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Abstract

As computer architectures move towards multi-
core we must build a theoretical understanding
of parallelism in machine learning. In this paper
we focus on parallel inference in graphical mod-
els. We demonstrate that the natural, fully syn-
chronous parallelization of belief propagation is
highly inefficient. By bounding the achievable
parallel performance in chain graphical models
we develop a theoretical understanding of the
parallel limitations of belief propagation. We
then provide a new parallel belief propagation
algorithm which achieves optimal performance.
Using two challenging real-world tasks, we em-
pirically evaluate the performance of our algo-
rithm on large cyclic graphical models where we
achieve near linear parallel scaling and out per-
form alternative algorithms.

1 INTRODUCTION
Physical and economic limitations have forced computer
architecture towards parallelism and away from exponen-
tial frequency scaling. Meanwhile increased access to
ubiquitous sensing and the web continue to fuel exponen-
tial growth in the size of machine learning tasks. To en-
sure that graphical model based techniques continue to
scale with hardware improvements and match the growth
in problem size, we must develop a theoretical understand-
ing of parallelism in graphical models and design new al-
gorithms to leverage that parallelism.

Efficient inference is critical to the effective application of
graphical models to large scale real world tasks. Research
by [Nallapati et al., 2007, Newman et al., 2008] in statisti-
cal text clustering with Latent Dirichlet Allocation (LDA)
has produced sophisticated parallel variational inference
methods for latent topic models. However, this work does
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not directly address general inference. Alternatively, [Pen-
nock, 1998] provide a parallel exact inference algorithm
and strong asymptotic analysis in settings where many pro-
cessors are available and exact inference is tractable. How-
ever, this work does not consider approximate inference,
which is typically necessary for large complex models. Fi-
nally, work by [Chu et al., 2006] provides more general in-
sight into the parallelism afforded by the Statistical Query
Model (SQM) of [Kearns, 1998]. However, the SQM is
already embarrassingly parallel, i.e. having completely in-
dependent computational components, and does not effi-
ciently represent many challenging machine learning tasks.
We will show that the embarrassingly parallel form of be-
lief propagation, using fully synchronous updates, is actu-
ally asymptotically inefficient in the parallel setting.

In this work, we focus on the parallelism exposed by in-
ference algorithms which can be represented by passing
messages along edges in a graph. Belief propagation (BP),
a popular message passing algorithm, is considered to be
naturally parallel and recent work by [Casado et al., 2007,
Mendiburu et al., 2007] give basic parallel implementations
of BP but provide no theoretical insight into their perfor-
mance. We develop a theoretical understanding of the lim-
iting sequential component of BP and its relationship to the
graph structure, factors, and desired approximation accu-
racy.

Using our theoretical foundation, we develop a new parallel
approximate inference algorithm, ResidualSplash, which
performs asymptotically better than embarrassingly par-
allel BP and achieves the optimal running time in chain
graphical models. We evaluate the performance of our al-
gorithm on two challenging real-world tasks. More specif-
ically, our key contributions are:

• A natural Map-Reduce based embarrassingly parallel
BP algorithm and an analysis of its parallel scaling.
• The τε-approximation for characterizing approximate

BP inference, a formal analysis of the parallelism ex-
posed by τε-approximate inference, and a lower bound
on the theoretically achievable parallel running time
for chain graphical models.
• A new parallel approximate inference algorithm,

ResidualSplash, which performs optimally on chain
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graphical models and extends to arbitrary cyclic mod-
els using an efficient dynamic scheduling.

• An empirical evaluation of our new algorithm on two
types of cyclic graphical models, demonstrating that it
outperforms other proposed techniques.

2 BELIEF PROPAGATION
Graphical models provide compact representations of large
probability distributions. Without loss of generality, we
consider only pairwise Markov Random Fields (MRFs),
as any graphical model can be transformed into a pair-
wise MRF (cf. [Koller and Friedman]). Consider the set
of n discrete random variables X = {X1, . . . , Xn} each
taking on values Xi ∈ Ai. A pairwise MRF is an undi-
rected graph G = (V,E) where the vertices V corre-
spond to the random variables and the edges E corre-
spond to dependencies between variables encoded by func-
tions (factors) {ψi,j : Ai ×Aj → R+ | {i, j} ∈ E}. Ad-
ditionally, each vertex has a corresponding node function,
{ψi : Ai → R+ | i ∈ V }. The joint distribution over X is

P (x1, . . . , xN ) ∝
∏
i∈V

ψi(xi)
∏

{i,j}∈E

ψi,j(xi, xj).

