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Abstract

Principal component analysis (PCA) is a
popular dimensionality reduction algorithm.
However, it is not easy to interpret which of
the original features are important based on
the principal components. Recent methods
improve interpretability by sparsifying PCA
through adding an L1 regularizer. In this pa-
per, we introduce a probabilistic formulation
for sparse PCA. By presenting sparse PCA
as a probabilistic Bayesian formulation, we
gain the benefit of automatic model selection.
We examine three different priors for achiev-
ing sparsification: (1) a two-level hierarchical
prior equivalent to a Laplacian distribution
and consequently to an L1 regularization, (2)
an inverse-Gaussian prior, and (3) a Jeffrey’s
prior. We learn these models by applying
variational inference. Our experiments ver-
ify that indeed our sparse probabilistic model
results in a sparse PCA solution.

1 Introduction

Principal component analysis (PCA) (Jolliffe, 1986)
is a popular tool for data analysis and dimensional-
ity reduction. In PCA, the derived principal compo-
nents (PCs) are orthogonal to each other and represent
the directions of largest variance. PCA captures the
largest information in the first few principal compo-
nents, guarantees minimal information loss and mini-
mal reconstruction error in a least squares sense. How-
ever, in PCA, the principal components are a linear
combination of all the original features, which makes
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the PCs difficult to interpret and explain. Rotation
methods are typically used to improve interpretabil-
ity of the PCs (Jolliffe, 1995). Another approach is
simple thresholding of PC loadings to identify impor-
tant features (Cadima & Jolliffe, 1995). A recent work
in linear regression called least absolute shrinkage and
selection operator (LASSO) selects relevant variables
by adding an L1 norm regularizer on the predictor
weights. The L1 term serves as a tractable estimate
to L0 and leads to sparse solutions. Elastic net (Zou
& Hastie, 2003) is an extension of LASSO that es-
sentially adds both an L1 and an L2 (ridge regression
(Hoerl, 1962)) regularizers to the least squares objec-
tive in a regression framework. The L2 term allows
for the regression algorithm to deal with data when
the number of dimensions is much higher than the
number of samples as is typical in gene applications.
LASSO, ridge regression and elastic net are called co-
efficient shrinkage methods (Zou & Hastie, 2005) be-
cause they select features in linear models by shrinking
weights to zero. Inspired by these sparsification tech-
niques, SCoTLASS (Jolliffe, 2003) combines the maxi-
mum variance PCA objective with an L1 penalty (sim-
ilar to LASSO), and sparse PCA (SPCA) (Zou et al.,
2006) combines a PCA least squares error objective
with both L1 and L2 regularization terms similar to
elastic net.

Although there are studies in probabilistic models for
sparse regression (Cawley et al., 2007) and sparse clas-
sification (Tipping, 2001), there is none to our knowl-
edge on probabilistic sparse PCA1. A probabilistic
model provides several benefits, including extensions
to mixture models, dealing with missing data, and

1There was none at the time this paper was submitted
for review; however, by the time of this publication, there
is now a recent work that presents a general sparse proba-
bilistic projection model which includes PCA as a special
case (Archambeau & Bach, 2008). The work on (Archam-
beau & Bach, 2008) focuses on the general model; whereas,
this paper focuses on sparse probabilistic PCA and studies
three alternative sparsity priors in detail.
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Bayesian methods for model selection. A limitation
with SPCA is that the level of sparsity is not au-
tomatically determined. In this paper, we introduce
a probabilistic formulation of sparse PCA and show
the benefit of having the probabilistic formulation for
model selection. We provide a Bayesian solution to
our probabilistic formulation and apply variational in-
ference to make our algorithm tractable. To achieve
sparsification, we investigate three alternative priors:
a two-level hierarchical prior equivalent to a Laplacian
distribution and consequently to an L1 regularization,
an inverse-Gaussian prior, and a Jeffrey’s prior.

