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Abstract

The Nystr̈om method is an efficient technique
to generate low-rank matrix approximations and
is used in several large-scale learning applica-
tions. A key aspect of this method is the dis-
tribution according to which columns are sam-
pled from the original matrix. In this work, we
present an analysis of different sampling tech-
niques for the Nystr̈om method. Our analysis
includes both empirical and theoretical compo-
nents. We first present novel experiments with
several real world datasets, comparing the perfor-
mance of the Nystr̈om method when used with
uniform versus non-uniform sampling distribu-
tions. Our results suggest that uniform sam-
pling without replacement, in addition to being
more efficient both in time and space, produces
more effective approximations. This motivates
the theoretical part of our analysis which gives
the first performance bounds for the Nyström
method precisely when used with uniform sam-
pling without replacement.

1 Introduction

A common problem in many areas of large-scale machine
learning involves deriving a useful and efficient approxi-
mation of a large matrix. This matrix may be a kernel
matrix used with support vector machines (Boseret al.,
1992; Cortes and Vapnik, 1995), kernel principal compo-
nent analysis (Scḧolkopf et al., 1998) or manifold learning
(Platt, 2003; Talwalkaret al., 2008). Large matrices also
naturally arise in other applications such as clustering. For
these large-scale problems, the number of matrix entries
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can be in the order of tens of thousands to millions, leading
to difficulty in operating on, or even storing the matrix.

An attractive solution to this problem involves using the
Nyström method to generate a low-rank approximation of
the original matrix from a subset of its columns (Williams
and Seeger, 2000). A key aspect of the Nyström method is
the distribution according to which the columns are sam-
pled. This method was first introduced to the machine
learning community (Williams and Seeger, 2000) using
uniform sampling without replacement, and this remains
the sampling method most commonly used in practice (de
Silva and Tenenbaum, 2002; Fowlkeset al., 2004; Platt,
2003; Talwalkaret al., 2008). More recently, the Nyström
method has been theoretically analyzed assuming a non-
uniform sampling of the columns: Drineas and Mahoney
(2005) provided bounds for the Nyström approximation
while sampling with replacement from a distribution with
weights proportional to the diagonal elements of the input
matrix.

This paper presents an analysis of different sampling tech-
niques for the Nystr̈om method. Our analysis includes both
empirical and theoretical components. We first present
novel experiments with several real-world datasets, com-
paring the performance of the Nyström method when used
with uniform versus non-uniform sampling distributions.
Although previous works have compared uniform and non-
uniform distributions in a more restrictive setting (Drineas
et al., 2001; Zhanget al., 2008), our results are the first
to compare uniform sampling with the sampling technique
for which the Nystr̈om method has theoretical guarantees.
Our results suggest that uniform sampling, in addition to
being more efficient both in time and space, produces more
effective approximations. We further show the benefits of
sampling without replacement. These empirical findings
motivate the theoretical part of our analysis. We give the
first performance bounds for the Nyström method as it is
used in practice, i.e., using uniform sampling without re-
placement.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces basic definitions and gives a brief presen-
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tation of the Nystr̈om method. In Section 3, we provide an
extensive empirical comparison of various sampling meth-
ods used with the Nyström method. Section 4 presents our
novel bound for the Nyström method in the scenario of uni-
form sampling without replacement, and provides an anal-
ysis of the bound.

2 Preliminaries

Let G ∈ R
n×n be a symmetric positive semidefinite

(SPSD) Gram (or kernel) matrix. For any such Gram ma-
trix, there exists anX ∈ R

m×n such thatG = X⊤X. We
defineX(j), j = 1 . . . n, as thejth column vector ofX and
X(i), i = 1 . . . m, as theith row vector ofX, and denote by
‖·‖ the l2 norm of a vector. Using singular value decom-
position (SVD), the Gram matrix can be written asG =
UΣU⊤, whereU is orthogonal andΣ = diag(σ1, . . . , σn)
is a real diagonal matrix with diagonal entries sorted in de-
creasing order. Forr = rank(G), the pseudo-inverse ofG
is defined asG+ =

∑r
t=1 σ−1

t U (t)U(t). Further, fork ≤ r,

Gk =
∑k

t=1 σtU
(t)U(t) is the ‘best’ rank-k approximation

to G, or the rank-k matrix with minimal‖·‖F distance to
G, where‖·‖F denotes the Frobenius norm of a matrix.