The node marginals of graphical models are central to
learning and inference. While computing exact marginals
is NP-hard in general, [Pearl, 1988] proved that the BP
may be used to efficiently compute the exact marginals in
acyclic graphical models.

Node marginals are computed in BP by iteratively “send-
ing” (computing) messages in both directions along edges
in the graph. The message sent from vertex i to vertex j
along {i, j} ∈ E is the function

mi→j(xj) ∝
∑
xi∈Ai

ψi,j(xi, xj)ψi(xi)
∏

k∈Γi\j

mk→i(xi),

which encodes the “belief” variable Xi has about the value
of Xj . Here, Γi ⊆ V is the set of neighbors of vertex i.
Messages are typically initialized to uniform distributions
and normalized to ensure numerical stability.

We can represent each individual message as a vector in the
vector space (R+)|Aj | and all messages jointly as a vector
in M = ⊗ni=1Ai, the cartesian product. For m ∈ M
denote ith message by mi. The BP algorithm can then
be expressed as the iterative application of some function
fBP : M → M such that m(t) = fBP(m(t−1)) and
m(t),m(t−1) ∈ M. We define m∗ ∈ M as a fixed-point
m∗ = fBP(m∗).

In synchronous BP, all vertices simultaneously
compute their outbound messages at every itera-
tion using the messages from the previous iteration,
i.e., m(t) = (fBP(m(t−1))1, . . . , fBP(m(t−1))2|E|).
In asynchronous BP, messages are updated se-
quentially using the most recent messages, i.e.,

m(t) = (m(t−1)
1 , . . . , fBP(m(t−1))k, . . .m

(t−1)
2|E| ), for

some message mk. In both synchronous and asynchronous
BP, messages are sent until some convergence criterion
is reached. For a small constant β ≥ 0, we use the
convergence criterion

max
i,j∈V

∣∣∣∣∣∣m(new)
i→j (xj)−m(old)

i→j (xj)
∣∣∣∣∣∣

1
≤ β. (2.1)

The estimates of the marginal distributions are then

P (Xi = xi) ≈ bi(xi) ∝ ψi(xi)
∏
k∈Γi

mk→i(xi).

While BP is guaranteed to converge to the exact marginals
in acyclic graphs, there are few guarantees for conver-
gence or correctness in general graphs. Nonetheless, BP
on “loopy” graphs (often referred to as Loopy BP ) is used
extensively with great success as an approximate infer-
ence algorithm [McEliece et al., 1998, Sun et al., 2003,
Yedidia et al., 2003, Yanover and Weiss, 2002, Yanover
et al., 2007].

We introduce the concept of awareness to capture the
underlying sequential structure of BP inference. Intu-
itively, awareness captures the “flow” of message informa-
tion along edges in a graph. If messages are passed se-
quentially along a chain of vertices starting at vertex i and
terminating at vertex j then vertex j is aware of vertex i.

Definition 2.1 (Awareness). Vertex j is aware of ver-
tex i if there exists a chain of connected edges
{{i, v1} , {v1, v2} , . . . , {vm, j}} ⊆ E, and a sequence
of messages [m(t1)

i→v1 ,m
(t2)
v1→v2 , . . . ,m

(tm)
vm→j ] such that each

message was computed using the previous message in the
sequence t1 < . . . < tm.

The definition of awareness leads to a few useful proper-
ties. On the kth iteration of synchronous BP, every vertex
is aware of all reachable vertices at a distance k or less.
In an acyclic MRF, if a vertex is aware of all reachable
vertices, then its current belief is exact. Consequently, syn-
chronous BP on an acyclic MRF of diameter d converges
to the exact marginals in d iterations. In the next section we
use awareness to expose inefficiency in synchronous belief
propagation and identify the parallel limits.

