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Abstract

Given electroencephalogram (EEG) data
measured from several subjects under the
same conditions, our goal is to estimate com-
mon task-related bases in a linear model
that capture intra-subject variations as well
as inter-subject variations. Such bases cap-
ture the common phenomenon in group data,
which is a core of group analysis. In this pa-
per we present a method of nonnegative ma-
trix factorization (NMF) that is well suited
to analyzing EEG data of multiple subjects.
The method is referred to as group non-
negative matrix factorization (GNMF) where
we seek task-related common bases reflect-
ing both intra-subject and inter-subject vari-
ations, as well as bases involving individ-
ual characteristics. We compare GNMF
with NMF and some modified NMFs, in the
task of learning spectral features from EEG
data. Experiments on brain computer in-
terface (BCI) competition data indicate that
GNMF improves the EEG classification per-
formance. In addition, we also show that
GNMF is useful in the task of subject-to-
subject transfer where the prediction for an
unseen subject is performed based on a linear
model learned from different subjects in the
same group.

1 INTRODUCTION

Electroencephalogram (EEG) is multivariate time se-
ries data measured at multiple sensors placed on scalp,
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which reflects electrical potentials induced by brain
activities. EEG classification is an important task in
brain computer interface (BCI) which provides a new
dimension in human computer interface, directly con-
necting a computer with human thinking (Ebrahimi
et al., 2003).

In the task of motor imagery, spectral characteristics
of EEG have been used as features, including µ rhythm
(8-12 Hz) (Wolpaw et al., 2002) and β rhythm (18-25
Hz) on sensori-motor cortex. Those rhythms decrease
during movement or in preparation for movement,
known as event-related desynchronization (ERD) and
increase after movement or in relaxation, referred to as
event-related synchronization (ERS). These phenom-
ena, however, can happen in different frequency bands
or different regions, depending on subjects. For in-
stance, they might occur in 16-20 Hz, but not in 8-12
Hz (Lal et al., 2003).

Nonnegative matrix factorization (NMF) is a linear
data model which is useful in handling nonnegative
data (Lee & Seung, 1999). NMF allows only non-
subtractive combinations of nonnegative basis vec-
tors, leading to (possibly) a parts-based representa-
tion. NMF was shown to be useful in determining
discriminative basis vectors which well reflect mean-
ingful spectral characteristics without cross-validation
in motor imagery EEG tasks (Lee et al., 2006). How-
ever, a direct application of NMF to EEG data mea-
sured from multiple subjects takes only intra-subject
variations into account.

Given data measured from several subjects, group
analysis seeks task-specific patterns which are common
in two or more subjects in a group. Such commonly-
appearing patterns are more reliable than individual
ones in a single subject. Two types of variations
are considered in group analysis, including: (1) intra-
subject variations since a subject’s response varies
from trial to trial; (2) inter-subject variations since
responses vary from subject to subject.
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Approaches to group analysis of multiple subjects in-
clude: (1) fixed-effects analysis (FFX); (2) random-
effects analysis (RFX) (Frackowiak et al., 2003). FFX
assumes that all subjects in a group have the same acti-
vation patterns with noise, allowing only intra-subject
variability. On the other hand, RFX assumes that
each subject has activation patterns with noise which
are different across subjects, taking both intra-subject
and inter-subject variability into account. These two
approaches have been embodied in generalized lin-
ear model (GLM) or independent component analy-
sis (ICA) for a group fMRI study (Holmes & Friston,
1998; Lee et al., 2008; Park et al., 2003).

Group analysis is widely used in fMRI study but is a
pre-mature technique for EEG analysis. In this pa-
per we develop group NMF (GNMF) which is more
suitable to EEG analysis of multiple subjects. GNMF
seeks task-related common bases which capture both
intra-subject and inter-subject variations, as well as
task-independent bases involving individual character-
istics. Several naive modifications of NMF are also
considered and compared to GNMF, in a task of EEG
classification using IDIAP data in BCI competition III
(Blankertz et al., 2006):

• GNMF: GNMF (the main contribution of this
paper) seeks common bases which capture both
intra-subject and inter-subject variations as well
as bases involving individual characteristics, as in
RFX.

