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Abstract

We consider the problem of selecting actions
in order to maximize rewards chosen by an
adversary, where the set of actions avail-
able on any given round is selected stochas-
tically. We present the first polynomial-time
no-regret algorithm for this setting. In the
full-observation (experts) version of the prob-
lem, we present an exponential-weights al-
gorithm that achieves regret O(

√
T log n),

which is the best possible. For the bandit
setting (where the algorithm only observes
the reward of the action selected), we present
a no-regret algorithm based on follow-the-
perturbed-leader. This algorithm runs in
polynomial time, unlike the EXP4 algorithm
which can also be applied to this setting. Our
algorithm has the interesting interpretation
of solving a geometric experts problem where
the actual embedding is never explicitly con-
structed. We argue that this adversarial-
reward, stochastic-availability formulation is
important in practice, as assuming station-
ary stochastic rewards is unrealistic in many
domains.

1 Introduction

Online algorithms for selecting actions in order to max-
imize a reward or minimize a prediction loss have been
extensively studied; Cesa-Bianchi and Lugosi (2006)
provides a thorough introduction. However, in many
practical domains not all actions are available at each
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timestep. Ads in an online auction may be made tem-
porarily unavailable in order to limit the rate of deple-
tion of an advertiser’s budget, certain caches or servers
in a computer system may be periodically unreachable,
world financial markets are closed during certain hours
of the day, known construction projects or congestion
may limit the selection of driving routes, etc.

Given a world where actions are sometimes unavail-
able, it is natural to seek algorithms that perform al-
most as well as the best post-hoc ranking of actions,
where the highest-ranked available action is always
played. Kleinberg et al. (2008) introduced this notion
of regret and gave efficient algorithms for several vari-
ations of the problem with stochastic rewards. They
also point out that the EXP4 algorithm (Auer et al.,
2003) achieves no-regret in the adversarial rewards set-
ting, but unfortunately runs in time exponential in
the total number of actions. Since the stochastic re-
wards assumption does not hold in many interesting
domains, this leaves open the natural question of find-
ing efficient algorithms for limited action availability
problems where rewards are chosen by an adversary.
In this paper we present such a model of adversarial
rewards, under the assumption that action availabil-
ity is stochastic and independent of the rewards. We
also provide experimental evidence that even if EXP4
could be implemented efficiently, its performance on
problems that actually have stochastic action avail-
ability will be worse than the algorithms we propose.

Notation and Formal Model: Assume a fixed set
A of possible actions, indexed by integers 1, . . . , n. An
algorithm selects one action per round over a sequence
of rounds (indexed by t), each of which proceeds as fol-
lows:
Step 1: An adversary or randomness selects the set
At ⊆ A of actions available on round t, and a reward
vector r ∈ Rn. We describe four models for this se-
lection process below. For simplicity, we assume this
vector assigns reward r[a] to all actions in A, even
those not available on this round.
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Step 2: The algorithm observes the set At (but not
the rewards r), selects an action à ∈ At to play, and
receives reward r[à]. In the bandit setting, the algo-
rithm only observes this single reward; in the full in-
formation (or experts) setting the full reward vector r
is observed.

We compare our performance to the best action list in
hindsight; an action list is an ordering (permutation)
on the set of actions. Given the best action list, the
optimal strategy is to play the highest-ranked action
that is available. We will be interested in minimiz-
ing regret with respect to the best action list. Let σ
be an action list on A. We abuse notation slightly
and treat σ as a function on subsets of A such that
σ(At) is the action in At ranked highest by σ. For
example, suppose σ = (2, 3, 1), then σ({1, 3}) = 3 and
σ({1, 2, 3}) = 2, etc.

We consider 4 different models for step 1:
Stochastic availability, stochastic rewards: The
set At is selected by sampling from a fixed joint distri-
bution, Pravail, on subsets of A, which is independent
of time and rewards. Rewards r[a] are chosen from
fixed distributions Pra that are independent of time
and action availability.
Adversarial availability, stochastic rewards:
First an adversary chooses the set At, and then re-
wards r[a] are sampled from fixed distributions Pra

(which are independent of At).
Stochastic availability, adversarial rewards:
First, an adversary chooses the reward vector r, and
then the set At is drawn from Pravail. Pravail can be
viewed as a joint distribution of n random variables
Xa for each a ∈ A. Each Xa takes on value 1 when
a ∈ At and 0 otherwise. The algorithm we present
works against an adaptive adversary.
Adversarial availability, adversarial rewards: A
single adversary selects both At and r at the same
time.