3 PARALLEL SYNCHRONOUS BP
Belief propagation presents several opportunities for par-
allelism. The individual message sums and products can
be expressed as parallel matrix operations. However, for
the typical message sizes |Ai| << n graph level paral-
lelism between message updates is likely to be asymptot-
ically more beneficial. As a consequence, we define run-
ning time in terms of the number of message computations,
treating individual message updates as atomic unit time op-
erations.
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Algorithm 1: Multicore MapReduceBP Algorithm

while Not Converged do
Swap(m(new),m(old));1

forall i→ j ∈ E do in parallel
bi\j(xi)← ψi(xi)

∏
k∈Γi\{j}m

old
k→i(xi) ;2

mnew
i→j(xj)←

∑
xi∈Ai ψi,j(xi, xj)bi\j(xi);3

// Finished an Iteration

The parallel nature of the synchronous message updates
suggests that BP is an embarrassingly parallel algorithm.
Specifically, given the messages from the previous itera-
tion, each new message can be computed completely inde-
pendently and in any order. Additionally, message updates
are idempotent; repeated calculations of the new messages
will not change the result.

Map-Reduce, introduced by [Dean and Ghemawat, 2008],
is a popular framework for encoding embarrassingly par-
allel algorithms that are associative and idempotent. In
the Map-Reduce framework, an algorithm is specified by a
Map operation, which transforms the input, and a Reduce
operation, which combines the results of the map operation.

We can naturally encode synchronous BP as an iterative
Map-Reduce algorithm (Alg. 1) where the Map operation is
applied to all vertices and emits destination-message key-
value pairs and the Reduce operation joins messages at
their destination vertex. In a parallel shared memory setting
the Reduce operation is accomplished by swapping old
and new message sets.

The messages are updated in parallel (Line 2 and Line 3
of Alg. 1) without locking, and all updated messages are
written directly to shared memory. Only Line 1 of Alg. 1
requires synchronization to ensure all processors have con-
sistent new and old message sets.

While MapReduceBP may appear to be an ideal parallel al-
gorithm, we show that it can perform asymptotically slower
than running asynchronous BP on a single processor. We
begin by bounding the parallel running time of MapRe-
duceBP.

Theorem 3.1 (Map-Reduce Exact Inference in Trees).
Given an acyclic MRF with n vertices, diameter d, and
p ≤ 2(n − 1) processors (Mappers), MapReduceBP will
compute exact marginals in time Θ (max(nd/p, d)).

Proof of Theorem 3.1. Each iteration of MapReduceBP,
splits 2(n−1) message updates over p processors and there-
fore takes d2(n− 1)/pe ≤ 2(n − 1)/p + 1 time to com-
plete. Because MapReduceBP is a strict parallelization of
synchronous BP, it will converge in d iterations.

To illustrate how poorly MapReduceBP performs, we an-
alyze the running time on a chain graphical model with n

1

(a) Single Sequential

1

2

(b) Optimal Parallel

Figure 1: (a) The optimal forward-backwards message ordering
for exact inference on a chain using a single processor. (b) The
optimal message ordering for exact inference on a chain using two
processors.

variables. We use chain graphical models as a theoretical
benchmark for parallel BP because they directly capture the
limiting sequential structure of awareness and are a sub-
problem in both acyclic and cyclic graphical models.

The length of the chain and minimum running time, n− 1,
is achieved using p = 2(n − 1) processors. However,
the optimal single processor asynchronous scheduling for
a chain graph (Fig. 1(a)) is achieved by passing mes-
sages forward (m1→2, . . . ,mn−1→n) and then backward
(mn→n−1, . . . ,m2→1), with total running time 2(n − 1).
Therefore we only reduce the running time by half using
p = 2(n− 1) processors (2 processors per edge)!

Surprisingly, if we use fewer than p = n−1 processors, the
parallel MapReduceBP will perform slower than the asyn-
chronous algorithm using only a single processor. If we use
any constant number of processors (p = 2) in parallel, than
the MapReduceBP algorithm will run in quadratic time
while the sequential single processor version will run in
linear time. Alternatively, using two processor (p = 2) and
computing the forward and backward asynchronous mes-
sage schedule in parallel (Fig. 1(b)), we achieve the same
running time n− 1 as MapReduceBP using p = 2(n− 1).

