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Abstract

We study semi-supervised learning when the
data consists of multiple intersecting mani-
folds. We give a finite sample analysis to
quantify the potential gain of using unlabeled
data in this multi-manifold setting. We then
propose a semi-supervised learning algorithm
that separates different manifolds into deci-
sion sets, and performs supervised learning
within each set. Our algorithm involves a
novel application of Hellinger distance and
size-constrained spectral clustering. Exper-
iments demonstrate the benefit of our multi-
manifold semi-supervised learning approach.

1 INTRODUCTION

The promising empirical success of semi-supervised
learning algorithms in favorable situations has trig-
gered several recent attempts (Balcan & Blum 2005,
Ben-David, Lu & Pal 2008, Kaariainen 2005, Laf-
ferty & Wasserman 2007, Niyogi 2008, Rigollet 2007)
at developing a theoretical understanding of semi-
supervised learning. In a recent paper (Singh, Nowak
& Zhu 2008), it was established using a finite sam-
ple analysis that if the complexity of the distribu-
tions under consideration is too high to be learnt us-
ing n labeled data points, but is small enough to
be learnt using m � n unlabeled data points, then
semi-supervised learning (SSL) can improve the per-
formance of a supervised learning (SL) task. There
have also been many successful practical SSL algo-
rithms as summarized in (Chapelle, Zien & Schölkopf
2006, Zhu 2005). These theoretical analyses and prac-

Appearing in Proceedings of the 12th International Confe-
rence on Artificial Intelligence and Statistics (AISTATS)
2009, Clearwater Beach, Florida, USA. Volume 5 of JMLR:
W&CP 5. Copyright 2009 by the authors.

tical algorithms often assume that the data forms clus-
ters or resides on a single manifold.

However, both a theory and an algorithm are lacking
when the data is supported on a mixture of manifolds.
Such data occurs naturally in practice. For instance,
in handwritten digit recognition each digit forms its
own manifold in the feature space; in computer vision
motion segmentation, moving objects trace different
trajectories which are low dimensional manifolds (Tron
& Vidal 2007). These manifolds may intersect or par-
tially overlap, while having different dimensionality,
orientation, and density. Existing SSL approaches can-
not be directly applied to multi-manifold data. For
instance, traditional graph-based SSL algorithms may
create a graph that connects points on different mani-
folds near a manifold intersection, thus diffusing infor-
mation across the wrong manifolds.

In this paper, we generalize the theoretical analysis
of (Singh et al. 2008) to the case where the data is sup-
ported on a mixture of manifolds. Guided by the the-
ory, we propose an SSL algorithm that handles multi-
ple manifolds as well as clusters. The algorithm builds
upon novel Hellinger-distance-based graphs and size-
constrained manifold clustering. Experiments show
that our algorithm can perform SSL on multiple in-
tersecting, overlapping, and noisy manifolds.

2 THEORETIC PERSPECTIVES

In this section, we first review the conclusions of (Singh
et al. 2008), which are based on the cluster assump-
tion, and then give conjectured bounds in the single
manifold and multi-manifold case.

The cluster assumption, as formulated in (Singh et al.
2008), states that the target regression function or
class label is locally smooth over certain subsets of
the D-dimensional feature space that are delineated by
changes in the marginal density—throughout this pa-
per, we assume the marginal density is bounded above
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and below (away from zero). We refer to these delin-
eated subsets as decision sets; i.e., all non-empty sets
formed by intersections between the cluster support
sets and their complements. If these decision sets, de-
noted by C, can be learnt using unlabeled data, the
learning task on each decision set is simplified. The
results of (Singh et al. 2008) suggest that if the de-
cision sets can be resolved using unlabeled data, but
not using labeled data, then semi-supervised learning
can help. However, this simple argument, and hence
the distinctions between SSL and SL, are not always
captured by standard asymptotic arguments based on
rates of convergence. (Singh et al. 2008) used finite
sample bounds to characterize both the SSL gains and
the relative value of unlabeled data.

