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Abstract

Recently, affinity propagation (AP) was in-
troduced as an unsupervised learning algo-
rithm for exemplar based clustering. Here
we extend the AP model to account for semi-
supervised clustering. AP, which is formu-
lated as inference in a factor-graph, can be
naturally extended to account for ‘instance-
level’ constraints: pairs of data points that
cannot belong to the same cluster (cannot-
link), or must belong to the same cluster
(must-link). We present a semi-supervised
AP algorithm (SSAP) that can use instance-
level constraints to guide the clustering. We
demonstrate the applicability of SSAP to in-
teractive image segmentation by using SSAP
to cluster superpixels while taking into ac-
count user instructions regarding which su-
perpixels belong to the same object. We
demonstrate SSAP can achieve better per-
formance compared to other semi-supervised
methods.

1 Introduction

Affinity propagation (AP) (Frey & Dueck, 2007) is an
exemplar-based clustering method that takes as input
similarities between data points. It outputs a set of
data points that best represent the data (exemplars),
and assignments of each non-exemplar point to its
most appropriate exemplar, thereby partitioning the
data-set into clusters. The objective of AP is to max-
imize the sum of similarities between the data points
and their exemplars. The AP algorithm is based on
casting this NP-hard optimization problem in terms of
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a factor-graph, and performing approximate MAP in-
ference using the max-product algorithm(Kschischang
et al., 2001). The factor-graph used in AP can be mod-
ified to allow constraints and additional information to
be accounted for in a principled way, like introducing
flexible priors on cluster size (Tarlow et al., 2008). In
this work we are interested in extending the AP frame-
work to semi-supervised clustering.

Semi-supervised clustering algorithms are concerned
with finding good partitions of data in the presence of
side information. Two popular forms of side informa-
tion are partial labels and instance-level constraints.
We consider the case where side information is given
in the form of instance-level constraints on pairs of
data points. Cannot-link constraints indicate the two
data points cannot be in the same cluster while must-
link constraints indicate the data points must be in
the same cluster (Wagstaff & Cardie, 2000). There is
a distinct difference between side information given
in the form of partial labels and that given in the
form of instance-level constraints. The two are not
equivalent since labeled data can always be used to
construct instance-level constraints while the converse
does not hold in general, making instance-level con-
straints weaker in terms of the amount of information
they carry. However, instance-level constraints are of-
ten faster or cheaper to obtain than labels, and can
sometimes be automatically collected (Wagstaff et al.,
2001; Klein et al., 2002; Shental et al., 2003).

Another difference between partial labels and instance-
level constraints is that instance-level constraints do
not directly provide information about the total num-
ber of clusters or classes in the data. It is always pos-
sible to construct the transitive closure for any set of
instance-level constraints: if points i and j are con-
strained to be in the same cluster, and points j and k
are likewise constrained, then it follows that i,j, and
k must all be in the same cluster. Similarly, if i and
j must be in the same cluster, but i and k cannot
be in the same cluster then j and k cannot be in the
same cluster. However, such grouping of constraints
does not indicate the total number of groups is equal
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to the total number of clusters in the data, as it is
only a lower bound. Thus, many algorithms that in-
corporates instance-level constraints, such as cluster-
ing algorithms that attempt to partition the data sub-
ject to the constraints, can detect clusters composed of
points for which no side information is given (Wagstaff
et al., 2001; Klein et al., 2002; Shental et al., 2003).
When, on the other hand, side information is provided
as partial labels, it is often assumed that the unique
number of class labels should be the number of iden-
tified classes (Xiao et al., 2007; Leone et al., 2008).
In order for such algorithms to succeed, there must
be at least one labeled example from each class in the
data. The property of being able to detect clusters
for which no side information is given is desirable for
cases where some clusters are ‘easy’ to detect, while
others may require human intervention. The motivat-
ing example in this work is the case of user-guided
image-segmentation, where segmentation results can
be sometimes improved with quite limited user input,
and where it should not be necessary to explicitly pro-
vide side-information for every object in the image.