While messages may be computed in any order, awareness
is propagated sequentially. On every iteration of MapRe-
duceBP only a few message computations increase aware-
ness while the rest are wasted. In the next section we char-
acterize approximate inference in acyclic graphical models
and show how this can reduce the limiting sequential struc-
ture and expose greater parallelism.

4 τε-APPROXIMATE INFERENCE
It was shown by [Ihler et al., 2005] that message errors de-
cay along paths. Intuitively, for a long chain graph with
weak edge potentials, distant vertices are approximately in-
dependent. For a particular vertex, an accurate approxima-
tion may often be achieved by considering only the small
subgraph around that vertex. By limiting vertex awareness
to its local vicinity, we can reduce the sequential compo-
nent of BP to the longest path in the subgraph.

For a given graphical model we define, in Definition 4.1,
the size of the largest subgraph required to achieve a given
approximation accuracy. Intuitively, τε is the earliest itera-
tion of MapReduceBP at which every message is less than
ε away from its value at convergence.
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Definition 4.1 (τε-Approximation). Given an acyclic1

MRF, we define a τ -approximate message m̃
(τ)
i→j as the

message from vertex i to vertex j when vertex j is first
aware of all vertices within a distance of τ . For a given
error, ε, we define a τε-Approximation as the smallest τ
such that for the fixed point m∗ = fBP(m∗)

max
{u,v}∈E

∣∣∣∣∣∣m̃(τ)
u→v −m∗u→v

∣∣∣∣∣∣
1
≤ ε (4.1)

Under the condition that fBP is a contraction mapping2 we
can directly relate the τε in Definition 4.1 to the actual BP
termination condition. If fBP is a max-norm contraction
mapping then for the fixed point m∗ and 0 ≤ α < 1,

||fBP(m)−m∗||∞ ≤ α ||m−m
∗||∞ .

Here the L∞-norm is defined in terms of the maximum of
the individual message norms,∣∣∣∣∣∣m(i) −m(j)

∣∣∣∣∣∣
∞

= max
{u,v}∈E

∣∣∣∣∣∣m(i)
u→v −m(j)

u→v

∣∣∣∣∣∣
1

If the contraction rate α is known, and we desire an ε ap-
proximation of the fixed point, τε is the smallest value such
that ατε ||m0 −m∗||∞ ≤ ε. This is satisfied by setting

τε ≤
⌈

log(2/ε)
log(1/α)

⌉
.

Finally, in Eq. (4.2) we observe that the convergence crite-
rion, ||m− f(m)||∞ defined in Eq. (2.1), is a constant fac-
tor upper bound on the distance between m and the fixed
point m∗. If we desire an ε approximation, it is sufficient
to set the convergence criterion β ≤ ε(1− α).

||m−m∗||∞ = ||m− fBP(m) + fBP(m)−m∗||∞
≤ ||m− fBP(m)||∞ + ||fBP(m)−m∗||∞
≤ ||m− fBP(m)||∞ + α ||m−m∗||∞

||m−m∗||∞ ≤ 1
1− α

||m− fBP(m)||∞ (4.2)

It is important to note that in practice α is likely to be un-
known or the MRF may not satisfy the contraction mapping
conditions. Furthermore, it may be difficult to determine τε
without first running the inference algorithm. Ultimately,
our results only rely on τε as a theoretical tool for compar-
ing inference algorithms and understanding parallel con-
vergence behavior.

Returning to MapReduceBP, we see that the running time
improves as we replace d, the diameter of the graph, with
τε to achieve the desired τε approximation.

1It is possible to extend Definition 4.1 to arbitrary cyclic
graphs by considering the possibly unbounded computation tree
described by Weiss [2000].

2Mooij and Kappen [2007] provide sufficient conditions for
fBP(m) to be a contraction mapping under a variety of norms in-
cluding a variation of the max-morm.

Theorem 4.1 (τε-Approximation MapReduce Running
Time). Given an acyclic MRF with n vertices a τε-
approximation is obtained by running MapReduceBP with
p processors (p ≤ n) in running time Θ (nτε/p).
Proof of Theorem 4.1. We know that each iteration will
take d2(n− 1)/pe time to complete. From Definition 4.1
it trivially follows that a τε-approximation is obtained in
exactly τε iterations.