• Hierarchical-NMF: NMFs are applied to each
subject’s data individually, followed by a hi-
erarchical clustering to determine commonly-
appearing bases across subjects. Such common
bases reflect both intra-subject and inter-subject
variations. Bases other than common bases are
considered as individual task-independent charac-
teristics.

• One-NMF: A single NMF is applied to a con-
catenated data constructed from all subjects in a
group at hand, assuming that the common bases
capture only intra-subject variations.

• FFX-NMF: FFX-NMF seeks common bases re-
flecting only intra-subject variations as well as
bases involving individual characteristics, as in
FFX.

The rest of this paper is presented as follows. We be-
gin with a detailed explanation on how to make use
of NMF to learn spectral features for EEG classifi-
cation in Section 2. The main contribution, GNMF,
is described in Section 3 with a toy example. Other

modifications of NMF such as Hierarchical-NMF, One-
NMF, FFX-NMF are also explained in Section 3. In
Section 4, numerical experiments on IDIAP dataset in
BCI competition III indicate that GNMF improves the
EEG classification performance. In addition, we also
emphasize that GNMF is useful in the task of subject-
to-subject transfer where the prediction for an unseen
subject is performed based on a linear model learned
from different subjects in the same group. Finally con-
clusions are drawn in Section 5.

2 NMF FOR SPECTRAL EEG

FEATURE EXTRACTION

We construct the data matrix X ∈ R
m×n
+ by applying

a wavelet transform or short-time Fourier transform to
the time-domain EEG signal such that each row in X

is associated with a frequency profile across trials. A
detailed description of the data matrix construction is
given in Section 4.1.

NMF seeks a rank-r decomposition of X ∈ R
m×n
+ that

is of the form:

X ≈ AS, (1)

where A ∈ R
m×r
+ contains bases in its columns and S ∈

R
r×n
+ is the encoding matrix where each row represents

the extent to which each basis is used to reconstruct
the data vector. An exemplary application of NMF
to the time-frequency representation of EEG data is
shown in Fig. 1.

Figure 1: The data matrix X (constructed by collect-
ing frequency profiles from two channels C3 and C4)
is decomposed into a product of basis matrix A and
encoding matrix S with both of them restricted to be
nonnegative. The first two columns of A are related to
the characteristics of µ rhythm (8-12 Hz) for C3 and
C4 channels. The last two columns of A represent β
rhythm around 15 Hz for both channels. Rows of S

are corresponding feature profiles.

In the case where the squared Euclidean distance is
used as a discrepancy measure between the data X

and the model AS, NMF involves the following opti-
mization:

arg min
A≥0,S≥0

J =
1

2
‖X −AS‖2. (2)
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Gradient descent learning (which is additive update)
can be applied to determine a solution to (2), however,
nonnegativity for A and S is not preserved without
further operations at iterations.

On the other hand, a multiplicative method developed
in (Lee & Seung, 1999) provides a simple iterative al-
gorithm to solve (2). We apply a slightly different
approach to derive the same multiplicative algorithm.
Suppose that the gradient of an error function has a
decomposition that is of the form

∇J = [∇J ]
+ − [∇J ]

−
, (3)

where [∇J ]
+

> 0 and [∇J ]
−

> 0. Then multiplica-
tive update for parameters Θ has the form

Θ← Θ⊙

(

[∇J ]
−

[∇J ]
+

).η

, (4)

where ⊙ represents Hadamard product (element-wise
product) and (·).η denotes the element-wise power and
η is a learning rate (0 < η ≤ 1). It can be easily
seen that the multiplicative update (4) preserves the
nonnegativity of the parameter Θ, while∇J = 0 when
the convergence is achieved.

Derivatives of the error function (2) with respect to A

with S fixed and with respect to S with A fixed, are
given by

∇AJ = [∇AJ ]
+ − [∇AJ ]

−

= ASS
⊤ −XS

⊤, (5)

∇SJ = [∇SJ ]
+ − [∇SJ ]

−

= A
⊤

AS −A
⊤

X. (6)

With these gradient calculations, the rule (4) with η =
1 yields the well-known Lee and Seung’s multiplicative
updates (Lee & Seung, 1999)

A ← A⊙
XS

⊤

ASS
⊤

, (7)

S ← S ⊙
A

⊤
X

A
⊤

AS
, (8)

where ⊙ is an element-wise product (Hadamard prod-
uct) and all divisions are element-wise divisions.

