and challenging problems that routinely suffer from a
poverty of labelled data (Collobert and Weston, 2008). A
theoretical motivation for deep architectures comes from
complexity theory: when a function can be represented
compactly with an architecture of depth k, representing it
with an architecture of depth k − 1 might require an ex-
ponential size architecture (Håstad and Goldmann, 1991;
Bengio, 2007). However, training deep architectures in-
volves a potentially intractable non-convex optimization
problem (Bengio, 2007), which complicates their analysis.

There were no good algorithms for training fully-connected
deep architectures before Hinton et al. (2006) introduced a
learning algorithm that greedily trains one layer at a time.
This procedure exploits an unsupervised generative learn-
ing algorithm for each layer: a Restricted Boltzmann Ma-
chine (RBM) (Freund and Haussler, 1994). Shortly after,
strategies for building deep architectures from related vari-
ants were proposed by Bengio et al. (2007) and Ranzato
et al. (2007). These works showed the advantage of deep
architectures over shallow ones and of the unsupervised
pre-training strategy in a variety of settings. Since then,
deep architectures have been applied with success not only
in classification tasks (Bengio et al., 2007; Ranzato et al.,
2007; Larochelle et al., 2007; Ranzato et al., 2008), but
also in regression (Salakhutdinov and Hinton, 2008), di-
mensionality reduction (Hinton and Salakhutdinov, 2006)
natural language processing (Collobert and Weston, 2008;
Weston et al., 2008), and collaborative filtering (Salakhut-
dinov et al., 2007).

Nonetheless, training deep architectures is a difficult prob-

 154

The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training

lem and unsupervised pre-training is relatively poorly un-
derstood. The objective of this paper is to explore learning
deep architectures and the advantages brought by unsuper-
vised pre-training, through the analysis and visualizations
of a large number of training experiments. The following
questions are of interest to us: Why is it more difficult to
train deep architectures than shallow architectures? How
does the depth of the architecture affect the difficulty of
training? What does the cost function landscape of deep
architectures look like? Is the advantage of unsupervised
pre-training related to optimization, or perhaps some form
of regularization? What is the effect of random initializa-
tion on the learning trajectories?

We find that pre-training behaves like a regularizer, though
not in the usual sense. We found evidence that pre-training
is especially helpful in optimizing the parameters of the
lower-level layers. The mean test error and its variance
are reduced with pre-training for sufficiently large models.
This effect is more pronounced for deeper models. Inter-
estingly, pre-training seems to hurt performance for smaller
layer sizes and shallower networks. We have also verified
that unsupervised pre-training does something rather dif-
ferent than induce a good initial marginal distribution and
we have used a variety of visualization tools to explore the
difference that pre-training makes.

2 Stacked Denoising Auto-Encoders

All of the successful methods (Hinton et al., 2006; Hin-
ton and Salakhutdinov, 2006; Bengio et al., 2007; Vincent
et al., 2008; Weston et al., 2008; Lee et al., 2008) in the
literature for training deep architectures have something
in common: they rely on an unsupervised learning algo-
rithm that provides a training signal at the level of a single
layer. In a first phase, unsupervised pre-training, all layers
are initialized using this layer-wise unsupervised learning
signal. In a second phase, fine-tuning, a global training
criterion (a prediction error, using labels in the case of a
supervised task) is minimized. In the algorithms initially
proposed (Hinton et al., 2006; Bengio et al., 2007), the un-
supervised pre-training is done in a greedy layer-wise fash-
ion: at stage k, the k-th layer is trained (with respect to
an unsupervised criterion) using as input the output of the
previous layer, and while the previous layers are kept fixed.

Ordinary auto-encoders can be used as single-layer compo-
nents (Bengio et al., 2007) but they perform slightly worse
than the Restricted Boltzmann Machine (RBM) in a com-
parative study (Larochelle et al., 2007). The RBMs trained
by contrastive divergence and the auto-encoder training cri-
terion have been shown to be close (Bengio and Delalleau,
2007), in that both minimize a different approximation
of the log-likelihood of a generative model. The denois-
ing auto-encoder is a robust variant of the ordinary auto-
encoder. It is explicitly trained to denoise a corrupted ver-
sion of its input. It has been shown on an array of datasets

to perform significantly better than ordinary auto-encoders
and similarly or better than RBMs when stacked into a deep
supervised architecture (Vincent et al., 2008). We have
used denoising auto-encoders for all the pre-training exper-
iments described here.