One prominent approach for devising semi-supervised
algorithms for instance-level constraints is to modify
standard unsupervised clustering algorithms so that
they explicitly account for the constraints. This was
done for k-means clustering (Wagstaff et al., 2001),
and Mixture of Gaussians (Shental et al., 2003). A
missing aspect of this approach is that it does not ex-
plicitly propagate constraints. Intuitively, if we look at
the set of points that are very close to either point in
a must-link constraint, it is likely these points should
also be in the same cluster as the must-link constraint
points. This property is sometimes referred to as
space-level constraints (Klein et al., 2002), and is often
imposed by adapting the similarities (or distances) be-
tween data points to better align with the constraints;
a good distance metric for the data should intuitively
assign a small distance to a pair of points with a must-
link constraint, and a large distance to a pair of data
points with a cannot-link constraint. Then, the ad-
justed metric can be used as input to an unsuper-
vised clustering algorithm (Xing et al., 2003). Nat-
urally, the approach of adapting similarities can be
combined with the approach of explicitly accounting
for constraints (Klein et al., 2002; Basu et al., 2004).

The solution we propose here is to adapt the underly-
ing factor-graph used in affinity propagation such that
constraints are explicitly added, but also propagated.
We add ‘meta-points’ to the underlying model and ap-
propriate function nodes to govern the allowed set of
solutions. The meta-points link together the must-link
pairs and prevent cannot-link pairs from being in the
same cluster. Similarities of points to meta-points are
constructed in a way that allows the model to also ac-
count for space-level constraints: points that are very
close to points that must be in the same cluster are

likely to also be in the same cluster.

Although, to the best of our knowledge, there are no
other AP-based methods that incorporate instance-
level constraints, Xiao et al. describe an adaption of
AP to include partial labels by contracting all similarly
labeled points to a new point and adjusting similari-
ties between unlabeled points to the new contracted
points. The set of potential exemplars is restricted to
that of the contracted points, and standard AP is then
run on the modified data-set. This restriction prevents
differently labeled points from being put in the same
cluster and forces the number of clusters to be equal
to the number of unique labels. Leone et al. also con-
tract all labeled points and adjust the similarities, but
they do not restrict only contracted labeled points to
be exemplars. However, they do not attempt to clus-
ter the contracted labeled points, which only serve as
potential exemplars. Both algorithms do not account
for must-link or cannot-link constraints. In addition,
the goal of AP is not only to partition the data but to
also find the most representative data points, or exem-
plars. In applications where the actual exemplars are
meaningful the contracted points may not be useful
since they do not represent real data points.

2 Semi-Supervised AP

2.1 Unsupervised AP
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Figure 1: A binary variable model for AP

We begin with a brief review of the unsupervised affin-
ity propagation (AP) model for clustering data points,
where we use the binary grid factor-graph described in
(Givoni & Frey, 2009) (Fig. 1). The input to the al-
gorithm is pairwise similarities s(i, j) between N data
points i ∈ (1 . . . N), j ∈ (1 . . . N), where we assume
similarities are negative, and the maximal possible
similarity between two points is 0. We define N2 hid-
den binary variables cij . Setting cij = 1 denotes that
i’s exemplar is j, and cii = 1 indicates i is its own



         163

Givoni, Frey

exemplar. The I function nodes introduce the ‘1-of-N’
constraint: each point can be assigned to at most one
exemplar (that exemplar can be the point itself, mean-
ing the point is choosing itself as an exemplar). The
E function nodes introduce the ‘exemplar consistency’
constraint: in order for any point i, i 6= j to choose j as
its exemplar, j must be its own exemplar. Finally, the
Sij function nodes incorporate the user-defined input
similarities s(i, j) between data points and their po-
tential exemplars and evaluate to the similarity s(i, j)
when cij = 1.