To derive the finite sample bounds, the first step is
to understand when the decision sets are resolvable
using data. This depends on the interplay between
the complexity of the class of distributions under con-
sideration and the number of unlabeled points m and
labeled points n. For the cluster case, the complex-
ity of the distributions is determined by the margin
γ, defined as the minimum separation between clus-
ters or the minimum width of a decision set (Singh
et al. 2008). If the margin γ is larger than the typi-
cal distance between the data points (m−1/D if using
unlabeled data, or n−1/D if using only labeled data),
then with high probability the decision sets can be
learnt up to a high accuracy (which depends on m or
n, respectively) (Singh et al. 2008). This implies that
if γ > m−1/D (margin exists with respect to density
of unlabeled data), then the finite sample performance
(the expected excess error Err) of a semi-supervised
learner f̂m,n relative to the performance of a clairvoy-
ant supervised learner f̂C,n, which has perfect knowl-
edge of the decision sets C, can be characterized as
follows:

sup
PXY (γ)

Err(f̂m,n) ≤ sup
PXY (γ)

Err(f̂C,n) + δ(m,n). (1)

Here PXY (γ) denotes the cluster-based class of distri-
butions with complexity γ, and δ(m,n) is the error in-
curred due to inaccuracies in learning the decision sets
using unlabeled data. Comparing this upper bound
on the semi-supervised learning performance to a fi-
nite sample minimax lower bound on the performance
of any supervised learner provides a sense of the rel-
ative performance of SL vs. SSL. Thus, SSL helps if
complexity of the class of distributions γ > m−1/D

and both of the following conditions hold: (i) knowl-
edge of decision sets simplifies the supervised learn-
ing task, that is, the error of the clairvoyant learner
supPXY (γ) Err(f̂C,n) < inffn supPXY (γ) Err(fn), the
smallest error that can be achieved by any supervised
learner based on n labeled data. The difference quan-

Table 1: Conjectured finite sample performance of SSL
and SL for regression of a Hölder-α, α > 1, smooth
function (with respect to geodesic distance in the man-
ifold cases). These bounds hold for D ≥ 2, d < D,
m � n, and suppress constants and log factors.

Complexity SSL upper SL lower SSL
range bound bound helps

Cluster Assumption
γ ≥ n−

1
D n−

2α
2α+D n−

2α
2α+D No

n−
1
D > γ ≥ m− 1

D n−
2α

2α+D n−
1
D Yes

m− 1
D > γ ≥ −m− 1

D n−
1
D n−

1
D No

−m− 1
D > γ n−

2α
2α+D n−

1
D Yes

Single Manifold κSM := min(r0, s0)

κSM ≥ n−
1
D n−

2α
2α+d n−

2α
2α+d No

n−
1
D > κSM ≥ m− 1

D n−
2α

2α+d Ω(1) Yes
m− 1

D > κSM ≥ 0 O(1) Ω(1) No
Multi-Manifold κMM := sgn(γ) ·min(|γ|, r0, s0)

κMM ≥ n−
1
D n−

2α
2α+d n−

2α
2α+d No

n−
1
D > κMM ≥ m− 1

D n−
2α

2α+d Ω(1) Yes
m− 1

D > κMM ≥ −m− 1
D O(1) Ω(1) No

−m− 1
D > κMM n−

2α
2α+d Ω(1) Yes

tifies the SSL performance gain. (ii) m is large enough
so that the error incurred due to using a finite amount
of unlabeled data to learn the decision sets is negligi-
ble: δ(m,n) = O

(
supPXY (γ) Err(f̂C,n)

)
. This quan-

tifies the relative value of labeled and unlabeled data.

The finite sample performance bounds on SSL and
SL performance as derived in (Singh et al. 2008) for
the cluster assumption are summarized in Table 1 for
the regression setting, where the target function is a
Hölder-α smooth function on each decision set and
α > 1. We can see that SSL provides improved per-
formance, by capitalizing on the local smoothness of
the function on each decision set, when the separation
between the clusters is large compared to the typical
distance between unlabeled data m−1/D but less than
the typical distance between labeled data n−1/D. Neg-
ative γ refers to the case where the clusters are not
separated, but can overlap and give rise to decision
sets that are adjacent (see (Singh et al. 2008)). In this
case, SSL always outperforms SL provided the width
of the resulting decision sets is detectable using unla-
beled data. Thus, the interplay between the margin
and the number of labeled and unlabeled data charac-
terizes the relative performance of SL vs. SSL under
the cluster assumption. Similar results can be derived
in the classification setting where an exponential im-
provement (from n−1/D to e−n) is possible provided
the number of unlabeled data m grows exponentially
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with n (Singh et al. 2008).