The Nystr̈om method generates low-rank approximations
of G using a subset of the columns of the matrix (Williams
and Seeger, 2000). Suppose we randomly samplel ≪ n
columns ofG uniformly without replacement.1 Let C be
then × l matrix of these sampled columns, andW be the
l×l matrix consisting of the intersection of thesel columns
with the correspondingl rows ofG. SinceG is SPSD,W
is also SPSD. Without loss of generality, we can rearrange
the columns and rows ofG based on this sampling such
that:

G =

[

W G⊤
21

G21 G22

]

and C =

[

W
G21

]

. (1)

The Nystr̈om method usesW andC from (1) to construct a
rank-k approximationG̃k to G for k ≤ l. When used with
uniform sampling, the Nyström approximation is:

G̃k = CW+
k C⊤ ≈ G. (2)

The Frobenius distance betweenG andG̃k, ‖G− G̃k‖F , is
one standard measurement of the accuracy of the Nyström
method. The runtime of this algorithm is O(l3+nlk): O(l3)
for SVD onW andO(nlk) for multiplication withC.

3 Comparison of Sampling Methods

Since the Nystr̈om method operates on a subset ofG, i.e.,
C, the selection of columns can significantly influence the

1Other sampling schemes are also possible as we discuss in
Section 3. The formulation of the Nyström method under these
sampling schemes is identical to the one presented here, modulo
an additional step to normalize the approximation by the proba-
bilities of the selected columns (Drineas and Mahoney, 2005).

Name Type n d Kernel
PIE-2.7K faces (profile) 2731 2304 linear
PIE-7K faces (front) 7412 2304 linear
MNIST digit images 4000 784 linear

ESS proteins 4728 16 RBF
ABN abalones 4177 8 RBF

Table 1: Description of the datasets and kernels used in our
experiments (Asuncion and Newman, 2007; Gustafsonet
al., 2006; LeCun and Cortes, 2009; Simet al., 2002). ‘d’
denotes the number of features in input space.

accuracy of approximation. Thus, in this section we discuss
various sampling options used to select columns fromG.

3.1 Description of Sampling Methods

The most basic sampling technique involvesuniformsam-
pling of the columns. Alternatively, theith column can
be sampled non-uniformly with weight proportional to ei-
ther its corresponding diagonal elementGii (diagonal sam-
pling) or the l2 norm of the column (column-norm sam-
pling) (Drineas and Mahoney, 2005; Drineaset al., 2006b).
There are additional computational costs associated with
these non-uniform sampling methods:O(n) time and space
requirements for diagonal sampling andO(n2) time and
space for column-norm sampling. These non-uniform sam-
pling techniques are often presented using sampling with
replacement to simplify theoretical analysis. Column-norm
sampling has been used to analyze a general SVD approxi-
mation algorithm. Further, diagonal sampling with replace-
ment was used by Drineas and Mahoney (2005) to bound
the reconstruction error of the Nyström method,2 though
the authors of that work suggest that column-norm sam-
pling would be a better sampling assumption for the analy-
sis of the Nystr̈om method.

Two other techniques have also been introduced for
sampling-based techniques to generate low-rank approxi-
mations. The first method adaptively samples columns of
G while the second performsk-means clustering as a pre-
processing step to construct informative columns (Desh-
pandeet al., 2006; Zhanget al., 2008). Although these
methods show good empirical accuracy on small datasets,
they are both computationally inefficient for large-scale
problems. Adaptive sampling requires a full pass through
G on each iteration, whilek-means clustering quickly be-
comes intractable for moderately largen. For this reason,
in this work we focus on fixed distributions – either uni-
form or non-uniform – over the set of columns.