We now summarize the training algorithm. More details
can be found are given by Vincent et al. (2008). Each de-
noising auto-encoder operates on its inputs x, either the raw
inputs or the outputs of the previous layer. The denoising
auto-encoder is trained to reconstruct x from a stochasti-
cally corrupted (noisy) transformation of it. The output of
each denoising auto-encoder is the “code vector” h(x). In
our experiments h(x) = sigmoid(b + Wx) is an ordinary
neural network layer, with hidden unit biases b, weight ma-
trix W , and sigmoid(a) = 1/(1 + exp(−a)). Let C(x)
represent a stochastic corruption of x. As done by Vin-
cent et al. (2008), we set Ci(x) = xi or 0, with a ran-
dom subset (of a fixed size) selected for zeroing. The “re-
construction” is obtained from the noisy input with x̂ =
sigmoid(c + WTh(C(x))), using biases c and the trans-
pose of the feed-forward weights W . A stochastic gradi-
ent estimator is then obtained by computing ∂KL(x||x̂)/∂θ
for θ = (b, c,W). An L2 regularizer gradient can also be
added. The gradient is stochastic because of the stochastic
choice of x and because of the stochastic corruption C(x).
Stochastic gradient descent θ ⇐ θ − ε · ∂KL(x||x̂)/∂θ
is then performed with learning rate ε, for a fixed number
of pre-training iterations. Here KL(x||x̂) denotes the sum
of component-wise KL divergence between the Bernoulli
probability distributions associated with each element of x
and its reconstruction probabilities x̂. Using the KL diver-
gence only makes sense for inputs in [0, 1]. A number (1
to 5) of denoising auto-encoders are stacked on top of each
other and pre-trained simultaneously, as suggested by Ben-
gio et al. (2007)

An output layer uses softmax units to estimate P (class|x).
In the fine-tuning phase, this output layer is stacked on
top of the last denoising auto-encoder and initialized ran-
domly (Vincent et al., 2008). From the pre-training initial-
ization of the denoising auto-encoder layers, the whole net-
work is then trained as usual for multi-layer perceptrons, to
minimize the output prediction error. In our experiments,
we minimize the negative log-likelihood of the correct class
given the raw input.

3 Experimental Methodology

We experimented on two datasets. The first one, Shapeset,
is a synthetic dataset. The underlying task is binary classi-
fication of 10×10 images of triangles and squares. The ex-
amples show images of shapes with many variations, such
as size, orientation and gray-level. The dataset is composed
of 50000 training, 10000 validation and 10000 test images.
The second dataset, MNIST, is the well-known digit image
classification problem, composed of 60000 training exam-

 155

Erhan, Manzagol, Bengio, Bengio, Vincent

ples and 10000 test examples; we further split the original
training set into a training set and a validation set of 50000
and 10000 examples respectively.

The experiments involve the training of deep architectures
with a variable number of layers with and without pre-
training. For a given layer, weights are initialized using
random samples from uniform[−1/

√
k, 1/
√
k], where k is

the number of connections that a unit receives from the pre-
vious layer (the fan-in). Either supervised gradient descent
or pre-training follows.

Training requires determining appropriate hyperparameter
values. For the model without pre-training, the hyperpa-
rameters are the number of units per layer1, the learning
rate and the `2 cost penalty over the weights. The model
with pre-training has all the previous model’s hyperparam-
eters plus a learning rate for the pre-training phase, the
corruption probability and whether or not to tie the encod-
ing and decoding weights in the auto-encoders. We first
launched a number of experiments using a cross-product
of hyperparameter values2 applied to 10 different random
initialization seeds. We used 50 iterations over the train-
ing data for pre-training as well as 50 iterations for fine-
tuning. We then selected the hyperparameter sets giving
the best validation error for each combination of model
(with or without pre-training), number of layers, and num-
ber of training iterations. Using these hyper-parameters,
we launched experiments using an additional 400 initial-
izations.