2.1 SINGLE MANIFOLD CASE

In the single manifold case, the assumption is that
the target function lies on a lower d-dimensional man-
ifold, where d < D, and is Hölder-α smooth (α > 1)
with respect to the geodesic distance on the manifold.
Hence knowledge of the manifold, or equivalently the
geodesic distances between all pairs of data points, can
be gleaned using unlabeled data and reduces the di-
mensionality of the learning task.

In the case of distributions supported on a single man-
ifold, the ability to learn the geodesic distances well,
and hence the complexity κSM of the distributions, de-
pends on two geometric properties of the manifold—
its minimum radius of curvature r0 and proximity to
self-intersection s0 (also known as branch separation)
(Bernstein, de Silva, Langford & Tenenbaum 2000).
If κSM := min(r0, s0) is larger than the typical dis-
tance between the data points (m−1/D with unlabeled
data, or n−1/D with only labeled data), then with high
probability the manifold structure is resolvable and
geodesic distances can be learnt up to a high accuracy
(which depends on m or n, respectively). This can be
achieved by using shortest distance paths on an ε- or
k-nearest neighbor graph to approximate the geodesic
distances (Bernstein et al. 2000). The use of approx-
imate geodesic distances to learn the target function
gives rise to an error-in-variable problem. Though the
overall learning problem is now reduced to a lower-
dimensional problem, we are now faced with two types
of errors—the label noise and the error in the esti-
mated distances. However, the error incurred in the
final estimation due to errors in geodesic distances de-
pends on m which is assumed to be much greater than
n. Thus, the effect of the geodesic distance errors is
negligible, compared to the error due to label noise,
for m sufficiently large. This suggests that for the
manifold case, if κSM > m−1/D, then finite sample
performance of semi-supervised learning can again be
related to the performance of a clairvoyant supervised
learner f̂C,n as in (1) above, since δ(m,n) is negligible
for m sufficiently large.

Comparing this SSL performance bound to a finite
sample minimax lower bound on the performance of
any supervised learner indicates SSL’s gain in the sin-
gle manifold case and is summarized in Table 1. These
are conjectured bounds based on the arguments above
and similar arguments in (Niyogi 2008). The SSL up-
per bound can be achieved using a learning procedure
adaptive to both α and d, such as the method proposed
in (Bickel & Li 2007)1. The SL lower bounds follow

1Note, however, that the analysis in (Bickel & Li 2007)

from the results in (Tsybakov 2004) and (Niyogi 2008).
SSL provides improved performance by capitalizing on
the lower-dimensional structure of the manifold when
the minimum radius of curvature and branch separa-
tion are large compared to the typical distance be-
tween unlabeled data m−1/D, but small compared to
the typical distance between labeled data n−1/D.

2.2 MULTI-MANIFOLD CASE

The multi-manifold case addresses the generic setting
where the clusters are low-dimensional manifolds that
possibly intersect or overlap. In this case, the target
function is supported on multiple manifolds and can be
piecewise smooth on each manifold. Thus, it is of in-
terest to resolve the manifolds, as well as the subsets of
each manifold where the decision label varies smoothly
(that are characterized by changes in the marginal den-
sity). The analysis for this case is a combination of the
cluster and single manifold case. The complexity of the
multi-manifold class of distributions, denoted κMM, is
governed by the minimum of the manifold curvatures,
branch separations, and the separations and overlaps
between distinct manifolds. For the regression setting,
the conjectured finite sample minimax analysis is pre-
sented in Table 1.

These results indicate that when there is enough unla-
beled data, but not enough labeled data, to handle the
complexity of the class, then semi-supervised learning
can help by adapting to both the intrinsic dimensional-
ity and smoothness of the target function. Extensions
of these results to the classification setting are straight-
forward, as discussed under the cluster assumption.