Notions of regret differ slightly between these settings.
In particular, in the adversarial/adversarial case, one
must consider regret against the best action list with
respect to the sets At actually selected by the adver-
sary. However, in the stochastic availability case, a
more natural notion of regret is to compare ourselves
to the expected performance of the best action list.
Letting SA be the set of all permutations on A, we de-
fine the regret of an algorithm in the stochastic avail-
ability setting as:

<(Alg) = max
σ∈SA

EAt

[
T∑

t=1

rt[σ(At)]

]
−

T∑
t=1

rt[àt],

where àt are the actions taken by the algorithm. The
order of the max and expectation is important: we

are competing with the best action list chosen with
knowledge of all T reward vectors and the distribution
Pravail, but without knowing which At will actually be
available on each round.

Our algorithms are randomized, and so <(Alg) is
a random variable; one can consider both high-
probability bounds on <(Alg) and bounds on expec-
tation; in this paper we present bounds on E[<(Alg)],
where the expectation is over the random choices of
the algorithm.

Related Work: For the first two models, many so-
lutions have been proposed. For the setting when all
actions are available and rewards stochastic, there is
large body of work starting with (Lai and Robbins,
1985). Even-Dar et al. (2002) gives an algorithm that
is optimal in terms of number of exploration steps.
Their algorithm works by exploring actions for the first
few time steps, and then exploiting the best action for
the remaining time steps. This approach is not ap-
plicable in the sleeping experts/bandit setting, since
some actions may be sleeping throughout the explo-
ration phase. Kleinberg et al. (2008) proposes algo-
rithm AUER and prove that this algorithm is informa-
tion theoretically (almost) optimal. These algorithms
work when the availability is adversarial as well. While
the analysis presented in these papers is slightly dif-
ferent, it is straightforward to show these algorithms
satisfy the bounds shown in Table 1.

In this paper, we are interested in rewards that are
chosen by an adversary. There are two types of ad-
versaries commonly considered in the bandit setting.
An oblivious adversary knows the strategy of the al-
gorithm that selects the actions, but not the sequence
of random choices (if any) made by the algorithm. On
the other hand, an adaptive adversary gets to observe
the random choices made by the algorithm on the pre-
vious rounds in addition to knowing the strategy of the
algorithm. The algorithm we present works against an
adaptive adversary.

Table 1 shows the best known regret bounds for the
four settings discussed above. When rewards are
stochastic, an adversary cannot gain by controlling
availability, and the algorithms mentioned above work
in either case. As observed by Kleinberg et al. (2008),
in the case when an adversary decides rewards and
availability EXP4 gives low regret, but it is not effi-
cient because it involves keeping track of all n! action
lists.

The problem of online decision making where some ex-
perts are unavailable has been considered previously;
see for example (Freund et al., 1997; Blum and Man-
sour, 2007). The notions of regret used are different
from the one considered in this work, and not directly
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Reward Action Availability Bound Algorithm Reference
Stochastic Stochastic O(

√
nT log(T )) AUER (Kleinberg et al., 2008)

Stochastic Adversarial O(
√

nT log(T )) AUER (Kleinberg et al., 2008)
Adversarial Stochastic O(n

4
5 T

4
5 log(T )) Current work

Adversarial Adversarial O(n
√

T log(n)) EXP4 (Auer et al., 2003)

Table 1: Limited action availability models in the bandit setting. Note that EXP4 does not run in polynomial
time per round.

Parameter ε > 0
for t = 1, . . . , T

Draw vector Zt ∈ [0, 1/ε]n

uniformly at random;
Let Rt = r1 + . . . + rt−1;
Let σt = sort(Rt + Zt);
Choose action àt = σt(At)
Get reward rt[àt] and observe rt;

Figure 1: Algorithm: Sleeping Follow the Perturbed
Leader (SFPL)

comparable.