Formally, the function definitions are:

Ii(ci1, . . . , ciN ) =
{
−∞ if

∑
j cij 6= 1,

0 otherwise. (1)

Ej(c1j , . . . , cNj) =
{
−∞ if cjj = 0 and

∑
i cij > 0,

0 otherwise.
(2)

Sij(cij) =
{
s(i, j) if cij = 1,
0 otherwise. (3)

The graphical model in Fig. 1 together with (1)-(3)
result in the following objective function1:

S(c11, . . . , cNN ) =
∑
i,j

Sij(cij) +
∑

i

Ii(ci1, . . . , ciN )

+
∑

j

Ej(c1j , . . . , cNj),

stating that we wish to find the configuration of the
cij variables that maximizes the similarity of the data
points to their exemplars. The tendency of a particu-
lar point to be an exemplar is given by the preferences
s(i, i). Like the similarities, it is assumed to be at
most 0. A small negative preference indicates a point
is most suitable to be an exemplar and a big negative
preference indicates the opposite. Usually, all data
points share the same preference p, and this number is
a free parameter that controls the amount of clusters
found by the algorithm. An intuitive interpretation
for the preference is to view it as a cost associated
with creating a cluster (with an associated exemplar).
Given cluster set-up costs, and similarities between
points, the cheaper it is to create clusters, the more
clusters the algorithm can find. Therefore the term∑

i,j Sij(cij) in the objective function can be broken
into a that represents the sum of similarities of data
points to their cluster exemplar and a term represent-
ing the total cost associated with setting the clusters.
The algorithm attempts to find the best trade-off for
a particular setting of the cost.

The approximate MAP setting for the cij variables
is inferred by the max-sum algorithm(Kschischang et

1The formulation used here is the log-domain max-
product, or max-sum algorithm

al., 2001). It is shown in (Givoni & Frey, 2009) that
the different types of messages that need to be propa-
gated in the Fig. 1 graph can be reduced to two sim-
ple sets of messages that are iteratively updated until
convergence. These messages are the ones exchanged
between the hidden variables and the column function
nodes E, where the other messages are subsumed into
them for simplicity.

The AP update messages are as follows:

a(i, j) =


∑
k 6=j

max[0, r(k, j)] i = j

min
[
0, r(j, j) +

∑
k 6=j,i

max[0, r(k, j)]
]

i 6= j

(4)

r(i, j) = s(i, j)−max
k 6=j

(s(i, k) + a(i, k)) (5)

The messages have an intuitive interpretation; The ‘re-
sponsibilities’ r are indicators of how much data points
think other data points are suited to be their exem-
plars. The ‘availabilities’ a indicate to what extent
data points consider themselves fit to serve as exem-
plars for other data points. After convergence, the
exemplars are found by calculating the set of positive
a(i, i) + r(i, i) messages for each i ∈ {1 . . . N}. Non-
exemplars are assigned their respective exemplars by
choosing maxj∈J (a(i, j)+r(i, j)), where J denotes the
set of exemplars.

2.2 From Unsupervised to Semi-supervised
AP

Now, suppose we obtain instance-level constraints for
some input data points, and we wish to endow our
model with the ability to use this side information.
The first intuitive approach might be to directly con-
nect the hidden variables corresponding to data points
that must be in the same clusters via a function that
enforces this constraint, and similarly, connecting the
hidden variables corresponding to cannot-link data
points with an appropriate function node as well. It
turns out, however, that running AP on such a graph-
ical model yields solutions that satisfy the constraints
but are otherwise meaningless; the transitive closure
of data points with must-link constraints get grouped
together in their own clusters, while non-constrained
data points that are similar to the must-link con-
strained ones are not necessarily in the same cluster
with the must-link points, unlike what common sense
would dictate. The reason for this is direct constraints
do not induce propagation of information from con-
strained points to non-constrained ones.

Another intuitive idea for incorporating constraints
is to alter the similarities between data points. For
example, by making the similarity between must-link
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points be maximal, the similarity between cannot-link
points minimal and the similarity between any other
two points the shortest-path between them. This way,
if i is similar to j, s is similar to t, and j and s must
be in the same cluster, the similarity between i and
j can be increased if s(i, j) + s(t, s) > s(i, s). How-
ever, as noted in (Klein et al., 2002) this approach
captures the property that must-link points and their
neighbors should be in the same cluster but it does
not enforce the desired property that data points sim-
ilar to cannot-link points are more likely to be put in
different clusters. Indeed, it is also noted in (Klein
et al., 2002) that enforcing cannot-link constraints is
conceptually harder than must-link constraints; even
determining if the set of cannot-link constraints has a
satisfying assignment is NP-complete. A similar ob-
servation is made in (Shental et al., 2003) where the
must-link constraints are incorporated by constructing
their transitive closure, and constraining them to be
in the same cluster, using a relatively simple modifi-
cation of the EM algorithm update equations, while
the cannot-link constraints require the inclusion of a
hidden MRF over the data points, resulting in a con-
siderably more involved inference procedure, and an
increased degree of approximation.