However, even with this reduction in runtime, we show
that on a simple chain graph, the performance of MapRe-
duceBP is still far from optimal.

Theorem 4.2 (τε-Approximate Parallel Lower Bound).
For an arbitrary chain graph with n vertices and p proces-
sors, a τε-approximation cannot in general be computed
with a running time less than Ω (n/p+ τε).
Proof of Theorem 4.2. The messages sent in opposite di-
rections are independent and the amount of work in each
direction is symmetric. Therefore, we can reduce the prob-
lem to computing a τε-approximation in one direction (X1

to Xn) using p/2 processors. Furthermore, to achieve a
τε-approximation, we need exactly n − τε vertices from
{Xτε+1, . . . , Xn} to be τε left-aware. (i.e., for all i > τε,
Xi is aware of Xi−τε ).

Let each processor compute a set of k ≥ τε message
updates in sequence (e.g., [m(1)

1→2,m
(2)
2→3, . . . ,m

(k)
k−1→k]).

Because after the first τε updates all additional updates
make exactly one more vertex left-aware, each processor
can make at most k − τε + 1 vertices left-aware. Requir-
ing all p/2 processors to act simultaneously, we observe
that pre-emption will only decrease the number of vertices
made τε left-aware. We obtain the following inequality:

n− τε ≤ p

2
(k + τε − 1)

k ≥ 2n
p

+ τε

(
1− 2

p

)
− 1 (4.3)

relating required amount of work and the maximum
amount of work done on the kth iteration. For p > 2,
Eq. (4.3) provides the desired asymptotic result.

We observe from Theorem 4.1, that MapReduceBP has
a runtime multiplicative in τε and n whereas the optimal
bounds are only additive. To illustrate the size of this gap,
consider a chain of length n, with τε =

√
n. The MapRe-

duceBP running time isO
(
n3/2/p

)
, while the optimal run-

ning time is O (n/p+
√
n) = O (n/p). In the next section

we present an algorithm that achieves this optimal bound.

5 THE RESIDUALSPLASH ALGORITHM
We now give a general parallel inference algorithm that
achieves the lower bound for chain graphical models and
generalizes to arbitrary cyclic graphical models. Our opti-
mal algorithm is built around the Splash operation (Alg. 2)
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Algorithm 2: Splash (v, h)
input: vertex v
bfs order← ConstructBFSOrdering(v,h)
// Make Root Aware of Leaves
foreach i ∈ ReverseOrder(bfs order) do1

SendMessages(i)

// Make Leaves Aware of Root
foreach i ∈ bfs order do2

SendMessages(i)

which is a natural generalization of the optimal sequential
ordering described in Fig. 1(a) to arbitrary cyclic graphs
described in Fig. 2.

The Splash operation grows a shallow breadth first
search tree of height h around a vertex v using
ConstructBFSOrdering(v, h) and then sequentially
sends messages from the leaves to the root and then back to
the leaves. The function SendMessages(i) updates all
outbound messages from vertex i using the most recent in-
bound messages. Each individual message update is done
atomically with a unique read-write lock for each message.

To schedule Splash operations, we extend the residual
heuristic introduced by Elidan et al. [2006] which priori-
tizes message updates based on their residual, greedily op-
timizing the convergence criterion given in Eq. (2.1). The
residual of a message is defined as the difference between
its current value and its value when it was last used (i.e.,∣∣∣∣mnext

i→u −mlast
i→u

∣∣∣∣
1
). The residual heuristic proposed by

Elidan et al. [2006] updates the message with highest resid-
ual first and then updates the dependent message residuals
by temporarily computing their new values.

Here we define a scheduling over vertices and not mes-
sages. The priority (residual) of a vertex is the maximum
of the residuals of the incoming messages.

ru = sup
i∈Γu

∣∣∣∣mnext
i→u −mlast

i→u
∣∣∣∣

1
(5.1)

Intuitively, vertex residuals capture the amount of new in-
formation available to a vertex. Recomputing outbound
messages from a vertex with unchanged inbound messages
results in a wasted update. Once the SendMessages
operation is applied to a vertex, its residual is set to zero
and its neighboring vertices residuals are updated. Vertex
scheduling has the advantage over message residuals of us-
ing the most recent information when updating a message.