4 Experimental Results
4.1 Effect of Depth, Pre-Training and Robustness to

Random Initialization

Whereas previous work with deep architectures was per-
formed with only one or a handful of different random ini-
tialization seeds, one of the goals of this study was to as-
certain the effect of the random seed used when initializing
ordinary neural networks (deep or shallow) and the pre-
training procedure. For this purpose, between 50 and 400
different seeds were used to obtain the graphics in this em-
pirical study.

Figure 1 shows the resulting distribution of test classifica-
tion error, obtained with and without pre-training, as we
increase the depth of the network. Figure 2 shows these
distributions as histograms in the case of 1 and 4 layers.
As can be seen in Figure 1, pre-training allows classifi-
cation error to go down steadily as we move from 1 to 4
hidden layers, whereas without pre-training the error goes

1The same number is used for all layers.
2Number of hidden units ∈ {400, 800, 1200}; learn-

ing rate ∈ {0.1, 0.05, 0.02, 0.01, 0.005}; `2 cost penalty
∈ {10−4, 10−5, 10−6, 0}; pre-training learning rate
∈ {0.01, 0.005, 0.002, 0.001, 0.0005}; corruption probabil-
ity ∈ {0.0, 0.1, 0.25, 0.4}; tied weights ∈ {yes, no}.

up after 2 hidden layers. It should also be noted that we
were unable to effectively train 5-layer models without use
of pre-training. Not only is the error obtained on average
with pre-training systematically lower than without the pre-
training, it appears also more robust to the random initial-
ization. With pre-training the variance stays at about the
same level up to 4 hidden layers, with the number of bad
outliers growing slowly. Contrast this with the case without
pre-training: the variance and number of bad outliers grows
sharply as we increase the number of layers beyond 2. The
gain obtained with pre-training is more pronounced as we
increase the number of layers, as is the gain in robustness
to random initialization. This can be seen in Figure 2. The
increase in error variance and mean for deeper architec-
tures without pre-training suggests that increasing depth
increases the probability of finding poor local minima
when starting from random initialization. It is also inter-
esting to note the low variance and small spread of errors
obtained with 400 seeds with pre-training: it suggests that
pre-training is robust with respect to the random initial-
ization seed (the one used to initialize parameters before
pre-training).

It should however be noted that there is a limit to the suc-
cess of this technique: performance degrades for 5 layers
on this problem. So while pre-training helps to increase
the depth limit at which we are able to successfully train a
network, it is certainly not the final answer.

4.2 The Pre-Training Advantage: Better
Optimization or Better Generalization?

The above results confirm that starting the supervised op-
timization from pre-trained weights rather than from ran-
dom initialized weights consistently yields better perform-
ing classifiers. To better understand where this advan-
tage came from, it is important to realize that the super-
vised objective being optimized is exactly the same in both
cases. The gradient-based optimization procedure is also
the same. The only thing that differs is the starting point
in parameter space: either picked at random or obtained
after pre-training (which also starts from a random initial-
ization). Deep architectures, since they are built from the
composition of several layers of non-linearities, yield an
error surface that is non-convex and hard to optimize, with
the suspected presence of many local minima. A gradient-
based optimization should thus end in the local minimum
of whatever basin of attraction we started from. From this
perspective, the advantage of pre-training could be that it
puts us in a region of parameter space where basins of at-
traction run deeper than when picking starting parameters
at random. The advantage would be due to a better opti-
mization.

Now it might also be the case that pre-training puts us in
a region of parameter space in which training error is not
necessarily better than when starting at random (or possi-

 156

The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training

Figure 1: Effect of depth on performance for a model
trained (top) without pre-training and (bottom) with pre-
training, for 1 to 5 hidden layers (we were unable to ef-
fectively train 5-layer models without use of pre-training).
Experiments on MNIST. Box plots show the distribution of
errors associated with 400 different initialization seeds (top
and bottom quartiles in box, plus outliers beyond top and
bottom quantiles). Other hyperparameters are optimized
away (on the validation set). Increasing depth seems to in-
crease the probability of finding poor local minima.

bly worse), but which systematically yields better general-
ization (test error).