3 AN ALGORITHM

Guided by the theoretical analysis in the previous sec-
tion, we propose a “cluster-then-label” type of SSL al-
gorithm, see Figure 1. It consists of three main steps:
(1) It uses the unlabeled data to form a small num-
ber of decision sets, on which the target function is
assumed to be smooth. The decision sets are defined
in the ambient space, not just on the labeled and unla-
beled points. (2) The target function within a partic-
ular decision set is estimated using only labeled data
that fall in that decision set, and using a supervised
learner specified by the user. (3) a new test point is
predicted by the target function in the decision set it
falls into.

There have been several cluster-then-label approaches
in the SSL literature. For example, the early work
of Demiriz et al. modifies the objective of standard

considers the asymptotic performance of SL, whereas here
we are studying the finite-sample performance of SSL.
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k-means clustering algorithms to include a class impu-
rity term (Demiriz, Bennett & Embrechts 1999). El-
Yaniv and Gerzon enumerate all spectral clusterings
of the unlabeled data with varying number of clusters,
which together with labeled data induce a hypothesis
space. They then select the best hypothesis based on
an Occam’s razor-type transductive bound (El-Yaniv
& Gerzon 2005). Some work in “constrained cluster-
ing” is also closely related to cluster-then-label from
an SSL perspective (Basu, Davidson & Wagstaff 2008).
Compared to these approaches, our algorithm has two
advantages: i) it is supported by our SSL minimax
theory; ii) it handles both overlapping clusters and in-
tersecting manifolds by detecting changes in support,
density, dimensionality or orientation.

Our algorithm is also different from the family of
graph-regularized SSL approaches, such as manifold
regularization (Belkin, Sindhwani & Niyogi 2006)
and earlier variants (Joachims 2003, Zhou, Bousquet,
Lal, Weston & Schölkopf 2004, Zhu, Ghahramani &
Lafferty 2003). Those approaches essentially add a
graph-regularization term in the objective. They also
depend on the “manifold assumption” that the target
function indeed varies smoothly on the manifold. In
contrast, i) our algorithm is a wrapper method, which
uses any user-specified supervised learner SL as a sub-
routine. This allows us to directly take advantage of
advances in supervised learning without the need to
derive new algorithms. ii) Our theory ensures that,
even when the manifold assumption is wrong, our SSL
performance bound is the same as that of the super-
vised learner (up to a log factor).

Finally, step 1 of our algorithm is an instance of man-
ifold clustering. Recent advances on this topic include
Generalized Principal Component Analysis (Vidal, Ma
& Sastry 2008) and lossy coding (Ma, Derksen, Hong
& Wright 2007) for mixtures of linear subspaces, mul-
tiscale manifold identification with algebraic multi-
grid (Kushnir, Galun & Brandt 2006), tensor vot-
ing (Mordohai & Medioni 2005), spectral curvature
clustering (Chen & Lerman 2008), and translated Pois-
son mixture model (Haro, Randall & Sapiro 2008) for
mixtures of nonlinear manifolds. Our algorithm is
unique in two ways: i) its use of Hellinger distance
offers a new approach to detecting overlapping clus-
ters and intersecting manifolds; ii) our decision sets
have minimum size constraints, which we enforce by
constrained k-means.

3.1 HELLINGER DISTANCE GRAPH

Let the labeled data be {(xi, yi)}n
i=1, and the unla-

beled data be {xj}M
j=1, where M � n. The build-

ing block of our algorithm is a local sample covari-
ance matrix. For a point x, define N(x) to be

a small neighborhood around x in Euclidean space.
Let Σx be the local sample covariance matrix at x:
Σx =

∑
x′∈N(x)(x

′−µx)(x′−µx)>/(|N(x)|−1), where
µx =

∑
x′∈N(x) x′/|N(x)| is the neighborhood mean.

In our experiments, we let |N(x)| ∼ O(log(M)) so that
the neighborhood size grows with unlabeled data size
M . The covariance Σx captures the local geometry
around x.