Using the vertex residual defined in Eq. (5.1) as a schedul-
ing priority, we give the parallel ResidualSplash algorithm
(Alg. 3) which maintains a shared residual priority queue
over vertices. We initialize the queue by setting the pri-
ority of all vertices to an arbitrary value greater than the
maximum vertex residual. This ensures that each vertex is
updated at least once before convergence. Then, each pro-

1 39

25 6

8 4 7

Figure 2: A splash of size h = 2 starting on vertex 1, encir-
cled by a dotted ring. The dark vertices and edges represent the
BFS tree rooted at vertex 1. The SendMessages operation is
invoked on the sequence of vertices (9, 8, . . . , 2, 1, 2, . . . , 8, 9).
In this figure SendMessages is being applied to vertex 3 where
the dotted arrows represent the received messages and the solid
arrows represent the newly updated messages.

Algorithm 3: ResidualSplash Algorithm
input: Constants h, β
Q← InitializeQueue(Q)
Set All Residuals to∞
forall processors do in parallel

while TopResidual(Q) > β do
v ← Pop(Q)
Splash(v, h)1

foreach v ∈ Vertices Affected By the Splash
do

Update(Q, Residual(v))
Push(Q, (v, Residual(v)))

cessor removes the top vertex from the queue and applies
the Splash operation.

We now show that, in expectation, the ResidualSplash algo-
rithm achieves the optimal running time from Theorem 4.2
for chain graphical models. We begin by relating the Splash
operation to the vertex residuals.

Lemma 5.1 (Splash Residuals). Immediately after the
Splash operation is applied to an acyclic graph all vertices
interior to the Splash have zero residual.

Proof of Lemma 5.1. The proof follows naturally from the
convergence of BP on acyclic graphs. The Splash operation
runs BP to convergence on the subgraph contained within
the Splash. As a consequence all messages along edges in
the subgraph will, temporarily, have zero residual.

After a Splash is completed, the residuals associated with
vertices interior to the Splash are propagated to the exte-
rior vertices along the boundary of the Splash. Repeated
application of the Splash operation will continue to move
the boundary residual leading to Lemma 5.2.

Lemma 5.2 (Basic Convergence). Given a chain graph
where only one vertex has nonzero residual, the Residual-
Splash algorithm with Splash size h will run in O (τε + h)
time.
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Proof. When the first Splash, originating from the vertex
with nonzero residual is finished, the interior of the Splash
will have zero residual as stated in 5.1, and only the bound-
ary of the Splash will have non-zero residual. Because all
other vertices initially had zero residual and messages in
opposite directions do not interact, each subsequent Splash
will originate from the boundary of the region already cov-
ered by the previous Splash operations. By definition the
convergence criterion is achieved after the high residual
messages at the originating vertex propagate a distance τε.
However, because the Splash size is fixed, the Splash oper-
ation may propagate messages an additional h vertices.

If we set the initial residuals to ensure that the first p paral-
lel Splashes are uniformly spaced, ResidualSplash obtains
the optimal lower bound.
Theorem 5.3 (Splash Chain Optimality). Given a chain
graph with n vertices and p ≤ n processors we can apply
the ResidualSplash algorithm with the Splash size set to
h = n/p and uniformly spaced initial Splashes to obtain a
τε-approximation in expected running time O (n/p+ τε).
Proof of Theorem 5.3. We set every n/p vertex{
Xn/2p, X3n/2p, X5n/2p, . . .

}
to have slightly higher

residual than all other vertices forcing the first p Splash
operations start on these vertices. Since the height of
each splash is also h = n/p, all vertices will be visited
in the first p splashes. Specifically, we note that at each
Splash only produces 2 vertices of non-zero residual (see
Lemma 5.1). Therefore there are at most O (p) vertices of
non-zero residual left after the first p Splashes.