To ascertain the influence of these two possible explana-
tory factors, we looked at the test cost (Negative Log Like-
lihood on test data) obtained as a function of the training
cost, along the trajectory followed in parameter space by
the optimization procedure. Figure 3 shows 400 of these
curves started from a point in parameter space obtained
from random initialization, i.e. without pre-training (blue),
and 400 started from pre-trained parameters (red). The ex-
periments were performed for networks with 1, 2 and 3
hidden layers. As can be seen in Figure 3, while for 1 hid-
den layer, pre-training reaches lower training cost than no
pre-training, hinting towards a better optimization, this is
not necessarily the case for the deeper networks. The re-
markable observation is rather that, at a same training cost
level, the pre-trained models systematically yield a lower
test cost than the randomly initialized ones. Another set of

Figure 2: Histograms presenting the test errors obtained on
MNIST using models trained with or without pre-training
(400 different initializations each). Top: 1 hidden layer.
Bottom: 4 hidden layers.

experiments (details not shown for lack of space) was con-
ducted to ascertain the interaction of training set size and
pre-training. The result is that pre-training is most helpful
for smaller training sets. This is consistent with the previ-
ous results. In all cases, the advantage appears to be one of
better generalization rather than merely a better optimiza-
tion procedure.

In this sense, pre-training appears to have a similar effect to
that of a good regularizer or a good “prior” on the param-
eters, even though no explicit regularization term is appar-
ent in the cost being optimized. It might be reasoned that
restricting the possible starting points in parameter space
to those that minimize the pre-training criterion (as with
Stacked denoising auto-encoders), does in effect restrict the
set of possible final configurations for parameter values. To
formalize that notion, let us define the following sets. To
simplify the presentation, let us assume that parameters are
forced to be chosen in a bounded region S ⊂ Rd. Let
S be split in regions Rk that are the basins of attraction of
descent procedures in the training error (note that {Rk} de-
pends on the training set, but the dependency decreases as
the number of examples increases). We have ∪kRk = S
and Ri ∩ Rj = ∅ for i 6= j. Let vk =

∫
1θ∈Rk

dθ be the
volume associated with region Rk. Let rk be the proba-
bility that a purely random initialization (according to our
initialization procedure, which factorizes across parame-
ters) lands in Rk, and let πk be the probability that pre-
training (following a random initialization) lands inRk, i.e.

 157

Erhan, Manzagol, Bengio, Bengio, Vincent

Figure 3: Evolution without pre-training (blue) and with pre-training (red) on MNIST of the log of the test NLL plotted
against the log of the train NLL as training proceeds. Each of the 2 × 400 curves represents a different initialization.
The errors are measured after each pass over the data. The rightmost points were measured after the first pass of gradient
updates. Since training error tends to decrease during training, the trajectories run from right (high training error) to left
(low training error). Trajectories moving up (as we go leftward) indicate a form of overfitting. All trajectories are plotted
in the top figures (for 1, 2 and 3 hidden layers), whereas the bottom one shows the mean and standard deviations after each
epoch (across trajectories).

∑
k rk =

∑
k πk = 1. We can now take into account the

initialization procedure as a regularization term:

regularizer = − logP (θ). (1)

For pre-trained models, the prior is

Ppre−training(θ) =
∑
k

1θ∈Rk
πk/vk. (2)

For the models without pre-training, the prior is

Pno−pre−training(θ) =
∑
k

1θ∈Rk
rk/vk. (3)

One can verify that Ppre−training(θ ∈ Rk) = πk and
Pno−pre−training(θ ∈ Rk) = rk. When πk is tiny, the
penalty is high when θ ∈ Rk, with pre-training. The
derivative of this regularizer is zero almost everywhere be-
cause we have chosen a uniform prior inside each region
Rk. Hence, to take the regularizer into account, and having
a generative model for Ppre−training(θ) (the pre-training
procedure), it is reasonable to sample an initial θ from it
(knowing that from this point on the penalty will not in-
crease during the iterative minimization of the training cri-
terion), and this is exactly how the pre-trained models are
obtained in our experiments.

Like regularizers in general, pre-training with denoising
auto-encoders might thus be seen as decreasing the vari-

ance and introducing a bias3. Unlike ordinary regularizers,
pre-training with denoising auto-encoders does so in a data-
dependent manner.