The solution we propose here is to augment the data
points with fictitious ‘meta-points’ or MTP s. We
compute the transitive closure of the must link con-
straints, and add one MTP for each resulting group
as well as to each point in a cannot-link constraint if
it is not also part of a must-link group. The MTP s
allow us to explicitly enforce the must-link constraints
and cannot-link constraints, as well as to propagate
must-link constraints and construct a mechanism for
cannot-link constraints to be propagated. As expected
from the discussion above, the effectiveness of propa-
gating cannot-link constraints is more limited but it is
incorporated and inferred using the same simple for-
mulation as the rest of the model, and is shown to
yield good results in practice. We now describe how
to augment the model with the MTP s.

Let M be the number of MTP s, and let Pm be
the set of data points associated with MTPm, m ∈
{1 . . . ,M}. We define symmetric similarities between
MTPm and the input data points as:

S(i,MTPm) =
{

0 if i ∈ Pm,
maxj∈Pm s(i, j) otherwise.

Note that S(MTPm, i) = S(i,MTPm).

The intuition behind the construction of the meta-
points is that data points will now be able to choose
either real exemplars or one of the MTP s, if it is more
suitable than a real exemplar. The MTP s in turn
will have to choose a real exemplar. Since all points
in a must-link group will necessarily choose the MTP
associated with them, this will also result in a clus-

tering that respects must-link constraints. Other data
points are also free to choose MTP s and so points that
are similar to a group of must-link points are likely to
also choose that group’s MTP as an exemplar, leading
to the space-level propagation of constraints. Further-
more, if there is a cannot-link constraint between some
i ∈ Pm and a ∈ Pn we introduce a direct inequality
constraints between MTPm and MTPn by including
function nodes that prevent the MTP s from choosing
the same exemplar. This is a compact representation
of cannot-link constraints: let Lm = {i, j, k} be one
set of points that must be in the same cluster, and
Ln = {a, b, c} be another set of points that must be
in the same cluster, if we also know that i cannot be
with a, then all pairs in the cross product Lm × Ln

also have a cannot-link constraint ,whether it was ex-
plicitly specified or not. However, one constraint be-
tween the MTP s of each set is all we need in order to
enforce all these constraints, as opposed to the repre-
sentation in (Shental et al., 2003) that involved MRF
connections among all such constraints. Furthermore,
any point that will choose some MTPm as an exem-
plar, most likely because it is similar to one of the
points in the must-link group associated with MTPm,
will be in a different cluster than any point that has
a cannot-link constraint with the must-link group as-
sociated with MTPm, if such exists. This can allow
space-level propagation of cannot-link constraints.
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Figure 2: Semi-supervised affinity propagation. The
factor-graph inside the dotted line is the original AP
model, and the similarity functions s have been re-
moved for clarity
Fig. 2 shows the graphical model of SSAP that includes
the MTP s (the similarity function nodes have been
omitted for clarity) and the cannot-link constraints .
The I function nodes, that enforce the property that
each point must choose exactly one exemplar, remain
the same as in the standard AP model. For the in-
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put data points, the choice of an exemplar is over all
data points and all MTP s. Since MTP s should only
be allowed to choose exemplars from the set of input
data points, the domain of their associated I func-
tions is only over the input data points. The E func-
tion nodes, that enforce the constraint that a point
can only choose an exemplar if that exemplar chooses
itself as an exemplar, is not required for the MTP s,
as in fact, by definition they should not choose them-
selves as exemplars but instead pick an exemplar from
the set of input data points. The CL function nodes
are added to enforce the cannot-link constraints be-
tween pairs of MTP s for which such constraints are
given, as described above. In Fig. 2 we show for clarity
only two MTP s and a cannot-link constraint between
them, but in the general case there is not necessarily
a constraint between every two MTP s and the exact
nature of cannot-link connections between MTP s de-
pend on the given constraints.