This paper is organized as follows. We review the
probabilistic PCA (PPCA) model introduced by (Tip-
ping & Bishop, 1999) and independently by (Roweis,
1997) in Section 2. Then, we present our sparse prob-
abilistic PCA model in Section 3. Section 4 provides
details of our variational approach. Section 5 studies
different prior models to enforce sparsity. We discuss
and report our empirical investigation on synthetic and
benchmark data verifying that our probabilistic model
indeed results in a sparse PCA solution in Section 6.
Finally, we summarize the paper in Section 7.

2 Review of Probabilistic PCA

Conventional PCA seeks a q-dimensional (q < d) lin-
ear projection that best represents the data in a least-
squares sense. Let D be a data set of observed d-
dimensional vector D = {tn}, where n ∈ 1, ..., N .
The sample covariance matrix is S = 1

N

∑N
n=1(tn −

m)(tn − m)′ where m = 1
N

∑N
n=1 tn and A′ stands

for the transpose of matrix A. Then, the q princi-
pal axes are given by the q dominant eigenvectors (i.e.
those with the q largest eigenvalues). The projected
value of data tn is given by xn = U′q(tn −m), where
Uq = (u1, . . . ,uq). It can be shown that PCA finds
the linear projection which maximizes the variance in
the projected space.

Conventional PCA does not define a probability
model. PCA can be reformulated as a maximum like-
lihood solution to a latent variable model (Tipping
& Bishop, 1999). Let x be a q-dimensional latent
variable. The observed variable t is then defined as
a linear transformation of x with additional noise ε:
t = Wx + m + ε. Here W is a d × q linear trans-
formation matrix, m is a d-dimensional vector that
allows t to have a non-zero mean. Both the latent
variable x and noise ε are assumed to be isotropic
Gaussian: p(x) ∼ N (0, Iq) and p(ε) ∼ N (0, σ2Id).
Therefore, the conditional distribution of t given x is:
p(t|x) ∼ N (Wx + m, σ2Id). Then, the marginal dis-
tribution of t is also Gaussian, p(t) ∼ N (m,C), where
the covariance matrix C = WW′ + σ2Id. One can

compute the maximum-likelihood estimator for the pa-
rameters m,W and σ2 from a data set D.

The log-likelihood under this model is L =∑N
n=1 ln[p(tn)]. The maximum-likelihood estimate for

these parameters are: mML = 1
N

∑N
n=1 tn, σ2

ML =
1
d−q

∑d
i=q+1 λi, and WML = Uq(Λq−σ2

MLI)1/2, where
the q columns in the d × q orthogonal matrix Uq are
the q dominant eigenvectors of the sample covariance
matrix S, and diagonal matrix Λq contains the corre-
sponding q largest eigenvalues.

3 Sparse Probabilistic PCA

Sparsity is achieved in SPCA by adding an L1 reg-
ularizer (Zou et al., 2006). Similarly, we add an L1

regularizer by introducing a Laplacian prior to each
element, Wij , of the transformation matrix W, since
Laplacian priors are equivalent to L1 regularization
(Chen et al., 1998; Williams, 1995; Figueiredo, 2001).
The Laplacian density has the following form:

p(Wij |λ) =
1
2

√
2
λ

exp(−
√

2
λ
|Wij |) (1)

where |·| is the absolute value operator. Assuming that
the elements Wij are independent, the prior probabil-
ity for W is p(W|λ) =

∏d
i=1

∏q
j=1 p(Wij |λ). And, the

log joint distribution is shown below:
log(p(t,W,x,m, σ2)) (2)

=
N∑
n=1

(− 1
2σ2

(tn −Wxn −m)′(tn −Wxn −m)

−1
2
x′nxn −

1
2

log σ2)

+
d∑
i=1

q∑
j=1

(−1
2

log λ−
√

2
λ
|Wi,j |)

−1
2
m′βm− (a− 1) log σ2 − b(σ−2) + const

Here, we assume the prior for the data mean m fol-
lows the Gaussian distribution centered at zero and
with variance β. The precision σ−2 follows a Gamma
distribution with parameters a and b, and const is the
additional constant term with respect to W that is
needed to normalize this into a valid probability den-
sity. Note that the first part is the log-likelihood for
probabilistic PCA and the second part, the Lapla-
cian prior, resulted in an L1 regularization on W (the∑d
i=1

∑q
j=1 |Wij | term). Figure 1 displays the distri-

bution for a Laplacian. Observe that values close to
zero have high probabilities leading to sparse solutions.