A Motivating Example We consider the problem
of selecting ads to display alongside a search result as a
motivating domain. The revenue model of most search
companies today is pay per click. Thus an impor-
tant aspect of ad selection is estimating correct click
through rates for a given advertisement. We consider a
simplified model so that we can focus on partial avail-
ability. In particular, only a single ad is shown for
each search, and then we observe whether that ad was
clicked (in which case we get a positive reward) or not
(reward 0). Thus, we have formulated a multiarmed
bandit problem. Our choice of arms is a large pool of
advertisements, only a subset of which are available on
each round.

We believe the stochastic/adversarial model is partic-
ularly appropriate for this and other real-world do-
mains. Ads can be unavailable for many reasons that
are independent of the reward we would receive for
showing it. For example, ad distributors could ran-
domly consider an ad unavailable to avoid depleting
an advertiser’s budget too quickly, or because the ad
is not relevant at the particular time or geographic
location of the query. It is worth clarifying that in
practice we do not expect the rewards (which are in-
fluenced primarily by whether or not a user clicks) to
be adversarial. However, using an algorithm that is
robust to such adversaries means that we can avoid
making the strong (and doubtless incorrect) assump-
tion that the reward for each action comes from a fixed

distribution that is independent of time.

2 Algorithms and Analysis

We begin by considering the full information set-
ting, where the full rt vector is revealed to the algo-
rithm (even the rewards of the actions that were not
available). We will then use the first algorithm in-
troduced here as a subroutine in an algorithm for the
bandit setting.

We present the Sleeping Follow the Perturbed Leader
(SFPLε) algorithm in Figure 1. The algorithm takes a
parameter ε which determines the magnitude of per-
turbations. We use the definitions of Zt, Rt and σt

from Figure 1. Let sort(v) return a permutation of
indices of vector v, so that the permutation indexes v
in descending order; for example, if v = (0.1, 0.7, 0.4),
then sort(v) = (2, 3, 1). SFPLε will play an action
list that results from sorting the actions based on per-
turbed cumulative rewards, σt = sort(Rt + Zt).

We relate the performance of SFPLε to the perfor-
mance of a geometric experts algorithm on a hypothet-
ical geometric optimization problem. A permutation
σ represents the following strategy: On each round
play the first available action (according to σ). Since
the availability is decided by a joint distribution inde-
pendently on each round, on a particular round t, the
expected reward for a fixed σ is∑
At∈P(A)

Pr
avail

(At) rt[σ(At)] =
∑
a∈A

Pr
avail

[σ(At) = a]rt[a]

where P(A) is the powerset of A. The probabilities
are with respect to the randomness in the choice of
At. If k is the index of a in σ, then Pravail[σ(At) = a]
is equal to Pravail[Xσ1 = 0, . . . , Xσk−1 = 0, Xσk

=
1] that is, the marginal probability that all actions
ranked higher than a are unavailable and a is avail-
able. The quantity

∑n
a=1 Pr[σ(At) = a]rt[a] looks

very much like a dot product, which suggests a ge-
ometric optimization problem; we now define such a
problem. Let ` : SA → Rn be the function such that
`(σ)[a] = PrAt [σ(At) = a]. In this manner the set
of action lists defines a subset L in Rn. For example,
let n = 3, and suppose that each action is available



         275

Sleeping Experts and Bandits with Stochastic Action Availability and Adversarial Rewards

independently at random with probability 1/2. For
the action list σ = (2, 3, 1) the vector `(σ) ∈ R3 is
( 1
8 , 1