Formally the cannot-link function nodes are given by

CLk
N+m,N+n(cN+m,k, cN+n,k) ={

−∞ cN+m,k = cN+n,k

0 otherwise

The message updates for the new model are similar to
the original AP messages. In fact, the a(i, j) messages
(4) remain the same, save for the indexing domain over
k in the sum that changes from k ∈ {1, . . . , N} to
k ∈ {1, . . . , N + M}. The r(i, j) messages (5) remain
as before for i < N with a similar indexing change
over the maximization. In order to express r(m, j) for
m > N , we need to include the messages arriving from
and sent to the CL constraint nodes. In order to keep
the notation simplified, let us define the following two
messages:

qj(m,mn) = µCN+m,j→CLj
N+m,N+n

(6)

qj(mn,m) = µCLj
N+m,N+n→CN+m,j

, (7)

The update rule for (6), the message from a variable
node to the CL function node, is:

qj(m,mn) = a(m, j) + r(m, j)− qj(mn,m) (8)

And the update rule for the message from the CL func-
tion node (7) has the form

qj(mn,m) = −max[0, qj(n,mn)] (9)

Now we can express r(m, j) for m > N :

r(m, j) = s(m, j) +
∑

n∈CLm

qj(mn,m)

−max
k 6=j

(s(m, k) +
∑

n∈CLm

qk(mn,m) + a(m, k)),

Where CLm denotes the set of all cannot-link con-
straints associated with MTPm. Note that if we
substitute in the expression ŝ(m, ∗) = s(m, ∗) +∑

n∈CLm
q∗(mn,m) we recover the message update

rule of the standard r message (5):

r(m, j) = ŝ(m, j)−max
k 6=j

(ŝ(m, k) + a(m, k))

Therefore, the influence of messages coming from all
the cannot-link constraints can be seen as a modifica-
tion of similarities to account for these constraints.

The message scheduling we have chosen calculates it-
eratively q, a, and r messages until convergence. Once
the algorithm terminates we assign to all the points
which chose an MTP as their exemplar the exemplar
chosen by that MTP .

3 Experimental evaluation

3.1 User Interactive Image Segmentation

The particular application we consider here is user in-
teractive image segmentation. There exist many al-
gorithms for unsupervised image segmentation, but in
many cases they fail to provide a segmentation that
is close to what a human would consider appropriate.
One reason behind their shortcomings can be failing
to group together different parts of an object, if the
parts are very different under any reasonable similarity
measure between the elements on which the segmen-
tation is carried out.2. For example, a human might
consider an image of a person wearing multi-colored
and multi-textured clothes as one object but an auto-
matic segmentation will most likely put them in differ-
ent segments since color, texture, and edge cues will
all indicate they should be different objects. Another
source of error can be putting together objects that
should be separated. For example, if two very sim-
ilar animals are present in the same image, so that
their bodies partially overlap, many segmentation al-
gorithms will group them into one segment. Although
it is yet an open question how to overcome these er-
rors in a completely unsupervised manner, often only
a small amount of user intervention is needed in order
to correct these types of errors.

We are interested in evaluating the usefulness of semi-
supervised AP for the task of user interactive image
segmentation. Although the term interactive image
segmentation usually refers to algorithms geared to-
wards fine separation of background from foreground
given a user marked contour of the object or an area
known to contain the foreground object, e.g. (Rother

2These elements can be the image pixels or superpixels
- small pixel groups of coherent image regions, obtained by
some method of over-segmentation.
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et al., 2004), here we are interested in correctly group-
ing superpixels, segments of over-segmented images,
into possibly several objects.

In order to obtain quantitative results for a range of
experimental settings, we simulate user interaction by
randomly selecting a subset of superpixels for which
the algorithm is given the instance-level constraints.
This is repeated 10 times to obtain results for different
subsets of training data for each image. We test the
performance across a range of percentage of points for
which constraints are provided to the algorithm.