In the remainder of this section we present novel exper-

2Although Drineas and Mahoney (2005) claimed to weight
each column proportional toG2

ii, they in fact use the diagonal
sampling we present in this work, i.e., weights proportional to
Gii (Drineas, 2008).
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Uniform vs Non−Uni Sampling: PIE−7K

 

 

Uni+Rep
Diag+Rep
Col−Norm+Rep

l/n Dataset Uniform+Rep Diag+Rep Col-Norm+Rep
PIE-2.7K 38.8 (±1.5) 38.3 (±0.9) 37.0 (±0.9)
PIE-7K 55.8 (±1.1) 46.4 (±1.7) 54.2 (±0.9)

5% MNIST 47.4 (±0.8) 46.9 (±0.7) 45.6 (±1.0)
ESS 45.1 (±2.3) - 41.0 (±2.2)
ABN 47.3 (±3.9) - 44.2 (±1.2)

PIE-2.7K 72.3 (±0.9) 65.0 (±0.9) 63.4 (±1.4)
PIE-7K 83.5 (±1.1) 69.8 (±2.2) 79.9 (±1.6)

20% MNIST 80.8 (±0.5) 79.4 (±0.5) 78.1 (±0.5)
ESS 80.1 (±0.7) - 75.5 (±1.1)
ABN 77.1 (±3.0) - 66.3 (±4.0)

(a) (b)

Figure 1: (a) Nystr̈om relative accuracy for various sampling techniques on PIE-7K. (b) Nystr̈om relative accuracy for
various sampling methods for two values ofl/n with k = 100. Values in parentheses show standard deviations for10
different runs for a fixedl. ‘+Rep’ denotes sampling with replacement. No error (‘-’) is reported for diagonal sampling
with RBF kernels since diagonal sampling is equivalent to uniform sampling in this case.

imental results comparing the performance of these sam-
pling methods on several data sets. Previous works have
compared uniform and non-uniform in a more restrictive
setting, using fewer types of kernels and focusing only on
column-norm sampling (Drineaset al., 2001; Zhanget al.,
2008). However in this work we provide the first compar-
ison that includes diagonal sampling, the sampling tech-
nique for which the Nystr̈om method has theoretical guar-
antees.

3.2 Datasets

We used 5 datasets from a variety of applications, e.g.,
computer vision and biology, as described in Table 1.
SPSD kernel matrices were generated by mean centering
the datasets and applying either a linear kernel or RBF ker-
nel. The diagonals (respectively column norms) of these
kernel matrices were used to calculate diagonal (respec-
tively column-norm) distributions. Note that the diagonal
distribution equals the uniform distribution for RBF kernels
since diagonal entries of RBF kernel matrices always equal
one.

3.3 Experiments

We used the datasets described in the previous section to
test the approximation accuracy for each sampling method.
Low-rank approximations ofG were generated using the
Nyström method along with these sampling methods, and
accuracies were measured relative to the best rank-k ap-
proximation (Gk) as follows:

relative accuracy=
‖G − Gk‖F

‖G − G̃k‖F

.

Note that relative accuracy is upper bounded by1 and ap-
proaches1 for good approximations. We fixedk = 100
for all experiments, a value that captures more than90% of

the spectral energy for each dataset. We first compared the
effectiveness of the three sampling techniques using sam-
pling with replacement. The results for PIE-7K are pre-
sented in Figure 1(a) and summarized for all datasets in
Figure 1(b). The results across all datasets show that uni-
form sampling outperforms all other methods, while be-
ing much cheaper computationally and space-wise. Thus,
while non-uniform sampling techniques might be effective
in extreme cases where a few columns ofG dominate in
terms of‖·‖, this situation does not tend to arise with real-
world data, where uniform sampling is most effective.

Next, we compared the performance of uniform sampling
with and without replacement. Figure 2(a) illustrates the
effect of replacement for the PIE-7K dataset for different
l
n ratios. Similar results for the remaining datasets are
summarized in Figure 2(b). The results show that uni-
form sampling without replacement improves the accuracy
of the Nystr̈om method over sampling with replacement,
even when sampling less than5% of the total columns.