To obtain an upper bound, we consider the runtime ob-
tained if we compute independently, each τε subtree rooted
at a vertex of non-zero residual. This is an upper bound
as we observe that if a single Splash overlaps more than
one vertex of non-zero residual, progress is made simulta-
neously on more than one subtree and the running time can
only be decreased.

From Lemma 5.1, we see that the total number of up-
dates needed including the initial O (p) Splash operations
is O (p(τε + h)) + O (n) = O (n+ pτε). Since work is
evenly distributed, each processor performs O (n/p+ τε)
updates.

In practice, when the graph structure is not a simple chain
graph, it may be difficult to evenly space Splash operations.
By randomly placing the initial Splash operations we can
obtain a factor log(p) approximation in expectation.
Corollary 5.4 (Splash with Random Initialization). If all
residuals are initialized to a random value greater than the
maximum residual, the total expected running time is at
most O (log(p)(n/p+ τε)).
Proof. Partition the chain graph into p blocks of size n/p.
If a Splash originates in a block then it will update all ver-
tices interior to the block. The expected time to Splash

(collect) all p blocks is upper bounded3 by the coupon col-
lectors problem. Therefore, at most O (p log(p)) Splash
operations (rather than the p Splash operations used in The-
orem 5.3) are required in expectation to update each vertex
at least once. Using the same method as in Theorem 5.3, we
observe that the running time is O (log(p)(n/p+ τε)).

In practice, by augmenting the Splash operation to prune
branches of the BFS when vertices with residuals less than
the termination threshold are reached, we were able to fur-
ther improve performance. We then set τ to be relatively
large and allow the pruning heuristic to regulate the sizes
of each Splash. We note that Theorem 5.3 still holds under
this heuristic.

5.1 MEMORY LOCKS AND SYNCHRONIZATION

All processors in the ResidualSplash algorithm share a sin-
gle message set and priority queue. Separate synchroniza-
tion locks for each message ensure exclusive read and ex-
clusive write message operations. Because there are often
many more messages than processors, message contention
is rare. Additionally, we minimize the impact of synchro-
nization on the shared priority queue by representing it
internally as a collection of priority queues with separate
locks for each queue.

5.2 MEMORY EFFICIENCY

Ensuring that the maximum amount of productive compu-
tation for each access to memory is critical when many
cores share the same memory bus and cache. Updating
all messages emanating from a vertex in SendMessages,
maximizes the productive work for each message read. The
sequential Splash operation ensures that all interior mes-
sages are received soon after they are sent and before being
evicted from cache. Profiling experiments indicate that the
ResidualSplash algorithm reduces cache misses over the
basic residual BP algorithm (ResidualSplash with h = 1).

6 EXPERIMENTS

Protein side chain prediction is an important sub-task of the
protein folding problem which can be framed as finding the
energy minimizing joint assignment to a pairwise MRF. We
used 276 protein side chain models provided by [Yanover
et al., 2007]. The models vary in complexity with up to 700
variables and angle discretizations ranging from 2 to 79.
Due to the high dynamic range in the node and edge po-
tentials, log-space message calculations were required. In
addition, message damping (α = 0.4) was used to improve
convergence. We obtained the true angles used in [Yanover
et al., 2007] to assess the quality of our MAP estimates and
we report the prediction accuracy. The protein MRFs test
parallel inference techniques in settings where variables are

3In practice, are removed between parallel round, resulting in
fewer collection steps then the coupon collectors problem.
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highly connected and share strong interactions. The vol-
ume of each Splash was initially set to be the size of the
graph and using the pruning heuristic quickly diminished.

To evaluate ResidualSplash on large regular graphical mod-
els, we created the popup video task in which we extended
the monocular single image depth reconstruction work of
[A. Saxena, 2007] to videos. We constructed a three-
dimensional grid-graph representing the depth of each pixel
and imposing continuity within frames and across time.
We used Laplacian inter-frame potentials with the scale
parameter determined experimentally. We discretized the
depths to 40, 80, and 120 levels to test the effect of mes-
sage sizes on parallel performance. In our experiments,
we used 50 frames and sliced each frame into a 107 × 86
pixel grid resulting in a regular cube structured MRF with
50 × 107 × 86 = 460100 vertices. The popup video task
tests inference in the setting where connectivity is relatively
low and variable count is relatively high. The volume of
each Splash was initially set to of 1000.