Our intuition is that points xi, xj on different man-
ifolds or in regions with different density should be
considered dissimilar. This intuition is captured by
the Hellinger distance between their local sample co-
variance matrices Σi,Σj . The squared Hellinger dis-
tance is defined between two pdf’s p, q: H2(p, q) =
1
2

∫ (√
p(x)−

√
q(x)

)2

dx. By setting p(x) =
N (x; 0,Σi), i.e., a Gaussian with zero mean and co-
variance Σi, and similarly q(x) = N (x; 0,Σj), we ex-
tend the definition of Hellinger distance to covariance
matrices: H(Σi,Σj) ≡ H (N (x; 0,Σi),N (x; 0,Σi)) =√

1− 2D/2|Σi|1/4|Σj |1/4/|Σi + Σj |1/2, where D is the
dimensionality of the ambient feature space. We will
also call H(Σi,Σj) the Hellinger distance between the
two points xi, xj . When Σi +Σj is rank deficient, H is
computed in the subspace occupied by Σi + Σj . The
Hellinger distance H is symmetric and in [0, 1]. H
is small when the local geometry is similar, and large
when there is significant difference in density, manifold
dimensionality or orientation. Example 3D covariance
matrices and their H values are shown in Figure 2.

Cov. matrices Comment H(Σ1,Σ2)

similar 0.02

density 0.28

dimension 1

orientation 1

Figure 2: Hellinger distance

It would seem natural to compute all pairwise
Hellinger distances between our dataset of n + M
points to form a graph, and apply a graph-cut algo-
rithm to separate multiple manifolds or clusters. How-
ever, if xi and xj are very close to each other, their lo-
cal neighborhoods N(xi), N(xj) will strongly overlap.
Then, even if the two points are on different manifolds
the Hellinger distance will be small, because their co-
variance matrices Σi,Σj will be similar. Therefore, we
select a subset of m ∼ O (M/ log(M)) unlabeled points
so that they are farther apart while still covering the
whole dataset. This is done using a greedy procedure,
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Given n labeled examples and M unlabeled examples, and a supervised learner SL,

1. Use the unlabeled data to infer k ∼ O(log(n)) decision sets cCi:

(a) Select a subset of m < M unlabeled points

(b) Form a graph on the n + m labeled and unlabeled points, where the edge weights are computed
from the Hellinger distance between local sample covariance matrices

(c) Perform size-constrained spectral clustering to cut the graph into k parts, while keeping enough
labeled and unlabeled points in each part

2. Use the labeled data in cCi and the supervised learning SL to train bfi

3. For test point x∗ ∈ cCi, predict bfi(x
∗).

Figure 1: The Multi-Manifold Semi-Supervised Learning Algorithm

where we first select an arbitrary unlabeled point x(0).
We then remove its unlabeled neighbors N(x(0)), in-
cluding itself. We select x(1) to be the next nearest
neighbor, and repeat. This procedure thus approxi-
mately selects a cover of the dataset. We focus on
the subset of m unlabeled and n labeled points. Each
of these n + m points has its local covariance Σ com-
puted from the original full dataset. We then discard
the M −m unselected unlabeled points. Notice, how-
ever, that the number m of effective unlabeled data
points is polynomially of the same order as the total
number M of available unlabeled data points.

(a) (b)

Figure 3: The graph on the dollar sign dataset.

We can now define a sparse graph on the n+m points.
Each point x is connected by a weighted, undirected
edge to O(log(n+m)) of its nearest Mahalanobis neigh-
bors chosen from the the set of n + m points too. The
choice of O(log(n + m)) allows neighborhood size to
grow with dataset size. Since we know the local geom-
etry around x (captured by Σx), we “follow the man-
ifold” by using the Mahalanobis distance as the local
distance metric at x: d2

M (x, x′) = (x−x′)>Σ−1
x (x−x′).

For example, a somewhat flat Σx will preferentially
connect to neighbors in or near the same flat sub-
space. The graph edges are weighted using the stan-
dard RBF scheme, but with Hellinger distance: wij =
exp

(
−H2(Σi,Σj)/(2σ2)

)
. Figure 3(a) shows a small

part of a synthetic “dollar sign” dataset, consisting of
two intersecting manifolds: “S” and “|”. The green
dots are the original unlabeled points, and the ellip-
soids are the contours of covariance matrices around

the subset of selected unlabeled points within a small
region. Figure 3(b) shows the graph on the complete
dollar sign dataset, where red edges have large weights
and yellow edges have small weights. Thus the graph
combines locality and geometry: an edge has large
weight when the two nodes are close in Mahalanobis
distance, and have similar covariance structure.