Our image data consists of 23 images. We first ob-
tained ∼ 200 superpixels for each image (Mori, 2005).
Each superpixel was hand-labeled, with each image
containing between 2 to 11 distinct labels. We then
constructed a similarity measure between superpixels
that has a 2D distance component, and an equally
weighted color component, similar to (Xiao et al.,
2007). The first component is calculated as the neg-
ative squared Euclidean distance between the centers
of mass of every pair of superpixels, normalized by the
sum of all such distances. The color component is the
negative squared Euclidean distance between average
superpixel color in Cielab space, similarly normalized.

3.2 Evaluation Criterion

We report the modified Rand index (Rand, 1971;
Wagstaff & Cardie, 2000) achieved by each method.
The Rand index calculates the agreement between two
clustering solutions C, Ĉ, where usually one is a clus-
tering algorithm solution (Ĉ), and the other is the true
class labels (C). The index is in the range [0, 1] where
1 indicates a perfect agreement between the cluster-
ings. It can also be interpreted as the probability
the two clustering solutions agree on whether two ran-
domly drawn points belong to the same cluster or to
different clusters. For every pair of points clustered,
the points are either in the same cluster in both solu-
tions, not in the same cluster in both solutions, or the
pair of points can be in the same cluster according to
one solution and not in the same cluster according to
the other solution. The first and second cases above
represent the agreement events between the clustering
solutions. The total sum of these events is normal-
ized by the total number of events (the number of all
pairs of points, N(N−1)

2 ) and the result is the Rand
index. Following (Wagstaff & Cardie, 2000) we calcu-
late this quantity only for pairs for which no supervised
information was given, either directly or by transduc-
tion. Furthermore, as observed by (Xing et al., 2003),
this measure tends to give inflated scores when there
are many clusters, since there are many more pairs of
points that are not in the same cluster than there are
pairs of points that are in the same cluster, and most
algorithms will correctly predict that most pairs are

not in the same cluster. This can be remedied by giv-
ing the same weight to the points that are in the same
cluster (according to Ĉ) and those that are not in the
same cluster. The probabilistic interpretation is the
chance of two data points to have agreeing clustering
solutions, where the data points are drawn uniformly
at random from the same cluster (according to Ĉ) with
chance 0.5 and from different clusters with chance 0.5.
The following expression is used for calculating the
modified Rand index:

R(C, Ĉ) =

∑
i>j,{i,j}/∈L[ci = cj ∧ ĉi = ĉj ]

2
∑

i>j,{i,j}/∈L[ĉi = ĉj ]

+

∑
i>j,{i,j}/∈L[ci 6= cj ∧ ĉi 6= ĉj ]

2
∑

i>j,{i,j}/∈L[ĉi 6= ĉj ]
.

L is the set of data-point pairs for which side-
information was given to the algorithm. ci (ĉi) indi-
cates the cluster index of point i according to C (Ĉ).

3.3 Results

We compare our results against Constrained EM
(CEM)3 (Shental et al., 2003). CEM performs ex-
pectation maximization (EM) in a Gaussian Mixture
Model, where the must-link constraints are enforced
via a modified form of the EM update equations, and
the cannot-link constraints are enforced via a Markov
Random Field net imposed over the hidden cluster as-
signment variables. It was shown to outperform simi-
lar methods (Wagstaff et al., 2001) and (Klein et al.,
2002) on a variety of tasks. We also compare SSAP
to standard AP in order to validate that SSAP can be
used to improve the results of standard AP.