4.3 Effect of Layer Size on Pre-Training Advantage

Next we wanted to investigate the relationship between the
size of the layers (number of units per layer) and the ef-
fectiveness of the pre-training procedure. We trained mod-
els on MNIST with and without pre-training using increas-
ing layer sizes: 25, 50, 100, 200, 400, 800 units per layer.
Results are shown in Figure 4. Qualitatively similar re-
sults were obtained on Shapeset, but are not included due
to space constraints. We were expecting the denoising
pre-training procedure to help classification performance
most for large layers. This is because the denoising pre-
training allows useful representations to be learned in the
over-complete case, in which a layer is larger than its input
(Vincent et al., 2008). What we observe is a more system-
atic effect: while pre-training helps for larger layers and
deeper networks, it also appears to hurt for too small net-
works. This is consistent with the view that pre-training
acts as a kind of regularizer: small networks have a limited
capacity already so further restricting it (or introducing an
additional bias) can harm generalization.

3towards parameter configurations suitable for performing de-
noising

 158

The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training

Figure 4: Effect of layer size on the changes brought by
pre-training, for networks with 1, 2 or 3 hidden layers. Ex-
periments on MNIST. Error bars have a height of two stan-
dard deviations (over initialization seed). Pre-training hurts
for smaller layer sizes and shallower networks, but it helps
for all depths for larger networks.

4.4 A Better Random Initialization?

Next we wanted to rule out the possibility that the pre-
training advantage could be explained simply by a bet-
ter “conditioning” of the initial values of the parameters.
By conditioning, we mean the range and marginal dis-
tribution from which we draw initial weights. In other
words, could we get the same performance advantage as
pre-training if we were still drawing the initial weights
independently, but form a more suitable distribution than
the uniform[−1/

√
k, 1/
√
k]? To verify this, we performed

pre-training, and computed marginal histograms for each
layer’s pre-trained weights and biases. We then resampled
new “initial” random weights and biases according to these
histograms, and performed fine-tuning from there.

Two scenarios can be imagined. In the first, the initial-
ization from marginals leads to better performance than
the standard initialization (when no pre-training is used).
This would mean that pre-training does provide a better
marginal conditioning of the weights. In the second sce-
nario, the marginals lead to performance similar or worse
to that without pre-training4.

What we observe in table 1 falls within the first scenario.
However, though the mean performance using the initial-
ization from the marginals is better than that using the stan-
dard initialization, it remains far from the performance us-
ing pre-training. This supports the claim that pre-training
offers more than simply better marginal conditioning of the

4We observed that the distribution of weights after unsuper-
vised pre-training is fat-tailed. It is conceivable that sampling
from such a distribution in order to initialize a deep architec-
ture could actually hurt the performance of a deep architecture
(compared to random initialization from a uniform distribution),
since the fat-tailed distribution allows for configurations of initial
weights, which are unlikely to be learned by unsupervised pre-
training, because large weights could be sampled independently

Figure 5: Effect of various initialization techniques on the
test error obtained with a 2-layer architecture: what matters
most is to pre-train the lower layers.

weights.

initialization. Uniform Histogram Unsup.pre-tr.
1 layer 1.81± 0.07 1.94± 0.09 1.41± 0.07
2 layers 1.77± 0.10 1.69± 0.11 1.37± 0.09

Table 1: Effect of various initialization strategies on 1
and 2-layer architectures: independent uniform densi-
ties (one per parameter), independent densities from the
marginals after pre-training, or unsupervised pre-training
(which samples the parameters in a highly dependent way
so that they collaborate to make up good denoising auto-
encoders.)

4.5 Evaluating the Importance of Pre-Training on
Different Layers

We decided to conduct an additional experiment to deter-
mine the added value of pre-trained weights at the different
layers. The experiments consist of a hybrid initialization:
some layers are taken from a pre-trained model and others
are initialized randomly in the usual way5. We ran this ex-
periment using a 2 hidden layer network. Figure 5 presents
the results. The model with the pre-trained first layer per-
forms almost as well as a fully pre-trained one, whereas
the network with the pre-trained second layer performs as
badly as the model without pre-training. This is consis-
tent with the hypothesis (Bengio, 2007) that training the
lower layers is more difficult because gradient information
becomes less informative as it is backpropagated through
more layers. Instead, the second hidden layer is closer to
the output. In a 2-hidden-layer network, the second hidden
layer can be considered as the single hidden layer of one-
hidden-layer neural network whose input is the output of
the first hidden layer. Since we know (from experiments)
that shallower networks are easier to train than deeper one,
it makes sense that pre-training the lower layers is more
important.