When a test data matrix Xtest is given, its associated
feature matrix Atest can be computed in two different
ways:

• The feature matrix Atest is determined by LS pro-
jection,

Stest = [A]
†
Xtest (9)

where † represents the pseudo-inverse. In such
a case, Stest might have negative elements but
works well in the viewpoint of feature extraction.

• We iterate the update rule (7) until convergence,
with S (learned in the training phase) fixed.

3 NMF FOR GROUP ANALYSIS

Suppose that we are given L sets of data (measured

from L different subjects), X = {X(1), . . . ,X(L)},

each of which X
(l) ∈ R

m×nl

+ contains frequency pro-
files of EEG data measured from subject l. Assume
that EEG measurements across subjects were obtained
under the same conditions (i.e., subjects share the
same task).

The linear model in GNMF assumes that each data
matrix X

(l) is generated by

X
(l) = A

(l)
S

(l) =
[

A
(l)
C A

(l)
I

]

S
(l), (10)

where the basis matrix A
(l) ∈ R

m×r
+ is composed

of two types of bases, where A
(l)
C ∈ R

m×rC

+ con-
sists of task-related common bases capturing intra-

subject and inter-subject variations, and A
(l)
I ∈ R

m×rI

+

(r = rC + rI) consists of bases which reflect task-
independent individual characteristics. The compo-
sition of the basis matrix in GNMF is shown in Fig.
2

Figure 2: The composition of basis matrix A
(l) ∈

R
m×r is shown, consisting of rC (task-related) com-

mon bases and rI (task-independent) individual bases.

3.1 GNMF

As mentioned earlier, GNMF seeks task-related com-

mon bases A
(l)
C that are as close as possible across

subjects and task-independent individual bases A
(l)
I

are as far apart as possible. At the same time, GNMF
also seeks a rank-r approximation, as in the standard
NMF. To this end, we consider the following objective
function:

JGNMF = λ

L
∑

l=1

∥

∥

∥
X

(l) −A
(l)

S
(l)
∥

∥

∥

2

+ γ
∑

l

∥

∥

∥
A

(l)
∥

∥

∥

2

+
α

2

∑

l

∑

j 6=l

∥

∥

∥
A

(j)
C −A

(l)
C

∥

∥

∥

2

−
β

2

∑

l

∑

j 6=l

∥

∥

∥
A

(j)
I −A

(l)
I

∥

∥

∥

2

, (11)
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where the first two terms involve the rank-r approxi-
mation with regularization and the third term enforces

common bases A
(j)
C and A

(l)
C to be as close as possi-

ble, while the last term keeps individual bases A
(j)
I

and A
(l)
I as far apart as possible. The minimization of

(11) is done subject to constraints A
(l)
C ≥ 0, A

(l)
I ≥ 0,

and S
(l) ≥ 0 for l = 1, 2, . . . , L. We derive multiplica-

tive algorithms for GNMF using the same technique
as introduced in Section 2. Note that S

(l) involves

only
∑L

l=1

∥

∥

∥
X

(l) −A
(l)

S
(l)
∥

∥

∥

2

in (11), multiplicative

updates are the same as (8), i.e.,

S
(l) ← S

(l) ⊙
A

(l)⊤
X

(l)

A
(l)⊤

A
(l)

S
(l)

, (12)

for l = 1, . . . , L. On the other hand, introducing

S
(l)⊤ =

[

S
(l)
C

⊤
S

(l)
I

⊤
]

, multiplicative updates for

common bases and individual bases (for l = 1, . . . , L)
are given by

A
(l)
C ← A

(l)
C ⊙

(

[∇
A

(l)
C

JGNMF ]−

[∇
A

(l)
C

JGNMF ]+

)

, (13)