2 , 1
4 ). If we choose action list σ to play on round

t our expected reward is exactly `(σ) · rt. Through-
out this paper, the corresponding geometric problem
refers to the geometric online optimization problem
with the feasible set L = {`(σ) | σ ∈ SA}. We
use follow the perturbed leader (Kalai and Vempala,
2005; Hannan, 1957) with parameter ε (FPLε) to solve
this geometric problem. At time step t, FPLε, picks
a random vector Zt ∈ [0, 1/ε]n, and finds x ∈ L such
that x · (Rt + Zt) is maximized. We couple the ran-
domness of SFPLε and FPLε so that they draw the
same random vector Zt. If SFPLε picks σt at time t,
`(σt) · (Rt + Zt) = maxx∈L x · (Rt + Zt). This rel-
atively simple observation reveals essential structure
induced by the stochastic availability model, and so it
is worth stating the result formally (proof appears in
a full version):

Lemma 1. Fix an arbitrary distribution Pravail on the
possible At and a vector v ∈ Rn, and consider the
action list σ = sort(v). Then `(σ) · v = maxx∈L x · v,
where ` is defined with respect to Pravail.

An important corollary is that the post-hoc optimal
action list σ∗ will always be sort(RT+1), the action
list obtained by sorting actions according to their total
cumulative reward. Importantly, this action list will be
optimal for any availability distribution Pravail.

Unlike most algorithms for geometric experts prob-
lems, FPLε only requires an oracle to return a point
in the feasible region that maximizes the dot product
with Rt + Zt. This allows us to simulate it without
knowing the feasible set L. We state the result about
the performance of FPLε (Theorem 1.1 in (Kalai and
Vempala, 2005)) as Lemma 2:

Lemma 2. Let ν be an adversary that selects reward
vectors rt ∈ Rn as a deterministic function of the
algorithm’s previous actions s1, . . . , st−1. If S is the
feasible region in Rn and A, D, and R̃ are such that
A ≥ ‖rt‖1, D ≥ ‖s− s′‖1, R̃ ≥ |s · rt| for any s, s′ ∈ S
and all rt, then if s1, . . . , sT are points picked by FPLε

for 0 < ε ≤ 1:

E

[
T∑

t=1

rt · st

]
≥ E

[
max
s∈S

T∑
t=1

rt · s

]
− εAR̃T − D

ε

The following lemma relates the performance of SFPLε

and FPLε (on the geometric problem). Let Z =
(Z1, . . . , ZT ) denote the random choices made by
SFPLε.

Lemma 3. Let ν be an adversary that selects reward
vectors rt ∈ Rn as a deterministic function of the al-
gorithm’s and environment’s previous random choices.

Suppose that ‖rt‖1 ≤ A and |`(σ) · rt| ≤ R̃ for all
σ ∈ SA and for all t, the action lists σ1, . . . , σT played
by SFPLε satisfy

E

[
T∑

t=1

rt[σt(At)]

]
≥

max
σ∈SA

E

[
T∑

t=1

rt[σ(At)]

]
− εAR̃T − 2

ε

Proof. Let Ht denote the history of random choices
made by the algorithm and the environment before
(but not including) time step t. Let r1, . . . , rT denote
the reward sequence chosen by the adversary. Recall
L = {`(σ) | σ ∈ SA} is the feasible set of the cor-
responding geometric optimization problem. Suppose
the vectors r1, . . . , rT are passed as reward vectors to
FPLε attempting to solve the geometric problem. We
couple the randomness used by SFPLε and FPLε, i.e.
they draw the same random vector Zt at time step t.
Since the reward vector rt does not depend on the ran-
dom subset of available actions at round t, it is clear
that:

EAt [rt[σt(At)] | Ht] = `(σt) · rt (1)

where rt is a constant given Ht. By Lemma 1, `(σt)
maximizes x · (Rt +Zt) for x ∈ L, and hence FPLε can
pick `(σt) whenever SFPLε picks σt. Note that

E

[
T∑

t=1

rt[σt(At)]

]
=

T∑
t=1

E
[
rt[σt(At)]

]
=

T∑
t=1

EHt

[
EAt [rt[σt(At)] | Ht]

]
=

T∑
t=1

EHt

[
`(σt) · rt

]
= E

[
T∑

t=1

`(σt) · rt

]
, (2)

using (1). By Jensen’s inequality,

E

[
max
σ∈SA

T∑
t=1

`(σ) · rt

]
≥ max

σ∈SA
E

[
T∑

t=1

`(σ) · rt

]