5Let us stress that this is not the same as selectively pre-
training some layers but rather as doing usual pre-training and
then reinitializing some layers.

 159

Erhan, Manzagol, Bengio, Bengio, Vincent

There is another reason we may have anticipated this find-
ing: the pre-trained second layer weights are trained to re-
construct the activations of the first layer, which are them-
selves trained to reconstruct the input. By changing the un-
derlying first layer weights to random ones, the pre-trained
second layer weights are not suited anymore for the task
on which they were trained. Regardless, the fact that pre-
training only the first layer makes such a difference is sur-
prising. It indicates that pre-training earlier layers has a
greater effect on the result than pre-training layers that are
close to the supervised layer. Moreover, this result also
provides an empirical justification for performing a greedy
layer-wise training strategy for pre-training deep architec-
tures.

4.6 Error Landscape Analysis

We analyzed models obtained at the end of training, to vi-
sualize the training criterion in the neighborhood of the
parameter vector θ∗ obtained. This is achieved by ran-
domly sampling a direction v (from the stochastic gradi-
ent directions) and by plotting the training criterion around
θ∗ in that direction, i.e. at θ = θ∗ + αv, for α ∈
{−2.5,−2.4, . . . ,−0.1, 0, 0.1, . . . 2.4, 2.5}, and v normal-
ized (||v|| = 1). This analysis is visualized in Figure 6. The
error curves look close to quadratic. We seem to be near a
local minimum in all directions investigated, as opposed to
a saddle point or a plateau. A more definite answer could be
given by computing the full Hessian eigenspectrum, which
might be expensive. Figure 6 also suggests that the error
landscape is a bit flatter in the case of pre-training, and flat-
ter for deeper architectures.

To visualize the trajectories followed in the landscape of
the training criterion, we use the following procedure. For
a given model, we compute all its outputs on the test set ex-
amples as one long vector summarizing where it stands in
“function space”. We get as many such vectors per model
as passes over the training data. This allows us to plot many
learning trajectories for each model (each associated with
a different initialization seed), with or without pre-training.
Using a dimensionality reduction algorithm 6 we then map
these vectors to a two-dimensional space for visualization.
Figure 7 shows all those points. Each point is colored ac-
cording to the training iteration, to help follow the trajec-
tory movement. We have also made corresponding movies
to better visualize these trajectories. What seems to come
out of these pictures and movies are the following:

1. The pre-trained and not pre-trained models start and
stay in different regions of function space. This is co-
herent with Figure 3 in which the error distributions
are different.

2. All trajectories of a given type (with pre-training or
6t-Distributed Stochastic Neighbor Embedding, or tSNE, by

van der Maaten and Hinton (2008)

Figure 6: Training errors obtained on Shapeset when step-
ping in parameter space around a converged model in 7
random gradient directions (stepsize of 0.1). Left: no pre-
training. Right: with pre-training. Top: 1 hidden layer.
Middle: 2 hidden layers. Bottom: 3 hidden layers.

without) initially move together, but at some point
(after about 7 epochs), different trajectories diverge
(slowing down into the elongated jets seen in Figure 7)
and never get back close to each other. This suggests
that each trajectory moves into a different local mini-
mum.

One may wonder if the divergence points correspond to a
turning point in terms of overfitting. Looking at Figure 3,
we see that test error does not improve much after the 7th
epoch, which reinforces this hypothesis.

5 Discussion and Conclusions

Understanding and improving deep architectures remains a
challenge. Our conviction is that devising improved strate-
gies for learning in deep architectures requires a more pro-
found understanding of the difficulties that we face with
them. This work addresses this via extensive simulations
and answers many of the questions from the introduction.

We have shown that pre-training adds robustness to a deep
architecture. The same set of results also suggests that in-
creasing the depth of an architecture that is not pre-trained
increases the probability of finding poor local minima. Pre-
training does not merely result in a better optimization pro-
cedure, but it also gives consistently better generalization.