Bayesian Formulation In this paper, we provide a
Bayesian solution to sparse probabilistic PCA. As we
introduce a prior for the transformation matrix W, we
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Figure 1: The Laplacian prior distribution.

need a closed form for the posterior distribution of W.
However, since the Laplace distribution is not a con-
jugate prior for the Gaussian distribution, we utilize
an alternative prior – a two-level hierarchical decom-
position of the Laplacian distribution. We apply a
two-level hierarchy for the Laplacian similar to (Lange
& Sinsheimer, 1993). The first level assumes a Gaus-
sian prior, p(Wij |zij) ∼ N (0, zij). We set the mean
of the Gaussian to zero because our goal is to sparsify
Wij , and a small zij pushes Wij to zero. And, the sec-
ond level is an exponential distribution hyperprior to
the variance zij , p(zij) = 1

λ exp
(
− zij

λ

)
, with zij ≥ 0.

In automatic relevance determination (MacKay, 1995),
a Gaussian prior is introduced to automatically de-
termine the importance, whereas here we introduce a
Laplace prior to induce sparsity. Note that when the
intermediate random variable zij is marginalized out,
we obtain a Laplace distribution.

p(Wij |λ) =
∫
p(Wij |zij)p(zij)dzij

=
1
2

√
2
λ

exp(−
√

2
λ
|Wij |) (3)

To form a full Bayesian model, we also introduce prior
distributions for the other parameters in the PPCA
model: the prior for the mean m follows a Gaus-
sian distribution and the prior for the precision of the
isotropic noise ε follows a gamma distribution.

p(m) ∼ N (0, β−1I) (4)
p(σ−2) ∼ Γ(σ−2|a, b) (5)

In summary, Figure 2 is a graphical model for our
Bayesian formulation of sparse PPCA. The joint distri-
bution of the data D and parameters θ for our sparse
probabilistic PCA model is

p(D, θ) =
N∏
n=1

p(tn|xn,W,m, σ−2, z)p(xn)

p(W|z)p(z)p(m)p(σ−2). (6)

4 Variational Inference

It is computationally intractable to evaluate the
marginal likelihood, p(D) =

∫
p(D, θ)dθ, where θ =

N

Figure 2: Graphical model for sparse PPCA.

{θi} represents the set of all parameters and la-
tent variables. Variational methods allow us to ap-
proximate the marginal likelihood by maximizing a
lower bound, L(Q), on the true log marginal like-
lihood (Bishop, 1999). ln p(D) = ln

∫
p(D, θ)dθ =

ln
∫
Q(θ)p(D,θ)Q(θ) dθ ≥

∫
Q(θ) ln p(D,θ)

Q(θ) dθ = L(Q(θ)), us-
ing Jensen’s inequality. The difference between the
log marginal p(D) and the lower bound L(Q) is the
Kullback-Leibler divergence between the approximat-
ing distribution Q(θ) and the true posterior p(θ|D).
The idea is to choose a Q(θ) distribution that is simple
enough that the lower bound can be tractably evalu-
ated and flexible enough to get a tight bound. Here,
we assume a distribution for Q(θ) that factorizes over
all the parameters Q(θ) =

∏
iQi(θ). For our model,

this is
Q(x,W, z,m, σ−2) = Q(x)Q(W)Q(z)Q(m)Q(σ−2)

(7)
The Qi(θi) that minimizes the KL divergence over all
factorial distributions is