A
(l)
I ← A

(l)
I ⊙

(

[∇
A

(l)
I

JGNMF ]−

[∇
A

(l)
I

JGNMF ]+

)

, (14)

where
(

[∇
A

(l)
C

JGNMF ]−

[∇
A

(l)
C

JGNMF ]+

)

=
X

(l)
S

(l)
C

⊤
+ (α/λ)

∑

j 6=l A
(j)
C

[

A
(l)

S
(l)
]

S
(l)
C

⊤
+ (α/λ)(L− 1)A

(l)
C + (γ/λ)A

(l)
C

,

and
(

[∇
A

(l)
I

JGNMF ]−

[∇
A

(l)
I

JGNMF ]+

)

=
X

(l)
S

(l)
I

⊤
+ (β/λ)(L− 1)A

(l)
I

[

A
(l)

S
(l)
]

S
(l)
I

⊤
+ (β/λ)

∑

j 6=l A
(j)
I + (γ/λ)A

(l)
I

.

3.2 OTHER MODIFICATIONS OF NMF

In addition to GNMF, three more (naive) modifica-
tions of NMF for group analysis are provided and com-
pared with GNMF: including Hierarchical-NMF, One-
NMF, and FFX-NMF.

3.2.1 Hierarchical-NMF

First, NMF is applied to each data set individually,
i.e.,

X
(l) = A

(l)
S

(l),

for l = 1, . . . , L. Task-related common bases are deter-
mined by applying an agglomerative hierarchical clus-
tering to column vectors of A

(l). Hierarchical-NMF
can be viewed as a multi-level approach to RFX, in
the sense that bases are first estimated individually
by assuming only intra-subject variability, then com-
mon bases are selected by a clustering method by tak-
ing inter-subject variability into account. Hierarchical-
NMF works fine for the toy example that is explained
in Section 3.3. As will be shown, however, for real-
world data, it is not easy to compute clusters associ-
ated with common bases.

3.2.2 One-NMF

One-NMF considers a concatenated data matrix X =
[X(1) · · ·X(L)] to find a decomposition of X =

A[S(1) · · ·S(L)]. That is One-NMF is nothing but an
one-time application of NMF to the concatenated data
matrix X.

3.2.3 FFX-NMF

FFX-NMF assumes that common bases are exactly the

same (A
(l)
C = AC for l = 1, . . . , L) across subjects,

allowing individual bases to be different. Only intra-
subject variations are implicitly considered in FFX-
NMF, in addition to individual characteristics, just as
in FFX. FFX-NMF seeks a decomposition of the form

X
(l) =

[

AC A
(l)
I

]

S
(l), (15)

for l=1,. . . ,L. The objective function for FFX-NMF is
given by

JFFX−NMF =

L
∑

l=1

∥

∥

∥
X

(l) −ACS
(l)
C −A

(l)
I S

(l)
I

∥

∥

∥

2

+ γ

{

L ‖AC‖
2

+
∑

l

∥

∥

∥
A

(l)
I

∥

∥

∥

2
}

, (16)

which is to be minimized with respect to AC ≥ 0,

A
(l)
I ≥ 0, S

(l)
C ≥ 0, and S

(l)
I ≥ 0 for l = 1, . . . , L. The

regularization term

∑

l

∥

∥

∥
A

(l)
∥

∥

∥

2

= L ‖AC‖
2

+
∑

l

∥

∥

∥
A

(l)
I

∥

∥

∥

2

enforces the information learned to be evenly dis-
tributed on column vectors of A

(l), avoiding that the
information concentrated on AC since AC is esti-
mated using the whole data. Assuming AI = A

(l)
I

for l = 1, . . . , L in FFX-NMF leads to One-NMF.

Multiplicative algorithms to learn S
(l) have the same

form as (12), except that A
(l) = [AC A

(l)
I ] are differ-

ent to the ones in GNMF. Multiplicative updates for
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AC and A
(l)
I are given by

AC ← AC ⊙

∑

l X
(l)

S
(l)
C

⊤

∑

l A
(l)

S
(l)

S
(l)
C

⊤
+ γLAC

, (17)

A
(l)
I ← A

(l)
I ⊙

X
(l)

S
(l)
I

⊤

A
(l)

S
(l)

S
(l)
I

⊤
+ γA

(l)
I

. (18)

FFX-NMF does not consider task-related inter-subject
variations, as in FFX, leading to the same common
bases as One-NMF, which is also demonstrated in the
toy example explained in Section 3.3.