= max
σ∈SA

E

[
T∑

t=1

rt[σ(At)]

]
, (3)

where the equality follows from an argument analo-
gous to Equation (2). Finally, for any two vectors
`(σ), `(σ′) ∈ L, it holds that ‖`(σ) − `(σ′)‖1 ≤ 2. Us-
ing the hypothesis that ‖rt‖1 ≤ A and |`(σ) · rt| ≤ R̃
for all `(σ) ∈ L and for all rt, applying Lemma 2 to
(2) and (3) proves the lemma.
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inputs: parameter η
(∀a ∈ At) R1[a] = 0
for t = 1, . . . , T

wt[a] = exp(ηRt[a])
Observe At drawn from Pravail
W t =

∑
a∈At wt[a]

(∀a ∈ At) Let qt[a] = wt[a]/W t

Sample à from qt

Play à, get reward rt[à]
Observe full vector rt

(∀a ∈ At) Rt+1[a] = Rt[a] + rt[a]

Figure 2: Algorithm EWSA.

An Optimal Exponential Weights Algorithm
We introduce the EWSA Algorithm, (for Exponential
Weights, Stochastic Availability); pseudocode is given
in Figure 2. EWSA achieves the best-possible regret
bounds for the full-information stochastic availability,
(oblivious) adversarial reward problem:

Theorem 1. If η =
√

(8/T ) log n, Algorithm EWSA
has

E[<(EWSA)] ≤
√

T log n

when playing against an oblivious adversary and mak-
ing full observations of the reward vector rt each
round.

Proof. The proof connects the behavior of EWSA
to the behavior of an imagined instance of an
exponential-weights algorithm EW (say, hedge or
weighted majority) on particular fixed-availability
problems. In particular, consider a fixed action set
Ā ⊆ A, and let a∗ = argmaxa∈Ā RT+1[a], the best sin-
gle action in Ā chosen post-hoc. Standard bounds for
EW give

T∑
t=1

(
rt[a∗]−

∑
a∈Ā

qt[a]rt[a]
)
≤

√
T log n (4)

(e.g., Theorem 2.2 of (Cesa-Bianchi and Lugosi,
2006)), where qt is the distribution played by the
exponential-weights algorithm.1 If Ā is available on
round t, EWSA chooses its distribution qt based only
on the cumulative rewards of the actions in Ā, and in
fact chooses them by exactly the same formula as EW
(so writing qt for both is in fact not an abuse of no-
tation). Further, if σ∗ is the post-hoc best action list,
σ∗ = sort(RT+1) (as a corollary to Lemma 1), and so

a∗ = σ∗(Ā) (5)
1Note that this bound holds for any Ā as long as we fix

the reward multiplying parameter η of EW based on n, and
not |Ā|.

Thus, we conclude that if it so happened that Ā was
selected as available on every round of the game, the
above bound would hold for EWSA. Now, it suffices
to show that EWSA’s expected regret in the real game
can be written as a weighted sum of its regret if each
set Ā happened to be fixed for every round. We have,

E[<(EWSA)]

≤
T∑

t=1

∑
Ā⊆A

Pr(Ā)
(
rt[σ∗(Ā)]−

∑
a∈Ā

qt[a]rt[a]
)

=
∑
Ā⊆A

Pr(Ā)
T∑

t=1

(
rt[σ∗(Ā)]−

∑
a∈Ā

qt[a]rt[a]
)

and substituting (5) into (4),

≤
∑
Ā⊆A

Pr(Ā)
√

T log n =
√

T log n.

The standard (full-availability) experts problem is a
special case of our stochastic availability setting, and
so the lower bound on regret of

√
T log n (e.g., Cesa-

Bianchi and Lugosi (2006)) for that setting also applies
here, showing that the bound of Theorem 1 is essen-
tially the best possible.

Bandit Setting: We now turn to the bandit (partial
reward observability) setting. We show that as long as
the number of rounds is large enough ( T = Ω(n4)),
the bandit version of our algorithm has low regret.