Qi(θi) =
exp 〈lnP (D, θ)〉k 6=i∫

exp 〈lnP (D, θ)〉k 6=i dθj
(8)

Applying Equation 8 and the explicit form for p(D, θ)
provided in Equation 6, we obtain

Q(x) =
N∏
n=1

N(xn|µx,Σx) (9)

Q(m) = N(µm,Σm) (10)

Q(W) =
d∏
i=1

N(Wi,·|µWi,· ,ΣWi,·) (11)

Q(σ−2) = Γ(σ−2|c, d) (12)

Q(zi,j) =
1√
πzi,jλ

exp(− 1
2zi,j

(Wi,j)′(Wi,j)

−zi,j
λ

+

√
2
λ
|Wi,j |) (13)

The update equations we obtain for the variational
sparse probabilistic PCA model are:

µxn =
〈
σ−2

〉
Σx 〈W′〉 (tn − 〈m〉) (14)

Σx = (I +
〈
σ−2

〉
〈W′W〉)−1 (15)

µm =
〈
σ−2

〉
Σm

N∑
n=1

(tn − 〈W〉 〈xn〉) (16)

Σm = (β +N
〈
σ−2

〉
)−1I (17)
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µWi,· =
〈
σ−2

〉
ΣWi,·

N∑
n=1

〈xn〉 (tn − 〈m〉)i,1 (18)

ΣWi,· =

[〈
σ−2

〉 N∑
n=1

〈xnx′n〉dg (〈zi,·〉) + I

]−1

dg (〈zi,·〉) (19)

µzi,j
=

1
2

(
λ+
√

2λ|Wi,j |
)

(20)

cσ−2 =
Nd

2
+ a (21)

dσ−2 =
1
2

N∑
n=1

{
‖m‖2 + Tr(〈W′W〉 〈xnx′n〉)

+2 〈m〉′ 〈W 〉 〈xn〉 − 2t′n 〈W〉 〈xn〉
−2t′n 〈m〉+ ‖tn‖2

}
+ b (22)

Here, wi,· denotes the ith row of the transformation
matrix W, dg(·) converts a vector into a diagonal ma-
trix, zi,· is the vector formed from the zs at the ith
row, and 〈·〉 is the expectation of a random variable.
The moments needed in the update equations are:
〈x〉 = µ, 〈xx′〉 = Σ + µµ′ for a Gaussian distribution
N (µ,Σ), which applies to the variables W,x,m, and〈
σ−2

〉
= a/b for a Gamma distribution Γ(σ−2|a, b).

In summary, variational sparse probabilistic PCA pro-
ceeds as follows. We first initialize the parameters,
then update those parameters according to equations
(15) to (23) until convergence (i.e., the change in the
lower bound L(Q(θ)) is small). In our experiments,
we initialize W with conventional PCA, set a = 10−3,
b = 10−3, and β−1 = 10−3 obtaining broad priors. We
set our condition for convergence tolerance to be 10−3.
The λ parameter controls the sparsity of SPPCA, sim-
ilar to the sparsity parameter in SPCA. Figure 1 dis-
plays the distribution for a Laplacian with varying val-
ues of λ. Note that in our model, the smaller λ is,
the sparser the solution. Unlike in SPCA where the
parameter λ is provided by the user, in sparse prob-
abilistic PCA, we can automatically learn the hyper-
parameter λ through a type II maximum likelihood
(Bishop, 2006). Applying type II maximum likelihood
provide us with an update equation for λ as

〈λ〉 =
1
dq

d∑
i=1

q∑
j

zi,j . (23)

5 Alternative Prior Models for
Enforcing Sparsity

We introduced the Laplacian prior earlier because it
is the probabilistic counterpart for L1-norm regular-
ization utilized in SPCA. However, there are several
other ways to induce sparsity in W . In this paper,
we investigate two other prior models that result in
sparse solutions: an inverse-Gaussian prior, and a non-

informative Jeffrey’s prior.