3.3 A TOY EXAMPLE

We present a toy example where we synthetically gen-
erate common bases and individual bases as well as
associated encodings, mimicking brain activities of
three different subjects. Through this toy example,
we stress the useful behavior of GNMF, compared to
Hierarchical-NMF, One-NMF, and FFX-NMF.

Fig. 3 shows three common basis images (each of
which is of size 23 × 23) and one individual basis im-
age for each of three subjects. Each basis image is
converted to a vector, leading to A

(l) ∈ R
529×4 for

l = 1, 2, 3. Three common bases look similar to each
other, imitating left/right/bottom activations in the
spatial domain. Individual bases differ depending on
subjects.

Figure 3: From top to bottom, bases for three subjects
{A(1),A(2),A(3)} are shown. From left to right, three
common bases and one individual basis are displayed
for each subject. Each image of size 23×23 is converted
to a 529-dimensional vector, leading to A

(l) ∈ R
529×4.

The first three bases involve common patterns that are
activated in a similar region (reflecting inter-subject
variations). The basis images in the last column are
individual components that are randomly activated,
depending on subjects.

Synthetically-generated on-off encodings (1 and 0 rep-
resent ’activation’ and ’no activation’, respectively)

are shown in Fig. 4 where activation time courses
are displayed, including {S(1),S(2),S(3)}. Data ma-

trices X
(l) are generated by A

(l)
S

(l)+N (0, 0.1) where
N (0, 0.1) denotes Gaussian noise with mean 0 and
variance 0.1. Exemplary observed data are shown in
Fig. 5.

Figure 4: From left to right, encoding matrices S
(1),

S
(2), and S

(3) are displayed, each of which is in
R

4×1200. Time courses involving on-off activations
constitute the rows of S

(l). The first three rows are
encodings associated with common bases, which are
orthogonal each other since a single subject cannot
perform two tasks simultaneously. The last row is en-
codings corresponding to individual bases, which are
randomly activated over time.

Figure 5: Exemplary generated data.

Bases determined by Hierarchical-NMF, One-NMF,
FFX-NMF, and GNMF are shown in Figs. 6, 8, and 9,
respectively. Both Hierarchical-NMF and GNMF suc-
cessfully restore common bases as well as individual
bases. However, determining common bases by a hier-
archical clustering is not an easy job and for real-world
data it does not work well.

4 NUMERICAL EXPERIMENTS

Numerical experiments for EEG classification are con-
ducted using the dataset V in BCI competition III,
which was provided by the IDIAP Research Institute
(Blankertz et al., 2006). We compare Hierarchical-
NMF, One-NMF, FFX-NMF, and GNMF as spectral
feature extraction methods and evaluate the classifi-
cation performance using the Viterbi algorithm as in
(Lee et al., 2007).

4.1 IDIAP DATASET

The IDIAP dataset contains EEG data recorded from
3 normal subjects and involves three tasks, includ-
ing the imagination of repetitive self-paced left/right
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Figure 6: Bases are first determined by applying NMF
to X

(l) individually in Hierarchical-NMF. Bases are
not yet sorted to determine common bases. Each basis
is numbered from 1 to 12 on its lower-left corner. Simi-
larities between these bases are shown in Fig. 7, where
a agglomerative hierarchical clustering is applied to
find groups of common bases.

Figure 7: A similarity matrix between 12 bases learned
in Hierarchical-NMF is pseudo-colored in such a way
that the darker color means a smaller distance (the
more similar). A hierarchical clustering yields (1, 8,
12), (2, 6, 11) and (3, 7, 10) as groups. The 4th, 5th,
and 9th bases do not have similar bases, which mean
they are individual bases.

hand movements and the generation of words begin-
ning with the same random letter. EEG data is not
splitted in trials, since the subjects are continuously
performing any of the mental tasks.