3.2 SIZE-CONSTRAINED SPECTRAL
CLUSTERING

We perform spectral clustering on this graph of n+m
nodes. We hope each resulting cluster represents a
separate manifold, from which we will define a deci-
sion set. Of the many spectral clustering algorithms,
we chose ratio cut for its simplicity, though others can
be similarly adapted for use here. The standard ra-
tio cut algorithm for k clusters has four steps (von
Luxburg 2007): 1. Compute the unnormalized graph
Laplacian L = Deg−W , where W = [wij ] is the weight
matrix, and Degii =

∑
j wij form the diagonal degree

matrix. 2. Compute the k eigenvectors v1 . . . vk of L
with the smallest eigenvalues. 3. Form matrix V with
v1 . . . vk as columns. Use the ith row of V as the new
representation of xi. 4. Cluster all x under the new
representation into k clusters using k-means.

Our ultimate goal of semi-supervised learning poses
new challenges; we want our SSL algorithm to de-
grade gracefully, even when the manifold assumption
does not hold. The SSL algorithm should not break
the problem into too many subproblems and increase
the complexity of the supervised learning task. This
is achieved by requiring that the algorithm does not
generate too many clusters and that each cluster con-
tains “enough” labeled points. Because we will simply
do supervised learning within each decision set, as long
as the number of sets does not grow polynomially with
n, the performance of our algorithm is guaranteed to
be polynomially no worse than the performance of the
supervised learner when the manifold assumption fails.
Thus, we automatically revert to the supervised learn-
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ing performance. One way to achieve this is to have
three requirements: i) the number of clusters grows
as k ∼ O(log(n)); ii) each cluster must have at least
a ∼ O(n/ log2(n)) labeled points; iii) each spectral
cluster must have at least b ∼ O(m/ log2(n)) unla-
beled points. The first sets the number of clusters k,
allowing more clusters and thus handling more com-
plex problems as labeled data size grows, while suffer-
ing only a logarithmic performance loss compared to
a supervised learner if the manifold assumption fails.
The second requirement ensures that each decision set
has O(n) labeled points up to log factor2. The third
is similar, and makes spectral clustering more robust.

Spectral clustering with minimum size constraints a, b
on each cluster is an open problem. Directly en-
forcing these constraints in graph partitioning leads
to difficult integer programs. Instead, we enforce
the constraints in k-means (step 4) of spectral clus-
tering. Our approach is a straightforward extension
to the constrained k-means algorithm of Bradley et
al. (Bradley, Bennett & Demiriz 2000). For point xi,
let Ti1 . . . Tik ∈ R be its cluster indicators: ideally,
Tih = 1 if xi is in cluster h, and 0 otherwise. Let
c1 . . . ck ∈ Rd denote the cluster centers. Constrained
k-means is the iterative minimization over T and c of
the following problem:

min
T,c

∑n+m
i=1

∑k
h=1 Tih‖xi − ch‖2

s.t.
∑k

h=1 Tih = 1, T ≥ 0∑n
i=1 Tih ≥ a,

∑n+m
i=n+1 Tih ≥ b, h = 1 . . . k, (2)

where we assume the points are ordered so that the
first n points are labeled. Fixing T , optimizing over
c is trivial, and amounts to moving the centers to the
cluster means.