4 Improved Nyström Bound

The experimental results from Section 3 show that uni-
form sampling is the cheapest and most efficient sampling
technique across several datasets. Further, it is the most
commonly used method in practice. However, there does
not currently exist a formal analysis of the accuracy of
the Nystr̈om approximation when using uniform sampling
without replacement. We next present a theoretical analy-
sis of the Nystr̈om method using the more reasonable as-
sumption ofuniform sampling without replacement. We
first introduce a general concentration bound for sampling
without replacement (Section 4.1), and use it to derive a
general bound on approximate matrix multiplication in the
setting of sampling without replacement (Section 4.2). In
Section 4.3, following Drineas and Mahoney (2005), we
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Dataset 5% 10% 15% 30%

PIE-2.7K 0.8 (±.6) 1.7 (±.3) 2.3 (±.9) 4.4 (±.4)
PIE-7K 0.7 (±.3) 1.5 (±.3) 2.1 (±.6) 3.2 (±.3)
MNIST 1.0 (±.5) 1.9 (±.6) 2.3 (±.4) 3.4 (±.4)

ESS 0.9 (±.9) 1.8 (±.9) 2.2 (±.6) 3.7 (±.7)
ABN 0.7 (±1.2) 1.3 (±1.8) 2.6 (±1.4) 4.5 (±1.1)

(a) (b)

Figure 2: Comparison of uniform sampling with and without replacement measured by the difference in relative accuracy.
(a) Improvement in relative accuracy for PIE-7K when sampling without replacement. (b) Improvement in relative accuracy
when sampling without replacement across all datasets for variousl/n percentages.

show the connection between the Nyström method and ap-
proximate matrix multiplication and present our main re-
sult: a general bound for the Nyström method in the sce-
nario of uniform sampling without replacement.

4.1 Concentration Bound for Sampling Without
Replacement

We will be using the following concentration bound for
sampling without replacement shown by Corteset al.
(2008) which holds forsymmetric functions. A function
φ : Xm → R defined over a setX is said to be sym-
metric if φ(x1, . . . , xm) = φ(xτ(1), . . . , xτ(m)) for any
x1, . . . , xm ∈ X and any permutationτ of (1, . . . ,m).

Theorem 1. Letm andu be positive integers,x1, . . . , xm

a sequence of random variables sampled from an underly-
ing setX of m + u elements without replacement, and let
φ : Xm 7→ R be a symmetric function such that for alli ∈
[1,m] and for allx1, . . . , xm ∈ X andx′

1, . . . , x
′
m ∈ X ,

|φ(x1, . . . , xm) − φ(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ ∆,

where∆ is a positive real number. Then∀ ǫ > 0,

Pr
[∣

∣φ − E[φ]
∣

∣ ≥ ǫ
]

≤ 2 exp

( −2ǫ2

α(m,u)∆2

)

, (3)

whereα(m,u) = mu
m+u−1/2 · 1

1−1/(2 max{m,u}) .

4.2 Concentration Bound for Matrix Multiplication

To derive a bound for the Nyström method using uniform
sampling without replacement, we first present a general-
ization of a bound on approximate matrix multiplication
given by Drineaset al. (2006a) to the more complex set-
ting of uniform sampling without replacement. This gen-
eralization is not trivial since previous inequalities hinge
upon a key i.i.d. assumption which clearly does not hold
when sampling without replacement.

Theorem 2. SupposeA ∈ R
m×n, B ∈ R

n×p, 1 ≤ l ≤ n.
Choose a set(S) of sizel uniformly at random without re-
placement from{1 . . . n}, and letC (R) equal the columns
of A (rows ofB) corresponding to indices inS scaled by
√

n/l. ThenCR is an approximation toAB, i.e.,

AB =
n

∑

t=1

A(t)B(t) ≈
l

∑

t=1

C(t)R(t) =
n

l

∑

t∈S

A(t)B(t) = CR,

and,

E
[

‖AB − CR‖F

]

≤

√

√

√

√

n

l

n
∑

t=1

‖A(t)‖2‖B(t)‖2. (4)

Further, let δ ∈ (0, 1), t∗ = argmaxt‖A(t)‖‖B(t)‖, and

η =
√

log(2/δ)α(l,n−l)
l , withα(l, n− l) defined in Theorem

1. Then, with probability at least1 − δ,

‖AB − CR‖F ≤

√

√

√

√

n

l

n
∑

t=1

‖A(t)‖2‖B(t)‖2 +

√
2
ηn√

l
‖A(t∗)‖‖B(t∗)‖. (5)

We note that for even moderately sizedl andn, α(l, n −
l) ≈ l(1 − l/n) and thusη ≈

√

log(2/δ)(1 − l/n).