We use the precomputed features which were obtained
by the power spectral density (PSD) in the band 8-30
Hz every 62.5 ms, (i.e., 16 times per second) over the
last second of data with a frequency resolution of 2 Hz
for the eight centro-parietal channels C3, Cz, C4, CP1,
CP2, P3, Pz, and P4.

Spectral components P̄
(k)
t,f ∈ R

12×10528 is the normal-

ized precomputed features satisfying
∑

f P̄
(k)
f,t = 1 for

f ∈ {8, 10, . . . , 28, 30} Hz, k = 1, . . . , 8 (8 different
channels), and t = 1, . . . , 10528 where 10528 is the
number of data points in the training set.

Then we construct the training data matrix Xtrain ∈
R

96×10528 by collecting 12 × 10528 spectral matrices

Figure 8: Bases learned by One-NMF and FFX-NMF
are shown: (a) One-NMF does not capture inter-
subject variations, yielding bases averaged over sub-
jects; (b) FFX-NMF also determines the common
bases which do not capture inter-subject variations
just like One-NMF, while individual bases are well es-
timated by FFX-NMF.

Figure 9: Bases learned by GNMF are shown, where
for each subject three common bases and one indi-
vidual basis are almost identical to the original ones
in Fig. 3, implying that GNMF successfully captures
task-related intra- and inter-subject variations as well
as individual characteristics.

computed at 8 different channels,

X =
[

P̄
(1)

; P̄
(2)

; . . . ; P̄
(8)
]

∈ R
m×n, (19)

where m = 12 × 8 as shown in Fig. 10. In the same
way, we make the test data matrix, Xtest ∈ R

96×3504.

4.2 FEATURE EXTRACTION AND

CLASSIFICATION

After Hierarchical-NMF, One-NMF, FFX-NMF or

GNMF, we obtain the feature matrix S
(l)⊤ =

[

S
(l)
C

⊤
S

(l)
I

⊤
]

for l = 1, . . . , L. Then, we classify

S
(l) (common and individual features) or S

(l)
C (com-

mon features only) using the Viterbi algorithm. Total
classification accuracies of IDIAP dataset are shown
in Table 1.

The classification results of common features (the
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Figure 10: IDIAP dataset are shown in the time-
domain (left panel) and in the time-frequency domain
(right panel). Waveforms of EEG in the time-domain
are shown in the left panel, each of which is measured
at 8 different channels. Corresponding time-frequency
representations are shown in the right panel, where
frequency (horizontal axis in each plot) ranges over
[8, 10, . . . , 28, 30] (i.e., the number of frequency bands
is 12). In this case, the data matrix X ∈ R

96×n is
constructed by collecting 12 frequency profiles at each
channel (96 = 12× 8).

lower half) is better than the results of common and
individual features (the upper half). Thus, we can in-
terpret that common bases are really related to tasks.
Fig. 11 shows that the classification results are af-
fected by α and β which are the degrees of similar-
ity between common bases and dissimilarity between
individual bases in Eq. (10). The performance of
α > 0, β > 0 (the solid lines) are better than the per-
formance of α = β = 0 (the dotted lines) where there
is no relation between bases.

By comparing GNMF with One-NMF and FFX-NMF,
we can confirm that RFX works better than FFX.
However, the results of Hierarchical-NMF which con-
siders RFX is the worst among the proposed methods
because the algorithm finding common bases (agglom-
erative clustering algorithm) is failed for the real data.

We also apply our methods to subject-to-subject trans-
fer, i.e., after calculating basis vectors using only two
subjects, we use them to predict for the other subject
who is considered as a unseen subject. The results are
shown in Table 2. The classification accuracy is some-
what weakened than the case of using all datasets ex-
cept for the results of subject 3. The result of subject
3 is originally not good. We can infer that the subject
3’s data is too noisy to degrade the performance.