Figure 3 presents a bandit version of SFPL. For con-
venience, we assume that the number of rounds is
T = T0 + T1; we label the initial rounds −T0 through
−1, and the remaining rounds 1 through T1. Our
algorithm uses the first T0 rounds to construct esti-
mates p̂[a] of the marginal probabilities of availability
p[a] = Pravail(Xa = 1) for each action a. At the end
of this phase, the algorithm maintains a set of actions
Aβ = {a ∈ A | p̂[a] ≥ β}, where β is a parameter.
While our algorithm will only play actions from this
set, it will still get low regret with respect to the best
action list over all actions.

During rounds 1, . . . , T1, the algorithm on each round
decides whether to explore (with probability γ) or
exploit, by setting the variable χt. While exploit-
ing, the master algorithm simply follows the advice
of the black-box stochastic availability experts algo-
rithm (e.g., SFPL). The reward vector passed down to
the black-box algorithm in this case is the zero vector
0. When exploring, the master algorithm picks an ac-
tion ã ∈ Aβ uniformly at random. If ã ∈ At, it gets
reward b = rt[ã], otherwise b = 0. The reward vector
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Parameters:
α ≥ 1, β < 1, γ < 1
Set ε = β

n

√
γ

2T1

for t = −T0 . . . ,−1
observe available actions At

for a = 1, . . . , n

c[a] = c[a] +

{
1 if a ∈ At

0 otherwise

for a = 1, . . . , n
p̂[a] = c[a]/T0

Aβ = {a | p̂[a] ≥ β}
for t = 1, . . . , T1

observe available actions At

χt =

{
1 with probability γ

0 otherwise

σ̂t = SFPLε(r̂1, . . . , r̂t−1)
if χt = 1 // exploration round

sample ã uniformly from Aβ

àt =

{
ã if ã ∈ At

σ̂t(At) otherwise

play àt, observe rt[àt]

b =

{
rt[àt] if ã ∈ At

0 otherwise

r̂t = α1
r̂t[àt] += nb

γp̂[àt]

else // exploit
play àt = σ̂t(At), observe rt[àt]
r̂t = 0

Figure 3: Algorithm BSFPL (Bandit SFPL)

passed down is α1+ nb
γp̂[ã]eã, where 1 is the vector with

all ones and eã is the unit vector with 1 in position
ã. Here α ≥ 1 is a parameter that causes deliberate
overestimation, reasons for which shall be discussed
later. On any round, the reward vector that is passed
to the black-box algorithm is an almost unbiased esti-
mate of the true reward vector. This algorithm is sim-
ilar to the McMahan-Blum algorithm (McMahan and
Blum, 2004) for the geometric bandit problem. Note
that p̂[a]ea form an (almost) barycentric spanner for
the geometric problem defined earlier. Our analysis is
similar in spirit to that of (Dani and Hayes, 2006).

In the rest of the section, we let r = (r1, . . . , rT1) be
the reward vectors for rounds 1, . . . , T1, rt ∈ [0, 1]n,
and r̂ = (r̂1, . . . , r̂T1) be the vectors that the algorithm
passes down to the black-box.

We first sketch the main ideas of the three lemmas re-
quired for the proof. While the master algorithm is

trying to minimize regret with respect to the best ac-
tion list, the black-box algorithm is trying to solve the
geometric problem with feasible set L = {`(σ) | σ ∈
SA}. The first of the three lemmas relates the perfor-
mance of the master algorithm and the black-box algo-
rithm, stating that the black-box algorithm can’t have
reward much higher than the master algorithm. The
second lemma uses the properties of FPL to show that
the black-box algorithm must have low regret. The
third lemma shows that the reward of the best strat-
egy for the geometric problem can’t be much lower
than the reward of the best action list for the original
problem. Combining these implies BSFPL has low re-
gret. Details of omitted proofs can be found in the full
version.

Although the black-box algorithm is actually solving
a sleeping experts problem, it can be used to solve
the corresponding geometric problem. We will assume
that the black-box algorithm has oracle access to the
function ` and that when it plays action list σ̂, it ac-
tually plays `(σ̂) to get reward `(σ̂) · r̂. Note that
we can do this only because of the unique property of
FPL, which requires only an oracle that gives the best
point in the feasible set (and does not need to know
the set itself!). We assume below that we have access
to good estimates for the probabilities p[a], by setting
T0 appropriately later.