6.1 IMPLEMENTATION

We implemented optimized versions of ResidualSplash,
MapReduceBP and several other base line algorithms in
C++ using PThreads. We have publicly released the code as
well as Matlab wrappers at [SelectLab, 2009]. To ensure a
fair comparison, all three algorithms used the same conver-
gence, update, and support code and only differed in what
order messages were updated or whether they were updated
synchronously. For all experiments, the Sum-Product vari-
ant of belief propagation was used and the termination con-
dition was set with ε = 10−5. Experiments were com-
piled using GCC 4.3.2 and tested using 64Bit Linux with
dual Quad-Core AMD Opteron 2.7GHz (2384) processors.
Each quad cores has a shared 6MB L3 cache. Profiling ex-
periments were performed with the OProfile profiler.

6.2 RESULTS

In Fig. 3(a,b) and Fig. 4(a,b) we compare the running time,
in seconds, and corresponding speedup of the Residual-
Splash, Residual BP, and MapReduceBP algorithms on
both tasks. The speedup represents the ratio of the p proces-
sor running time, of each algorithm over the running times
of the fastest single processor algorithm.

In both tasks the ResidualSplash algorithm significantly
outperformes the MapReduceBP algorithm, obtaining a
single core running time only slightly higher that the 8
core running time for MapReduce. Furthermore in both
tasks the ResidualSplash algorithm achieved near-linear to
super-linear performance scaling. When compared against
the Residual algorithm, ResidualSplash scaled compara-
bly on the protein side-chain task but significantly out-
performed Residual on the popup-video task. The popup-
video MRF is less tightly connected resulting in a smaller
τε relative to the diameter leading to an improved Residu-
alSplash performance. Furthermore the greater connectiv-

ity and state size of the protein side-chain prediction task
increases running time of the SendMessages operation
improving cache efficiency and reducing bus contention for
both algorithms.

We evaluated the role of bus contention by varying the dis-
cretization in the popup video task. While increasing the
discretization has a linear effect on the overall amount of
memory required, it has a quadratic effect on the work done
in the message updates. In Fig. 3(d) we see that increas-
ing the discretization decrease the cache miss rate implying
that the cache is used more efficiently. Finally, Fig. 3(c)
demonstrates that increasing the discretization leads to an
increase in the parallel performance suggesting that the
popup video task is bus limited.

In Fig. 4(c) we report the accuracy of the MAP estimates
for the protein sidechain prediction task using all three al-
gorithms. The prediction scores in Fig. 4(c) are comparable
to those obtained by [Yanover et al., 2007], and do not fluc-
tuate significantly as a function of the number of cores.

7 CONCLUSION

In this paper, we considered the problem of exploiting par-
allelism in belief propagation (BP). We showed that the
natural synchronous parallelization of BP, MapReduceBP,
performs asymptotically worse (quadratic in the number of
messages) than a single processor sequential implementa-
tion (linear in the number of messages) on chain models.

We introduced the concept of τε-approximate inference in
acyclic graphical models and showed that the available par-
allelism depends on the graph structure, potentials, and de-
sired level of approximation. In the τε-approximate setting,
we derived a lower bound on the parallel running time of
message passing inference in chain graphical models and
showed that the MapReduceBP algorithm does not achieve
this lower bound.

We then introduced the ResidualSplash algorithm which
achieves the lower bound and generalizes to arbitrary pair-
wise Markov Random Fields. Using the protein side chain
prediction task and a novel popup video task, we tested
ResidualSplash and found that it outperforms MapRe-
duceBP both in running time and parallel speedup.
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Figure 3: (a) Speedup relative to the fastest single core algorithm on popup video task. (b) Running times of all algorithms on the
popup video task. (c) Self speedup attained with different levels of depth discretization (i.e., |Ai| ∈ {40, 80, 120}). (d) Average cache
miss rate plotted on a logarithmic axis for the popup video task.
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Figure 4: (a) Xpeedup relative to the fastest single core algorithm on protein task. (b) Running times of all algorithms on protein task.
(c) Average accuracy of MAP estimates on the protein task.
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