5.1 Inverse-Gaussian Prior

Another prior model is the inverse-Gaussian prior. In
(Caron & Doucet, 2008), the inverse-Gaussian has
been shown to produce sparse models for the regres-
sion problem. We apply a two-level hierarchy with
p(w|z) modeled as a zero-mean Gaussian distribution,
followed by an inverse-Gaussian prior. The probability
density function for an inverse-Gaussian is:√

a

2πx3
exp−a(x− b)2

2xµ2
. (24)

Using this prior, changes the function Q(zi,j) for vari-
ational inference in Equation 13 to:

Q(zi,j) =
bze
−

W2
i,j

2zi,j
− az

bz
− az(z−bz)2

2zb2z

2z2
√

az

W2
i,j

+az
K1

(√
az(W2

i,j
+az)

b2z

) (25)

where Ka(b) is the modified Bessel function of the sec-
ond kind with order a and evaluated at b. The update
equation for µzi,j

in Equation 20 now becomes:

µzi,j
= eaz/bz

√
2
π
K0

√az
(
W2

i,j + az
)

b2z

 . (26)

As shown in Figure 3, the inverse-Gaussian distribu-
tion presents high density in regions near zero. The
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Figure 3: The inverse-Gaussian distribution with dif-
ferent parameter settings.

figure also shows that varying the hyperparameters
az and bz changes the level of sparsity. Similar to
the Laplacian model, we learn the hyperparameters
by type II maximum likelihood giving us the following
update equations:

1
az

=
1
dq

d∑
i=1

q∑
j

(
1
zi,j
− 1
µz

) (27)

bz =
1
dq

d∑
i=1

q∑
j

zi,j (28)
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5.2 Jeffrey’s Prior

The Jeffrey’s prior has been shown to enforce spar-
sity in classification and regression models (Figueiredo,
2001). Similar to the Laplacian and inverse-Gaussian
models, we assume a two-level hierarchy with p(w|z)
modeled as a Gaussian distribution with mean zero:

p(w|z) =
1√
2πz

exp−w
2

2z
, (29)

followed by the Jeffrey’s prior. The non-informative
Jeffrey’s prior is the square root of the Fisher informa-
tion, which is:

Jeffrey’s(z) ∼
√
Ep(w|z)((

∂

∂z
lg p(w|z))2) =

1
z
. (30)

An example of the Jeffrey’s prior for a Gaussian dis-
tribution is shown in Figure 4. Note that this “den-
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5

Figure 4: Jeffrey’s prior.

sity” 2 gives high probabilities to values close to zero
leading to sparsity. A computational advantage of the
Jeffrey’s prior compared to the Laplacian and inverse-
Gaussian is that it has no hyperparameters that needs
to be learned or tuned. The update equation for µzi,j

in Equation 20 now becomes:
µzi,j

= W2
i,j . (31)

5.3 Comparison of Sparsity Characteristics
for the Different Models

In this section, we provide a comparison of the differ-
ent prior models for achieving sparsity. The log joint
probability distribution in Equation 6 can in general
be expressed as:

log(p(t,W,x,m, σ2))

= − 1
2σ2

N∑
n=1

(tn −Wxn)′(tn −Wxn)

−penalty + constant. (32)
The first term measures the fitness between our model
with the observed data; the penalty term penalizes for
model complexity to avoid over-fitting; and constant
are terms that do not depend on W. Table 1 summa-
rizes the penalty terms resulting from the three prior
models: Laplace, Jeffrey’s and inverse-Gaussian.

2As opposed to the other two prior models, the Jeffrey’s
prior is not a proper density.