Our simulations suggest that unsupervised pre-training is a

 160

The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training

Figure 7: 2D visualization with tSNE of the functions rep-
resented by 50 networks with and 50 networks without pre-
training, as supervised training proceeds over MNIST. See
section 4.6 for an explanation. Color from dark blue to yel-
low and red indicates a progression in training iterations
(training is longer without pre-training). The plot shows
models with 2 hidden layers but results are similar with
other depths.

kind of regularization: in the sense of restricting the start-
ing points of the optimization to a data-dependent mani-
fold. In a separate set of experiments, we have confirmed
the regularization-like behavior of pre-training by reducing
the size of the training set—its effect is increased as the
dataset size is decreasing.

Pre-training does not always help. With small enough lay-
ers, pre-trained deep architectures is systematically worse
that randomly initialized deep architectures. We have
shown that pre-training is not simply a way of getting a
good initial marginal distribution, and that it captures more
intricate dependencies. Our results also indicate that pre-
training is more effective for lower layers than for higher
layers. Finally, we have attempted to visualize the error
landscape and provide a function space approximation to
the solutions learned by deep architectures and confirmed
that the solutions corresponding to the two initialization
strategies are qualitatively different.

Acknowledgements

This research was supported by funding from NSERC, MI-
TACS, FQRNT, and the Canada Research Chairs. We are
also grateful to Aaron Courville for the many constructive
discussions.

References
Y. Bengio. Learning deep architectures for AI. Technical Report

1312, Université de Montréal, dept. IRO, 2007.

Y. Bengio and O. Delalleau. Justifying and generalizing con-
trastive divergence. Technical Report 1311, Dept. IRO, Uni-
versité de Montréal, 2007.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy
layer-wise training of deep networks. In B. Schölkopf, J. Platt,
and T. Hoffman, editors, Advances in Neural Information Pro-
cessing Systems 19, pages 153–160. MIT Press, 2007.

R. Collobert and J. Weston. A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learn-
ing. In ICML, 2008.

Y. Freund and D. Haussler. Unsupervised learning of distributions
on binary vectors using two layer networks. Technical Report
UCSC-CRL-94-25, University of California, Santa Cruz, 1994.

J. Håstad and M. Goldmann. On the power of small-depth thresh-
old circuits. Computational Complexity, 1:113–129, 1991.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensional-
ity of data with neural networks. Science, 313(5786):504–507,
July 2006.

G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algo-
rithm for deep belief nets. Neural Computation, 18:1527–
1554, 2006.

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Ben-
gio. An empirical evaluation of deep architectures on prob-
lems with many factors of variation. In Z. Ghahramani, editor,
ICML 2007: Proceedings of the Twenty-fourth International
Conference on Machine Learning, pages 473–480. Omnipress,
2007.

H. Lee, C. Ekanadham, and A. Ng. Sparse deep belief net model
for visual area V2. In J. C. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information Processing
Systems 20. MIT Press, Cambridge, MA, 2008.

M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient
learning of sparse representations with an energy-based model.
In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in
Neural Information Processing Systems 19. MIT Press, 2007.

M. Ranzato, Y.-L. Boureau, and Y. LeCun. Sparse feature learning
for deep belief networks. In J. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information Processing
Systems 20. MIT Press, Cambridge, MA, 2008.

R. Salakhutdinov and G. E. Hinton. Using deep belief nets to
learn covariance kernels for Gaussian processes. In J. C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neu-
ral Information Processing Systems 20. MIT Press, Cambridge,
MA, 2008.

R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted Boltz-
mann machines for collaborative filtering. In ICML ’07:
Proceedings of the 24th international conference on Machine
learning, pages 791–798, New York, NY, USA, 2007. ACM.

L. van der Maaten and G. E. Hinton. Visualizing high-
dimensional data using t-sne. Journal of Machine Learning
Research, 2008.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Ex-
tracting and composing robust features with denoising autoen-
coders. In ICML 2008: Proceedings of the Twenty-fifth Inter-
national Conference on Machine Learning, pages 1096–1103,
2008.

J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-
supervised embedding. In Proceedings of the Twenty-fifth In-
ternational Conference on Machine Learning (ICML 2008),
2008.