Corollary 1. If A = B⊤ andt∗ = argmaxt‖A(t)‖, then

E
[

‖AA⊤ − CC⊤‖F

]

≤

√

√

√

√

n

l

n
∑

t=1

‖A(t)‖4. (6)

Further, letδ ∈ (0, 1) and η =
√

log(2/δ)α(l,n−l)
l . Then,

with probability at least1 − δ,

‖AA⊤−CC⊤‖F ≤

√

√

√

√

n

l

n
∑

t=1

‖A(t)‖4+
ηn√

l
‖A(t∗)‖2. (7)
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In this special case, we use the tighter Lipschitz condition
defined in (26). Further, since

∑n
t=1‖A(t)‖4 ≤ n‖A(t∗)‖4

we can simplify Corollary 1 as follows:

Corollary 2. If A = B⊤ then

E
[

‖AA⊤ − CC⊤‖F

]

≤ n√
l
‖A(t∗)‖2. (8)

Further, let δ ∈ (0, 1), t∗ = argmaxt‖A(t)‖, and η =
√

log(2/δ)α(l,n−l)
l . Then, with probability at least1 − δ,

‖AA⊤ − CC⊤‖F ≤ (1 + η)
n√
l
‖A(t∗)‖2. (9)

The proof of this theorem and its corollaries involves
bounding an expectation, determining a Lipschitz condi-
tion and using the concentration bound of Theorem 1.
These three steps are presented in detail below.

Bound on Expectation

To obtain a bound forE
[

‖AB − CR‖F

]

, we first calcu-
late expressions for the mean and variance of the(i, j)th
component ofCR, i.e., (CR)ij . For any setS of distinct
elements in{1 . . . n}, |S| = l, we defineπ(S) as the prob-
ability that a randomly chosen subset ofl elements equals
S. There are a total of

(

n
l

)

distinct sets and in the uni-
form case,π(S) = 1/

(

n
l

)

. Furthermore, each element in
{1 . . . n} appears inl/n of these distinct sets. Thus, the
following equalities hold:

E[(CR)ij ] =

(n

l)
∑

k=1

π(Sk) ·
[

∑

t∈Sk

n

l
AitBtj

]

(10)

=
n

l
(

n
l

)

n
∑

t=1

l
(

n
l

)

n
AitBtj (11)

= (AB)ij . (12)

Further, we have

E[(CR)ij ]
2 = (AB)2ij =

( n
∑

t=1

AitBtj

)2

(13)

and

E[(CR)2ij ] =

(n

l)
∑

k=1

π(Sk) ·
[

∑

t∈Sk

n

l
AitBtj

]2

(14)

=
n2

l2

(n

l)
∑

k=1

π(Sk)

[

∑

t∈Sk

AitBtj

]2

. (15)

Since all sets (Sk) have equal probability and each el-
ement appears inl

n of these sets, when we expand
[
∑

t∈Sk
AitBtj

]2
we find that the coefficient for each

(AitBtj)
2 term is l

n . Further, to find the coefficients for
the cross terms, we calculate the probability that two dis-
tinct elements appear in the same set. If we fix elementst
andt′ with t 6= t′ and define setSk such thatt ∈ Sk, then
Pr[t′ ∈ Sk] = l−1

n−1 . Thus,

E[(CR)2ij ] =
n

l

n
∑

t=1

(AitBtj)
2+ (16)

l − 1

l

n

n − 1

n
∑

t=1

n
∑

t′ 6=t

AitBtjAit′Bt′j

=
n

l

n
∑

t=1

(AitBtj)
2+ (17)

l − 1

l

n

n − 1

(

(AB)2ij −
n

∑

t=1

(AitBtj)
2
)

≤ n

l

n
∑

t=1

(AitBtj)
2 +

l − 1

l
(AB)2ij , (18)

where the inequality follows since‖x‖1 ≤ √
n‖x‖ for x ∈

R
n. We can now bound the variance as:

Var[(CR)ij ] = E[(CR)2ij ] − E[(CR)ij ]
2 (19)

≤ n

l

n
∑

t=1

(AitBtj)
2 − 1

l
(AB)2ij . (20)

Now, we can bound the expectation as:

E
[

‖AB − CR‖2
F

]

=

m
∑

i=1

p
∑

j=1

E[(AB − CR)2ij ]

=

m
∑

i=1

p
∑

j=1

Var[(CR)ij ]

≤ n

l

n
∑

t=1

(
∑

i

A2
it)(

∑

j

B2
tj)−

1

l
‖AB‖2

F

≤ n

l

n
∑

t=1

‖A(t)‖2‖B(t)‖2.