Fig. 12 shows the accuracy of subject-to-subject trans-
fer varying α and β when λ = 1. For all transferred
cases, the results of GNMF (the solid lines) are better
than the results of One-NMF (the dotted lines). Thus,

0 0.005 0.1 0.5 1 5 10 100
50

55

60

65

70

75

80

85
Varying α

α     (λ=1, β=0.5)

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

 

 

0 0.005 0.1 0.5 1 5 10 100
50

55

60

65

70

75

80

85

β    (λ=1, α=0.5)

cl
as

si
fi

ca
ti

o
n

 a
cc

u
ra

cy

Varying β

 

 

sub1 (α=0.5)

sub2 (α=0.5)

sub3 (α=0.5)

sub1 (α=β=0)

sub2 (α=β=0)

sub3 (α=β=0)

sub1 (β=0.5)

sub2 (β=0.5)

sub3 (β=0.5)

sub1 (α=β=0)

sub2 (α=β=0)

sub3 (α=β=0)

Figure 11: Classification accuracy of GNMF varying
α (λ = 1, β = 0.5) (left panel) and β (λ = 1, α = 0.5)
(right panel) in (13) and (14). The dotted lines are the
results of GNMF when α = 0 and β = 0 which have
no assumption between bases of subjects, while the
solid lines are the results of GNMF. Lines with circle,
triangle and x-mark correspond to the classification
accuracy of subjects 1, 2 and 3, respectively.

Table 1: Classification accuracy of Hierarchical-NMF,
One-NMF, FFX-NMF, and GNMF. The upper half
summarizes classification results when both common
and individual features are used and the lower half
summarizes results when only common features are
used. (Classification accuracy is computed for every
single data point (every 0.0625 sec), while the results
of BCI competition winner are obtained for every 8
data points (every 0.5 sec).

Common + Individual
[%] Sub1 Sub2 Sub3 Avg

Hierarchical-NMF 77.23 71.49 48.80 65.84
One-NMF 79.48 75.49 48.51 67.83
FFX-NMF 78.25 71.43 51.58 67.09

GNMF 79.91 70.77 54.01 68.23

Common
Sub1 Sub2 Sub3 Avg

Hierarchical-NMF 77.45 70.59 51.12 66.39
One-NMF - - - -
FFX-NMF 81.76 78.17 51.09 70.34

GNMF 84.39 77.56 61.58 74.51

BCI comp. winner 79.60 70.31 56.02 68.65

Table 2: Classification accuracy by subject-to-subject
transfer. After learning the bases using two subjects’

data, we obtain two common basis matrices, A
(l1)
C

and A
(l2)
C . Then, we choose the common basis ma-

trix which have higher averaged classification results
for two subjects, and apply it to a new test subject.

Learning Sub1,Sub2 Sub2,Sub3 Sub1,Sub3
Test Sub3 Sub1 Sub2

One-NMF 47.71 72.06 67.19
FFX-NMF 51.00 76.83 73.56

GNMF 69.12 82.68 77.22
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Figure 12: Classifiation accuracy by subject-to- sub-
ject transfer varying α (λ = 1) (left panel) and β (λ =
1) (right panel). Lines with circle, triangle and x-mark
correspond to the classification accuracy of subjects 1,
2 and 3 using features learned by the other subjects.
The dotted lines are the results of One-NMF, while
the solid lines are the results of GNMF.

we conclude that GNMF is not highly sensitive to pa-
rameters and is suitable to subject-to-subject transfer.

5 CONCLUSIONS

We have presented GNMF which can effectively an-
alyze EEG data of multiple subjects, capturing task-
related intra- and inter-subject variations as well as
individual characteristics. We have developed multi-
plicative updates for GNMF, seeking task-related com-
mon bases that are as close as possible while keeping
individual bases as far apart as possible, in addition
to the rank-r approximation as in the standard NMF.
Several naive extensions of NMF have also been pre-
sented for group analysis. Numerical experiments on
IDIAP dataset in BCI competition III confirmed that
GNMF improved the EEG classification performance.
In addition, we also demonstated that GNMF is useful
in subject-to-subject transfer tasks where the predic-
tion for an unseen subject is performed based on a lin-
ear model learned from different subjects in the same
group. GNMF involves several tuning parameters such
as λ, γ, α and β. A Bayesian method (Salakhutdinov
& Mnih, 2008) is useful to automatically determine
such parameters and the application of it is our future
work.
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