Table 1: Penalty Terms

Prior Penalty Term
Laplace

∑
i

∑
j λ|Wij |

Jeffrey’s
∑
i

∑
j log(zij)

Inverse Gaussian − 1
2

∑
i

∑
j(log

(
W2

ij + λ
)

+ log
(
K1

(√
λ
√

W2
ij

+λ

µ

))
)

Figure 5 displays the contour plots of the penalty func-
tions in two dimensions resulting from each of the
different prior models. For Jeffrey’s, we replace zij
with W 2

ij to plot them all with respect to W . Our
objective function Equation 32 optimizes for fitness
and minimizes for model complexity. Geometrically,
the fit term are elliptical contours, and the solution is
the first place that this contour touches the penalty
contour. The Laplace prior results in sparse solu-
tions if the ellipse contour touches the corner first.
In other cases, the ellipse will touch the side of the
contour resulting in non-sparse solutions. Note that
the penalty contour of Jeffrey’s prior (which has sharp
corners and sides close to the origin) has the highest
chance of leading to sparse solutions compared to the
Laplacian or inverse-Gaussian prior. The plot for the
inverse-Gaussian prior shows the contours for varying
values of its hyperparameters. This shows that the
inverse-Gaussian provides a general model which can
adjust to have sparse properties close to that of Jef-
frey’s prior, the Laplacian (L1), or L2 (ridge-regression
(Hoerl, 1962)).

(a) Laplace (b) inverse-Gaussian (c) Jeffrey’s

Figure 5: Contour plots for the penalty functions re-
sulting from the different prior models: (a) Laplace,
(b) inverse-Gaussian, and (c) Jeffrey’s.

Another plot that shows sparsity properties of regular-
izers is a plot of the solution of the penalized problem
as a soft-threshold estimator (Chen & Donoho, 1994;
Fan & Li, 2001). These plots are displayed in Figure
6. The 45◦ line is the solution without shrinkage. The
Laplacian translates the solution by a constant factor
and truncates at zero. The Jeffrey’s prior has a smooth
penalty with non-zero coefficients asymptotically ap-
proaching the solution without shrinkage. The inverse-
Gaussian also has a smooth penalty and the charac-
teristics vary with the hyperparameters. For some hy-
perparameters, it does not truncate coefficients to zero
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but instead smoothly pushes them to small values close
to zero, unlike the Laplacian and Jeffrey’s prior.

a�6, b�1

a�1, b�10

a�1, b�1

(a) Laplace (b) inverse-Gaussian (c) Jeffrey’s

Figure 6: Soft-thresholding plots for: (a) Laplacian,
(b) inverse-Gaussian, and (c) Jeffrey’s prior.

6 Experiments

In this section, we verify whether or not our sparse
probabilistic PCA (SPPCA) model results in a sparse
solution with performance comparable to SPCA, show
that our Bayesian formulation is able to automatically
determine the sparsity level, and compare the perfor-
mances of the three different sparse prior models.

We report W which provides the PC directions derived
by our model and the corresponding adjusted variance
resulting from each PC. Results presented here reflects
W with each column normalized to one for easier inter-
pretation and arranged according to decreasing vari-
ance. Since the principal components obtained from
sparse PPCA are no longer orthogonal to each other,
we calculate the adjusted variance explained by each
PC similar to (Zou et al., 2006). We first rank the
PCs according to variance. Then, we apply Gram-
Schmidt (Golub & Loan, 1996) to get an orthogonal
set of adjusted vectors. The adjusted variance (AVar
or AV) explained by each PC is the variance along the
adjusted vector divided by the total variance of the
data. We also report the cumulative adjusted variance
(CVar or CV) which is simply the sum of the current
adjusted variance for PC i and all previous PCs i−1 to
1. In all our experiments, we initialize the W matrix
for SPPCA and SPCA with PCA. The SPCA results
here are obtained using Matlab code from (Sjöstrand,
2005).

6.1 Synthetic Data

To get a good understanding of our approach, we first
test it on synthetic data. We generate 200 samples of
a ten variable data similar to that in (Zou et al., 2006),
where there are two underlying factors. The first two
factors V1 and V2 are equally important. The first four
features are related to V1, the next four are related
to V2. We construct our synthetic data as follows:
D(:, 1 : 4) = V1 + N(0, 1), D(:, 5 : 8) = V2 + N(0, 1),
and D(:, 9 : 10) = N(0, 1), where V1 ∼ N(0, 100) and
V2 ∼ N(0, 98). We can see that the first four columns

of the data is controlled by V1, while the second four
columns of the data is controlled by V2 and the last
two columns of the data is controlled by noise, N(0, 1).
In the result from SPPCA, we expect to see that the
first two PCs are composed of only those columns from
the V1 and V2. And the first PC should be composed
of the first four columns of the data, since it has the
largest variance.