Similarly to AP, SSAP does not take as input the num-
ber of clusters to find. Rather, it uses preferences as a
tuning parameter. In order to perform the comparison
we first run SSAP, and then use the discovered number
of clusters as our input to CEM. Fig. 5 demonstrates
an example of segmentation result for some of the im-
ages in the data set. Fig. 3 describes a quantitative
analysis of the 3 algorithms. Each point represents,
for a particular amount of instance-level constraints,
the average modified Rand index across all 23 images.
Each image was subjected to SSAP and CEM with
10 different sets of instance-level constraints. Stan-
dard AP does not use the instance-level constraints,
and therefore its Rand index is calculated across all
point pairs, while that of SSAP and CEM is com-
puted only over data for which no constraints were
given, as detailed in section 3.2. Since the number of
clusters found by SSAP changes as the amount of con-
strained information changes, the corresponding AP
solutions with the same number of clusters also varies,

3code obtained from
http://aharon.barhillel.googlepages.com/
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Figure 3: Clustering accuracy as measured by the
modified Rand Index for image segmentation.

and therefore we observe different clustering accuracy
for AP for different amounts of constraints although
AP does not use these constraints.

We note that comparison between SSAP and CEM
is not straight-forward. Although both are cluster-
ing algorithms that utilize instance-level constraints,
and therefore are most similar in terms of their ap-
proach, the similarity measure used by SSAP is given
as part of the input and is for the user to decide, while
CEM assumes a multi-variate Normal distribution of
each cluster and performs maximum-likelihood fitting
of the distribution parameters. However, the similar-
ities given to SSAP are based on normalized negative
Euclidean distance, and are therefore comparable to a
normal distribution assumption.

Since every set of labeled data points can be trans-
formed to a list of instance-level constraints, a nat-
ural question is whether SSAP is comparable semi-
supervised methods that require labeled data. In par-
ticular, we are interested in comparing SSAP to (Xiao
et al., 2007) (SSAP-X), which modified the AP al-
gorithm to account for partial labels by contracting
all similarly labeled points to a new point, with ad-
justed similarities, and allowed only the contracted
points to serve as exemplars. When making such a
comparison, it is important to recall that SSAP may
still find clusters that have no labeled information, un-
like SSAP-X. The modified Rand index may still be
biased for a solution with more clusters. Therefore,
we report results only for the subset of experiments
where the number of clusters found by SSAP was no
more than 1.5 times the clusters found by SSAP-X.
This reduces the number of images for which the com-
parison can be fairly made to (1,2,3,6,10,13,19) images
for (5%,7%,9%,11%,13%,15%,20%) of labeled data, re-
spectively. The results are shown in Fig. 4. As can be
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Figure 4: Comparison to SSAP-X for a limited subset
of the data, for which comparison can be made, since
SSAP-X requires labeled data and assigns labels to all
data-points, unlike SSAP and CEM.

seen, at the presence of very little labeled data, the
instance-level constraints appear to be more helpful
then the actual labels, possibly since the number of
distinct input labels is less than the number of objects
in the image, as well as the fact that the set of po-
tential exemplars is extremely limited and not likely
representative of the data.

4 Discussion

We presented a semi-supervised version of affinity
propagation for instance-level constraints and demon-
strated its applicability to user-interactive image seg-
mentation. This work was motivated by the observa-
tion that segmentation results can be improved with
very little user interaction. In particular, this inter-
action can often be restricted to only a subset of the
clusters in the image if some clusters are easy to de-
tect in an unsupervised fashion. Therefore, the com-
bination of instance-level constraints with a cluster-
ing algorithm capable of finding clusters using side in-
formation as well as clusters that are not supervised
seems appropriate for this task. The SSAP algorithm
we have developed for this task performs well in com-
parison to similar methods. The ultimate goal would
be to build a user-interactive tool that can iteratively
refine results. We believe that introducing more struc-
ture to the clustering problem, by creating hierarchies
for example, can further improve clustering results. In
addition, hierarchies can enable a more natural way
to define the user-interaction by allowing the user a
simple way of indicating how segments should be com-
bined and split apart. We plan to pursue this direction
in future work. In addition, using the constraints to



         168

Semi-Supervised Affinity Propagation with Instance-Level Constraints

(a) (b) (c) (d) (e) (f)

Figure 5: Some examples of image segmentation based on instance-level constraints. Columns from left to right:
(a) The original image, (b) superpixels computed for the image, (c) hand-labeling of the super-pixels, (d) SSAP
results, (e) AP results, (f) Constrained EM results.

learn a better similarity matrix for AP is also a natural
extension of this work.
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