By the concavity of
√· and Jensen’s inequality,E

[

‖AB −
CR‖F

]

≤
√

E
[

‖AB − CR‖2
F

]

. Thus,

E
[

‖AB − CR‖F

]

≤

√

√

√

√

n

l

n
∑

t=1

‖A(t)‖2‖B(t)‖2. (21)

Lipschitz Bound

Consider the functionΦ defined byΦ(S) = ‖AB−CR‖F ,
whereS is the set ofl indices chosen uniformly at random
without replacement from{1 . . . n} to constructC andR.
If we create a new setS′ of indices by exchangingi ∈ S
for somei′ /∈ S, then we can construct the corresponding
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C ′ andR′ from this new set of indices. We are interested
in finding a∆ such that

|Φ(S) − Φ(S′)| ≤ ∆. (22)

Using the triangle inequality, we see that
∣

∣

∣
‖AB − CR‖F − ‖AB − C ′R′‖F

∣

∣

∣
≤ ‖CR − C ′R′‖F .

We next observe that the difference betweenCR andC ′R′

depends only on indicesi andi′,3 and thus

∆ ≤ ‖CR − C ′R′‖F

=
n

l
‖A(i)B(i) − A(i′)B(i′)‖F (23)

≤ n

l

(

‖A(i)‖‖B(i)‖ + ‖A(i′)‖‖B(i′)‖
)

≤ 2n

l
‖A(t∗)‖‖B(t∗)‖, (24)

where we use the triangle inequality and the identity
‖A(i)B(i)‖F = ‖A(i)‖‖B(i)‖ to obtain (24).

Further, if A = B⊤, we can obtain a tighter bound. If
a = A(i) anda′ = A(i′), we have:

‖aa⊤ − a′a′⊤‖F =
√

Tr
[

(aa⊤ − a′a′⊤)⊤(aa⊤ − a′a′T )
]

=
√

‖a‖4 + ‖a′‖4 − 2(a⊤a′)2

≤
√

‖a‖4 + ‖a′‖4. (25)

Combining (23) with (25) we get:

∆ ≤
√

2n

l
‖A(t∗)‖2. (26)

Concentration Bound

Using the bound on the expectation and the Lipschitz
bound just shown, by Theorem 1, for anyǫ > 0 andδ > 0,
the following inequality holds:

Pr

[

‖AB − CR‖F ≥

√

√

√

√

n

l

n
∑

t=1

‖A(t)‖2‖B(t)‖2 + ǫ

]

≤ 2 · exp

( −2ǫ2

α(l, n − l)∆2

)

. (27)

Settingδ to match the right-hand side and choosingǫ =

∆
√

log(2/δ)α(l,n−l)
2 yields the statement of Theorem 2.

4.3 Bound for Nyström Method

We now present a bound on the accuracy of the Nyström
method when columns are chosen uniformly at random
without replacement.4

3A similar argument is made in Drineaset al. (2006a) using
the assumption of sampling independently and with replacement.

4Bounds for thel2 norm can obtained using similar tech-
niques. They are omitted due to space constraints.

Theorem 3. Let G ∈ R
n×n be an SPSD matrix. Assume

that l columns ofG are sampled uniformly at random with-
out replacement, let̃Gk be the rank-k Nystr̈om approxima-
tion toG as described in (2), and letGk be the best rank-k
approximation toG. For ǫ > 0, if l ≥ 64k/ǫ4 , then

E
ˆ

‖G − G̃k‖F

˜

≤ ‖G − Gk‖F +

ǫ

"

„

n

l

X

i∈D(l)

Gii

«

v

u

u

tn

n
X

i=1

G2
ii

# 1

2

,

where
∑

i∈D(l) Gii is the sum of the largestl diagonal

entries ofG. Further, if η =
√

log(2/δ)α(l,n−l)
l , with

α(l, n − l) defined in Theorem 1 and ifl ≥ 64k/ǫ4 then
with probability at least1 − δ,

‖G − G̃k‖F ≤ ‖G − Gk‖F +

ǫ

"

„

n

l

X

i∈D(l)

Gii

«„

v

u

u

tn

n
X

i=1

G2
ii

+ η max
`

nGii

´

«

# 1

2

.