The result of the W matrix for all three prior models
on this synthetic data are similar and is simply re-
ported as SPPCA in Table 2. The results for SPCA
and PCA are also shown. We can see that our proba-

Table 2: Result for Synthetic Data by SPPCA

SPPCA SPCA PCA
PC1 PC2 PC1 PC2 PC1 PC2

t1 0.5001 0 -0.5001 0 -0.5000 0.0110
t2 0.5002 0 -0.5002 0 -0.5001 0.0111
t3 0.4998 0 -0.4998 0 -0.4996 0.0108
t4 0.5000 0 -0.4999 0 -0.4998 0.0109
t5 0 -0.5002 0 0.5001 0.0111 0.5000
t6 0 -0.4999 0 0.4999 0.0110 0.4998
t7 0 -0.5002 0 0.5002 0.0109 0.5000
t8 0 -0.4998 0 0.4998 0.0110 0.4997
t9 0 0 0 0 -0.0000 0.0001
t10 0 0 0 0 -0.0000 -0.0000
AVar% 0.5971 0.4028 0.5971 0.4028 0.5972 0.4027
CVar% 0.5971 0.9999 0.5971 0.9999 0.5972 0.9999

bilistic sparse PCA model is able to correctly find the
variables associated with PC1 and PC2, and remove
the noise variables. The W matrix found is almost
the same as that for SPCA with similar performance
in terms of adjusted variance. Here, the λ parameter
in SPCA was set to 10−3. Note that unlike SPCA,
we learn the sparsity parameter λ automatically for
our probabilistic models. Moreover, we initially set
the number of PCs to 9 for SPPCA and our SPPCA
models learned correctly that there are only two PCs
(the other PCs have all zero entries).

6.2 Real-World Benchmark Data

We verify our models on three real-world benchmark
data sets with different sizes: glass, chart, and face
data. The glass data from the UCI repository (Asun-
cion & Newman, 2007) has nine attributes, six classes,
and 214 samples. Chart data, also from the UCI repos-
itory, has 600 samples with 60 features. Face data is
from the UCI KDD repository (Hettich & Bay, 1999)
and consists of 640 face images from 20 people. Each
person has 32 images with an image resolution of 32
by 30. We then remove the missing data to form a
960 by 624 data matrix. Note that this data set has a
higher dimension than the number of data points. We
show that SPPCA can handle such a data set.

The glass data is a small data set which allows us to re-
port the actual W matrix found by our approach. Ta-
ble 3 presents the transformation matrix W obtained
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with SPPCA and Jeffrey’s prior, and that of SPCA.
In SPPCA, the number of PCs is set to 9− 1. For fair
comparison, we set the sparsity level of SPCA for each
PC based on the sparsity chosen by SPPCA. Note that
the number of nonzero coefficients per PC in this ta-
ble is the same. The results show that SPPCA results
in sparse PCA solutions and the cumulative adjusted
variance is slightly better than that of SPCA. Note too
that even though we set the number of PCs to be 8,
SPPCA automatically determines that only seven PCs
are needed.

Table 3: The W matrices obtained by SPPCA-
Jeffrey’s and SPCA for the glass data.