Lemma 4. Assume that for each action a, it holds
that 1− ξ ≤ p̂[a]

p[a] ≤
1

1−ξ and that α ≥ 1, then

E

[
T1∑
t=1

rt[àt]

]
≥ (1− ξ)E

[
T1∑
t=1

`(σ̂t) · r̂t

]
− 2αγT1

The next lemma uses the bounds of FPL from Lemma
2 (see Kalai and Vempala (2005)). The proof of this
is similar to those in Dani and Hayes (2006).

Lemma 5. Let r̂ = (r̂1, . . . , r̂T1) be a sequence of re-
ward vectors the algorithm passes to black-box SFPLε,
and assume p̂[a] ≥ β and α ≤ 1/(βγ). Then

E

"
T1X
t=1

`(σ̂t) · r̂t

#
≥ E

"
max

σ̂

T1X
t=1

`(σ̂) · r̂t

#
− 4

√
2
n

β

r
T1

γ

The expectation is over all the random choices of the
algorithm and the environment (on which r̂t may de-
pend).

Lemma 6 shows the total reward of the best strategy
on the geometric problem (with r̂ as the reward vec-
tors) is not much lower than the total expected reward
of the best action list with the actual reward vectors
r1, . . . , rT . In order to ensure this, we were required
to overestimate the rewards slightly by adding α1.
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Lemma 6. Assuming that α ≥ 1, ξ ≤ αγ ≤ 1, and
that all actions a satisfy p̂[a] ≥ β

E

[
max

σ̂

T1∑
t=1

`(σ̂) · r̂t

]
≥ E

[
max

σ

T1∑
t=1

`(σ) · rt

]

−

√
2T1

(
5α2 +

2n

β
+ 16

)
log

(
1
β

)
− βnT1

We can put the lemmas together to get our main result,
that BSFPL has low regret.

Theorem 2. Assume T = T0 + T1 = Ω(n4). The
bandit algorithm BSFPL with parameters α = 1,
β = 2

6
5 n−

1
5 T−

1
5 , γ = 2

1
5 n

4
5 T−

1
5 , ξ = γ, T0 =

n−
6
5 T

4
5 log(T ), satisfies the following:

E

[
T1∑

t=−T0

rt[àt]

]
≥

max
σ

E

[
T1∑

t=−T0

rt[σ(rt)]

]
−O(n

4
5 T

4
5 log(T )).

Proof. With the given settings of the parameters the
assumptions of Lemmas 4, 5 and 6 are satisfied; com-
bining their inequalities, we have

E

[
T1∑
t=1

rt[àt]

]
− E

[
max

σ

T1∑
t=1

`(σ) · rt

]

≥ −2αγT1 − 4
√

2
n

β

√
T1

γ
− ξT1

−

√
2T1

(
5α2 +

2n

β
+ 16

)
log

(
1
β

)
≥ −4 · 2 6

5 n
4
5 T

4
5 − 7n

2
5 T

3
5
√

log(nT )

≥ −O(n
4
5 T

4
5 ).

We now show how to bound estimates of probabilities
p̂[a] for all actions. Referring to the steps −T0, . . . ,−1
in Algorithm BSFPL (Figure 3), at time t = 0, c[a] is
the number of times action a was available during the
rounds −T0, . . . ,−1. Also, p[a] is the true marginal
probability of availability of action a, hence if p̂[a] =
c[a]/T0, using Hoeffding bounds we get

Pr[|p̂[a]− p[a]| ≥ βξ] ≤ 2 exp(−2β2ξ2T0).