Bradley et al. showed that fixing c and optimizing T
can be converted into a Minimum Cost Flow problem,
which can be exactly solved. In a Minimum Cost Flow
problem, there is a directed graph where each node is
either a “supply node” with a number r > 0, or a
“demand node” with r < 0. The arcs from i → j is
associated with cost sij , and flow tij . The goal is to
find the flow t such that supply meets demand at all
nodes, while the cost is minimized:

min
t

∑
i→j

sijtij s.t.
∑

j

tij −
∑

j

tji = ri, ∀i. (3)

For our problem (2), the corresponding Minimum Cost
Flow problem is shown in Figure 4. The supply nodes
are x1 . . . xn+m with r = 1. There are two sets of clus-
ter center nodes. One set c`

1 . . . c`
k, each with demand

2The square allows the size ratio between two clusters
to be arbitrarily skewed as n grows. We do not want to fix
the relative sizes of the decision sets a priori.

r = −a, is due to the labeled data size constraint.
The other set cu

1 . . . cu
k , each with demand r = −b,

is due to the unlabeled data size constraint. Finally,
a sink demand node with r = −(n + m − ak − bk)
catches all the remaining flow. The cost from xi to ch

is sih = ‖xi − ch‖2, and from ch to the sink is 0. It is
then clear that the Minimum Cost Flow problem (3)
is equivalent to (2) with Tih = tih and c fixed. Inter-
estingly, (3) is proven to have integer solutions which
correspond exactly to the desired cluster indicators.

Figure 4: The Minimum Cost Flow problem

Once size-constrained spectral clustering is completed,
the n+m points will each have a cluster index in 1 . . . k.
We define k decision sets {Ĉi}k

i=1 by the Voronoi cells
around these points: Ĉi = {x ∈ RD | x’s Euclidean
nearest neighbor among the n + m points has cluster
index i}. We train a separate predictor f̂i for each
decision set using the labeled points in that decision
set, and a user-specified supervised learner. During
test time, an unseen point x∗ ∈ Ĉi is predicted as
f̂i(x∗). Therefore, the unlabeled data in our algorithm
is used merely to determine the decision sets.

4 EXPERIMENTS

Data Sets. We experimented with five synthetic (Fig-
ure 5) and one real data sets. Data sets 1–3 are for
regression, and 4–6 are for classification: (1). Dol-
lar sign contains two intersecting manifolds. The “S”
manifold has target y varying from 0 to 3π. The “|”
manifold has target function y = x·3 + 13, where x·3
is the vertical dimension. White noise ε ∼ N (0, 0.012)
is added to y. (2) Surface-sphere slices a 2D sur-
face through a solid ball. The ball has target function
y = ||x||, and the surface has y = x·2 − 5. (3) Den-
sity change contains two overlapping rectangles. One
rectangle is wide and sparse with y = x·1, the other is
narrow and five times as dense with y = 10−5x·1. To-
gether they produce three decision sets. (4) Surface-
helix has a 1D toroidal helix intersecting a surface.
Each manifold is a separate class. (5) Martini is
a composition of five manifolds (classes) to form the
shape of a martini glass with an olive on a toothpick, as
shown in Figure 5(e). (6) MNIST digits. We scaled
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Figure 5: Regression MSE (a-c) and classification error (d-e) for synthetic data sets. All curves are based on
M = 20000, 10-trial averages, and error bars plot ±1 standard deviation. Clairvoyant classification error is 0.

down the images to 16 x 16 pixels and used the official
train/test split, with different numbers of labeled and
unlabeled examples sampled from the training set.

Methodology & Implementation Details. In all
experiments, we report results that are the average of
10 trials over random draws of M unlabeled and n la-
beled points. We compare three learners: [Global]:
supervised learner trained on all of the labeled data,
ignoring unlabeled data. [Clairvoyant]: with the
knowledge of the true decision sets, trains one su-
pervised learner per decision set. [SSL]: our semi-
supervised learner that discovers the decision sets us-
ing unlabeled data, then trains one supervised learner
per decision set. After training, each classifier is eval-
uated on a massive test set, also sampled from the un-
derlying distribution, to estimate generalization error.
We implemented the algorithms in MATLAB, with
Minimum Cost Flow solved by the network simplex
method in CPLEX. We used the same set of param-
eters for all experiments and all data sets: We chose
the number of decision sets to be k = d0.5 log(n)e.
To obtain the subset of m unlabeled points, we let
the neighborhood size |N(x)| = b3 log(M)c. When
creating the graph W , we used b1.5 log(m + n)c near-
est Mahalanobis neighbors, and an RBF bandwidth
σ = 0.2 to convert Hellinger distances to edge weights.
The size constraints were a = b1.25n/log2(n)c, b =
b1.25m/log2(n)c. Finally, to avoid poor local optima
in spectral clustering, we ran 10 random restarts for
constrained k-means, and chose the result with the
lowest objective. For the regression tasks, we used
kernel regression with an RBF kernel, and tuned the
bandwidth parameter with 5-fold cross validation us-
ing only labeled data in each decision set (or glob-
ally for “Global”). For classification, we used a sup-
port vector machine (LIBSVM) with an RBF kernel,
and tuned its bandwidth and regularization parame-
ter with 5-fold cross validation. We used Euclidean
distance in each decision region for the supervised

learner, but we expect performance with geodesic dis-
tance would be even better.