SPPCA-Jeffrey’s
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

t1 -.144 .047 0 -.014 0 -.008 0 0
t2 .060 .050 .055 -.049 0 .030 0 0
t3 0 -.129 0 -.032 0 -.010 0 0
t4 .097 .067 -.044 0 0 0 .034 0
t5 .054 -.020 .046 .070 0 0 -.009 0
t6 .055 -.018 -.092 0 .010 0 -.024 0
t7 -.140 .065 0 .028 0 .005 0 0
t8 .052 .099 0 -.018 -.008 -.037 0 0
t9 -.036 0 -.027 .011 -.078 0 0 0
AV .277 .228 .155 .129 .102 .059 .042 0
CV .277 .505 .660 .789 .891 .950 .992 .992

SPCA
t1 -.700 .149 0 -.093 -.005 0 0 0
t2 .218 .256 .407 -.514 0 .544 0 0
t3 -.064 -.748 0 -.490 -.001 -.344 0 0
t4 .105 .088 -.339 0 0 .000 .902 0
t5 .143 -.161 .403 .676 0 0 0 0
t6 .141 0 -.746 .081 0 .306 -.402 0
t7 -.589 .159 0 .048 0 0 0 0
t8 .247 .542 -.010 -.146 0 -.701 -.155 0
t9 0 -.020 0 0 -1.00 0 0 0
AV .245 .204 .153 .120 .111 .070 .060 0
CV .245 .449 .602 .722 .833 .903 .963 .963

In Figures 7, 8, and 9, we display the cumulative ad-
justed variance results versus number of PCs kept for
SPPCA with Laplacian prior, SPPCA with inverse-
Gaussian prior, and SPPCA with Jeffrey’s prior in
bold lines, and the SPCA results in dashed lines with
sparsity levels set to be the same as each of the three
corresponding prior models for the glass, chart and
face data respectively. In these plots, we compare
the performance of SPPCA versus SPCA in captur-
ing variance, the PCA objective. We also compare the
performance of the different prior models. These plots
show that SPPCA is slightly better than SPCA for the
glass and chart data and is much better than SPCA for
the face data (which has high dimensions). We also ob-
serve that among the different prior models, Jeffrey’s
has the best performance, Laplacian the worst, and
inverse-Gaussian somewhere in between these two con-
sistently for all three data sets. Our Bayesian SPPCA
models automatically learn the level of sparsity per
PC. To check the performance of the different mod-
els in maximizing variance with respect to sparsity,
we plot the cumulative variance versus the percent-
age of the number of nonzero weights. Figure 10 dis-
plays such a plot for the chart data. Plots for the

glass and face data have similar characteristics and
are not shown here due to space limitations. These
plots show that Jeffrey’s is the best, followed by the
inverse-Gaussian, and the Laplacian last.
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Figure 7: Cumulative adjusted variance versus number
of PCs kept for the glass data.
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Figure 8: Cumulative adjusted variance versus the
number of PCs kept for the chart data.
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Figure 9: Cumulative adjusted variance versus number
of PCs kept for the face data.
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Figure 10: Cumulative adjusted variance vs. percent-
age of nonzero weights for chart data.

7 Summary

We have developed a probabilistic Bayesian model for
sparse PCA, gaining interpretability of the PCs and
the benefits of a probabilistic model. We achieve spar-
sity by adding a Laplacian prior to the transforma-
tion matrix W, which results in an equivalent L1 con-
straint. Since the Laplacian distribution is not a con-
jugate prior for the Gaussian distribution, we utilize
an alternative prior, a two-level hierarchical decompo-
sition of the Laplacian distribution: normal with zero-
mean and unknown variance in the first level, and an
exponential hyperprior on the variance in the second
level. We then applied variational inference to learn
our model. Our experiments on synthetic and bench-
mark data confirmed that SPPCA can find sparse PCs
similar to SPCA. Moreover, SPPCA gains the benefit
of a Bayesian model in being able to automatically de-
termine the level of sparsity, which is a parameter that
requires tuning in SPCA. Besides the Laplacian prior,
we explored other ways of inducing sparsity using an
inverse-Gaussian prior and a non-informative Jeffrey’s
prior. We provided a comparison of the three models
and experiments showed that the Jeffrey’s prior re-
sulted in the best performance, Laplacian the worst
and inverse-Gaussian somewhere in between.
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