Recall that for even moderately sizedl andn, α(l, n− l) ≈
l(1 − l/n) and thusη ≈

√

log(2/δ)(1 − l/n). To prove
this theorem, we use Corollary 1 (see proof for further de-
tails). If we instead use Corollary 2, we obtain the follow-
ing weaker, yet more intuitive bound.5

Corollary 3. Let G ∈ R
n×n be an SPSD matrix. Assume

that l columns ofG are sampled uniformly at random with-
out replacement, let̃Gk be the rank-k Nystr̈om approxima-
tion toG as described in (2), and letGk be the best rank-k
approximation toG. For ǫ > 0, if l ≥ 64k/ǫ4, then

E
[

‖G − G̃k‖F

]

≤ ‖G − Gk‖F + ǫ · max
(

nGii

)

. (28)

Further, ifη =
√

log(2/δ)α(l,n−l)
l , withα(l, n−l) defined in

Theorem 1 and ifl ≥ 64k(1+ η)2/ǫ4 then with probability
at least1 − δ,

‖G − G̃k‖F ≤ ‖G − Gk‖F + ǫ · max
(

nGii

)

(29)

Proof. The theorem and its corollary follow from applying
Lemma 2 to Lemma 1 and using Jensen’s inequality. Note
that when using these lemmas to prove Theorem 3, we use
the fact that ifG = X⊤X then

∑

i∈D(l) Gii = ‖X(1:l∗)‖2
F ,

whereX(1:l∗) are the largestl columns ofX with respect
to ‖·‖. We next state and prove these lemmas.

Lemma 1. Let G ∈ R
n×n be an SPSD matrix and define

X ∈ R
m×n such thatG = X⊤X. Further, letS, |S| =

l be any set of indices chosen without replacement from
{1 . . . n}. Let G̃k be the rank-k Nystr̈om approximation

5Corollary 3 can also be derived from Theorem 3 by not-
ing that

P

i∈D(l) Gii ≤ l max
`

Gii

´

and
P

n

i=1 G2
ii ≤

n max
`

G2
ii

´

.
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of G constructed from the columns ofG corresponding to
indices inS. DefineCX ∈ R

m×l as the columns inX
corresponding to the indices inS scaled by

√

n/l. Then

‖G − G̃k‖2
F ≤ ‖G − Gk‖2

F +

4
√

k‖XX⊤XX⊤ − CXC⊤
XCXC⊤

X‖F .

Proof. The proof of this lemma in Drineas and Mahoney
(2005) does not require any assumption on the distribution
from which the columns are sampled and thus holds in the
case of uniform sampling without replacement. Indeed, the
proof relies on the ability to decomposeG = X⊤X. To
make this presentation self-contained, we next review the
main steps of the proof of this lemma.

Let X = UΣV ⊤ andCX = Û Σ̂V̂ ⊤ denote the the singu-
lar value decompositions ofX and CX . Further, letÛk
denote the topk left singular vectors ofCX and define
E = ‖XX⊤XX⊤ − CXC⊤

XCXC⊤
X‖F . Then the follow-

ing inequalities hold:

‖G − G̃k‖2
F = ‖X⊤

X − X
⊤

ÛkÛ
⊤

k X‖2
F

= ‖X⊤
X‖2

F − 2‖XX
⊤

Ûk‖F

2 + ‖Û⊤

k XX
⊤

Ûk‖2
F

≤ ‖X⊤
X‖2

F −
k
X

t=1

σ
4
t (CX) + 3

√
k‖E‖F

≤ ‖X⊤
X‖2

F −
k
X

t=1

σ
2
t (X⊤

X) + 4
√

k‖E‖F

= ‖G − Gk‖2
F + 4

√
k‖E‖F .

Refer to Drineas and Mahoney (2005) for further details.