Results of Large M : Figure 5 reports the results
for the five synthetic data sets. In all cases, we used
M = 20000, n ∈ {20, 40, 80, 160, 320, 640}, and the
resulting regressors/classifiers are evaluated in terms
of MSE or error rate using a test set of 20000 points.
These results show that our SSL algorithm can dis-
cover multiple manifolds and changes in density well
enough to consistently outperform SL in both regres-
sion and classification settings of varying complexity3.
We also observed that even under- or over-partitioning
into fewer or more decision sets than manifolds can still
improve SSL performance4.

We performed three experiments with the digit recog-
nition data: binary classification of the digits 2 vs 3,
and three-way classification of 1, 2, 3 and 7, 8, 9. Here,
we fixed n = 20, M = 5000, 10 random training tri-
als, each tested on the official test set. Table 2 con-
tains results averaged over these trials. SSL outper-
forms Global in all three digit tasks, and all differences
are statistically significant (α = 0.05). Note that we
used the same parameters as the synthetic data exper-
iments, which results in k = 2 decision sets for n = 20;
again, the algorithm performs well even when there are
fewer decision sets than classes. Close inspection re-
vealed that our clustering step creates relatively pure
decision sets. For the binary task, this leads to two

3Though not shown in Figure 5, we found that a
standard graph-based SSL algorithm manifold regulariza-
tion (Belkin et al. 2006), using Euclidean kNN graphs with
RBF weights and all parameters tuned using cross valida-
tion, performs worse than Global on these datasets due to
the strong connections across manifolds.

4We compared Global and SSL’s 10 trials at each n
using two-tailed paired t-tests. SSL was statistically sig-
nificantly better (α = 0.05) in the following cases: dollar
sign at n = 20–80, density at n = 40–640, surface-helix at
n = 20–320, and martini at n = 40–320. The two methods
were statistically indistinguishable in other cases.
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Table 2: 10-trial average test set error rates ± one
standard deviation for handwritten digit recognition.

Method 2 vs 3 1, 2, 3 7, 8, 9
Global 0.17± 0.12 0.20± 0.10 0.33± 0.20
SSL 0.05± 0.01 0.10± 0.04 0.20± 0.10

M = 1000 M = 3162 M = 10000

0.19± 0.04 0.12± 0.02 0.04± 0.008

Figure 6: Effect of varying M for the surface-helix data
set (n = 80). See text for details.

trivial classification problems, and errors are due only
to incorrect assignments of test points to decision sets.
For the 3-way tasks, the algorithm creates 1+2 and 3
clusters, and 7+9 and 8 clusters.

Effect of Too Small an M : Finally, we examine
our SSL algorithm’s performance with less unlabeled
data. For the surface-helix data set, we now fix n = 80
(which leads to k = 3 decision sets) and reduce M .
Figure 6 depicts example partitionings for three M
values, along with 10-trial average error rates (± one
standard deviation) in each setting. Note these are
top-down views of the data in Figure 5(d). When M
is small, the resulting subset of m unlabeled points
is too small, and the partition boundaries cannot be
reliably estimated. Segments of the helix shown in red
and areas of the surface in blue or green correspond to
such partitioning errors. Nevertheless, even when M is
as small as 1000, SSL’s performance is no worse than
Global supervised learning, which achieves an error
rate of 0.20± 0.05 when n = 80 (see Figure 5(d)).

Conclusions: We have extended SSL theory and
practice to multi-manifolds. A detailed analysis of
geodesic distances, automatic parameter selection, and
large scale empirical study remains as future work.
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