Since T0 = n−
6
5 T

4
5 log(T ) and (βξ)2 = 4n

6
5 T−

4
5 , with

probability at least 1− 1
T it holds for all actions a ∈ A,

that |p̂[a]− p[a]| ≤ βξ. In the case this does not hold
(with probability 1

T ), the algorithm can have regret
at most T , contributing regret O(1) in expectation.
When the estimates of probabilities are good, since

p̂[a] ≥ p[a]−βξ, p̂[a] < β implies that p[a] < β+βξ. So
far we’ve not addressed the issue of actions that have
very small available probabilities (less that β). By
ignoring all actions a for which p̂[a] < β, the algorithm
would have regret O(βnT ) = O(n

4
5 T

5
5 ). Lastly, it can

be easily checked that all actions satisfy:

1− ξ ≤ p[a]
p̂[a]

≤ 1
1− ξ

The T0 steps for computing probabilities would re-
sult in the algorithm forgoing at most O(T0) =
O(n

4
5 T

4
5 log(T )) reward, and can thus cause at most

that much additive regret. Finally, using an argument
analogous to the one in Lemma 3:

E

[
max
σ∈SA

T1∑
t=−T0

`(σ) · rt

]
≥ max

σ∈SA
E

[
T1∑

t=−T0

rt[σ(At)]

]
.

3 Experiments

As mentioned earlier, the EXP4 algorithm achieves
better regret bounds than BSFPL, but no polynomial-
time implementation is known, and so running it for
more than a handful of actions is impractical. In this
section we show experimentally that on problems that
have stochastic availability, BSFPL can actual outper-
forms EXP4, despite the latter’s superior regret bound.

A simple example provides some intuition for this.
Consider a problem with three actions {a, b, c} with
adversarial rewards and availability. The adversary is
then free to assign reward vector rt = (0.9, 0.6, 0.0)
whenever At = {a, b, c}, but set rt = (0.0, 0.0, 0.7)
whenever At = {b, c}. Hence, the optimal action list is
(a, c, b). In this example, however, observations of the
rewards on b and c made when a happens to be avail-
able are completely misleading as to the correct rank-
ing of b and c in the optimal action list. The stochastic
availability assumption directly rules out such patho-
logical cases and hence allows algorithms like BSFPL to
estimate the performance of each action independently
of the context in which the algorithm was available.

We use a very simple experimental setup to demon-
strate this in practice. We consider a problem with
5 actions, each of which is available on a given round
with an (independent) probability of 0.5. Rewards at
t = 0 are chosen uniformly from [0, 1], and after that
point evolve via a random walk with additive pertur-
bations chosen from a normal distribution of mean 0
and σ = 0.02. This corresponds to an oblivious adver-
sary, which makes cross-algorithm comparisons fair. In
practice, this data is “almost” stochastic, and hence
algorithms like AUER and ε-greedy actually perform
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Figure 4: Average per-round regret of EXP4 and BSFPL on a fixed synthetic dataset.

quite well when appropriately tuned; however, because
we believe that for real-world data the stochastic re-
wards assumption is unrealistic, we do not include a
direct comparison to such algorithms.

Figure 4 compares EXP4 and BSFPL on a represen-
tative 1000 timestep dataset sampled from the above
model. Both the available action set and the rewards
were fixed. We then performed 200 runs of each algo-
rithm. Data points correspond to the mean per-round
regret measured after t timesteps; error bars represent
the the variance introduced by the internal random-
ness of each algorithm. However, we ran this same
experiment for many data sets generated as described
above, and the results were very similar.

4 Conclusions

We have introduced the first polynomial-time no-
regret algorithms for the stochastic availability, ad-
versarial reward problem. The EWSA algorithm
achieves essentially the best possible regret in the full-
observation setting; the BSFPL algorithm for the ban-
dit setting does not have a matching lower bound,
but runs in polynomial time per round (unlike EXP4)
and also performs better in practice on at least some
datasets. The bounds proved for BSFPL may not be
optimal; in particular, it may be possible to get im-
proved bounds using recent results Abernethy et al.
(2008).

Our work leaves open several interesting questions. We
conjecture that the EWSA algorithm can be extended
to the bandit setting, likely yielding better real-world
performance and tighter bounds than BSFPL; however,
proving regret bounds for such a generalization will
likely require new proof techniques. It should also be
possible to extend this work to limited action availabil-
ity in the geometric setting, allowing one to address
applications like shortest path problems where certain
edges are stochastically unavailable.
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