Lemma 2. SupposeX ∈ R
m×n, 1 ≤ l ≤ n and con-

struct CX from X as described in Theorem 2. LetE =
XX⊤XX⊤ − CXC⊤

XCXC⊤
X and defineX(1:l∗) ∈ R

m×l

as the largestl columns ofX with respect to‖·‖. Then,

E
[

‖E‖F

]

≤ 2n

l
‖X(1:l∗)‖2

F ·

√

√

√

√

n

l

n
∑

t=1

‖X(t)‖4. (30)

Further, let δ ∈ (0, 1) and η =
√

log(2/δ)α(l,n−l)
l . Then

with probability at least1 − δ,

‖E‖F ≤ 2n

l
‖X(1:l∗)‖2

F ·
 

v

u

u

t

n

l

n
X

t=1

‖X(t)‖4+
ηn√

l
‖X(t∗)‖2

!

.

(31)

Proof. We first expandE as follows:

E = XX⊤XX⊤ − XX⊤CXC⊤
X + XX⊤CXC⊤

X−
CXC⊤

XCXC⊤
X

= XX⊤(XX⊤ − CXC⊤
X) + (XX⊤ − CXC⊤

X)CXC⊤
X .

Using the triangle inequality we have:

‖E‖F ≤
(

‖X‖2
F + ‖CX‖2

F

)

· ‖XX⊤ − CXC⊤
X‖F

≤ 2n

l
‖X(1:l∗)‖2

F · ‖XX⊤ − CXC⊤
X‖F .

The lemma now follows by applying Corollary 1.

4.4 Analysis of Bound

In the previous section we presented a new bound for
the Nystr̈om method, assuming columns are sampled uni-
formly without replacement. We now compare this bound
with one presented in Drineas and Mahoney (2005), in
which columns are sampled non-uniformly with replace-
ment using a diagonal distribution. We compare the rela-
tive tightness of the bounds assuming that the diagonal en-
tries ofG are uniformly distributed, in which case Theorem
3 reduces to Corollary 3. This is the case for any normal-
ized kernel matrix (K ′) constructed from an initial kernel
matrix (K) as follows:

K ′(x, y) =
K(x, y)

√

K(x, x)K(y, y)
. (32)

The diagonals of kernel matrices are also identical in the
case of the RBF kernels, which Williams and Seeger (2000)
suggests are particularly amenable to the Nyström method
since their eigenvalues decay rapidly. When the diagonals
are equal, the form of the bound in Drineas and Mahoney
(2005) is identical to that of Corollary 3, and hence we can
compare the bounds by measuring the value of the minimal
allowableǫ as a function of the fraction of columns used for
approximation, i.e., thel/n ratio. Both bounds are tightest
when the inequalities involvingl, e.g.,l ≥ 64k(1 + η)2/ǫ4

for Corollary 3, are set to equalities, so we use these equal-
ities to solve for the minimal allowable epsilon. In our
analysis, we fix the confidence parameterδ = 0.1 and
setk = .01 × n. The plots displayed in Figure 3 clearly
show that the bound from Theorem 3 is tighter than that of
Drineas and Mahoney (2005).

5 Conclusion

The Nystr̈om method is used in a variety of large-scale
learning applications, in particular in dimensionality reduc-
tion and image segmentation. This method is commonly
used with uniform sampling without replacement, though
non-uniform distributions have been used to theoretically
analyze the Nystr̈om method.

In this work, we gave a series of clear empirical results sup-
porting the use of uniform over non-uniform sampling, as
uniform sampling tends to be superior in both speed and
accuracy in several data sets. We then bridged the gap
between theory and practical use of the Nyström method



         311

Sampling Techniques for the Nystr̈om Method

10 20 30 40 50
1.5

2

2.5

3

3.5

4

4.5

 % of Columns Sampled (l/n)

M
in

 E
ps

ilo
n

Comparison between Bounds

 

 

New Bound
Existing Bound

Figure 3: Comparison of the bound given by Drineas and
Mahoney (2005) and our bound based on sampling without
replacement.

by providing performance bounds for the Nyström method
when used with uniform sampling without replacement.
Our analysis gives the first theoretical justification for the
use of uniform sampling without replacement in this con-
text. Our experiments and comparisons further demon-
strate that the qualitative behavior of our bound matches
empirical observations. Our bounds and theoretical analy-
sis are also of independent interest for the analysis of other
approximations in this setting.
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