
 392

Tractable Search for Learning Exponential Models of Rankings

Bhushan Mandhani
Dept. of Computer Science
University of Washington

Seattle USA 98195

Marina Meila
Dept. of Statistics

University of Washington
Seattle USA 98195

Abstract

We consider the problem of learning the Gen-
eralized Mallows (GM) model of [Fligner and
Verducci, 1986], which represents a proba-
bility distribution over all possible permu-
tations (or rankings) of a given set of ob-
jects. The training data consists of a set of
permutations. This problem generalizes the
well known rank aggregation problem. Maxi-
mum Likelihood estimation of the GM model
is NP-hard. An exact but inefficient search-
based method was recently proposed for this
problem. Here we introduce the first non-
trivial heuristic function for this search. We
justify it theoretically, and show why it is
admissible in practice. We experimentally
demonstrate its effectiveness, and show that
it is superior to existing techniques for learn-
ing the GM model. We also show good per-
formance of a family of faster approximate
methods of search.

1 Introduction

Preference data, such as rankings, appear in many ap-
plications. One of them is rank aggregation, which
looks to combine several input rankings to produce a
single output ranking that best represents the input.
This has applications in combining search engine rank-
ings [Cohen et al., 1999, Dwork et al., 2001], collab-
orative filtering [Pennock et al., 2000], ranked voting,
etc.

But often we need to go beyond rank aggregation. In-
stead of the single best ranking, we need a probabil-

Appearing in Proceedings of the 12th International Confe-
rence on Artificial Intelligence and Statistics (AISTATS)
2009, Clearwater Beach, Florida, USA. Volume 5 of JMLR:
W&CP 5. Copyright 2009 by the authors.

ity distribution over all possible rankings. This gives
us the ability to make predictions and answer a wide
range of queries such as: the probability that a par-
ticular item will occur in the top k, the most likely
sequence for the top k items, whether item i will be
ranked before j, the expected number of fixed points
in the ranking, etc.

Several probabilistic models over rankings have been
studied in statistics; see [Fligner and Verducci, 1993]
for an excellent reference. Here we focus on the Mal-
lows model proposed in [Mallows, 1957]. This model
has become increasingly popular by itself, or as a ba-
sic block in interesting applications [Lebanon and Laf-
ferty, 2003]. [Fligner and Verducci, 1986] extend it to
obtain the Generalized Mallows Model (GM), in which
the ranking process is interpreted as having multiple
independent stages, each governed by its own disper-
sion parameter. In this way the GM can model pro-
cesses where there is high consensus for say, the most
highly ranked items, but near indifference to the rank-
ing of other items. For example, a population can have
high consensus that the economy is the most impor-
tant issue at a certain time, but be rather inconsistent
about the ranking of the other issues. This is true for
many real world situations.

In [Meila et al., 2007] we showed that the Mallows
and GM models can be estimated exactly from data
by a search-based method. The search tree has n! leaf
nodes where n is the number of items, an order of
growth reflecting the NP-hardness of the problem. In
spite of this, in [Meila et al., 2007] we also introduced
an effective method of search for the Mallows model.
No such method is known for the GM model, leaving
the exact search algorithm to the stage of a theoretical
construct.

To make the exact GM model estimation practical, a
good heuristic function is needed. We would like the
heuristic to be admissible for A⋆ search to guaran-
tee us optimality. In this paper, we propose the first
such heuristic. It differs substantially from the exist-

 393

Learning Exponential Models of Rankings

ing solutions for the Mallows model, since it requires
lower bounding a real-valued function of several dis-
crete variables. It is no longer purely a combinatorial
optimization task. Our heuristic is based on a care-
ful analysis of this likelihood function, and imposing
constraints obtained by combinatorial arguments that
generalize the ideas used in the Mallows model heuris-
tic. It is principled but efficient enough to be em-
ployed in a search that generates a very large number
of nodes.

The rest of this paper is organized as follows. Sections
2 and 3 present necessary background knowledge fol-
lowing [Fligner and Verducci, 1986, Meila et al., 2007]
about the Mallows and GM models, and their likeli-
hood functions. Section 4 introduces our new contri-
bution, the proposed heuristic function. We discuss
related work in Section 5, present experiments in Sec-
tion 6, and conclude in Section 7.

2 The Mallows & Generalized

Mallows Models

Suppose we have n items labeled 1,2,. . . ,n that are to
be ranked. Any permutation π of these items repre-
sents a ranking.

Definition 1 The Kendall Distance d(π, σ) between
rankings π and σ is defined as the total number of item
pairs over which they disagree. They disagree over an
item pair (i, j) if the relative ordering of i and j is not
the same in both.

Definition 2 The Mallows model is the following
probability distribution over all rankings π. P(π) =
exp(−θ d(π,π0))

ψ(θ) Ranking π0 and θ ≥ 0 are the model

parameters while ψ(θ) is a normalization constant.

For θ > 0, the probability of π decreases exponentially
with distance from the modal ranking π0. For θ = 0,
we just get the uniform distribution. For notational
convenience, we will fix π0 to (1,2,. . . ,n) for the re-
mainder of this section, and denote d(π, π0) by D(π).

We define Vj(π) to be the number of disagreements
that π has with π0 which involve the j-th ranked item
and some lower ranked item in π0. For our choice
of π0, Vj(π) becomes the number of elements in {j +
1,j + 2,. . . ,n} that are ranked above j in π. Thus, Vj
can vary from 0 to (n − j). It is easy to see that the
following relationship holds.

D(π) =

n−1
∑

j=1

Vj(π) (1)

Definition 3 ([Fligner and Verducci, 1986])
The Generalized Mallows model defines the following

probability distribution over all rankings π.

P(π) =
exp(−∑n−1

j=1 θj Vj(π))

ψ(θ1, . . . , θn−1)
(2)

Ranking π0 and θ1,. . . ,θn−1 are the model parameters
with θj ≥ 0 ∀j. The function ψ is the normalization
constant.

Note that θj can be interpreted as a measure of the
strength of consensus within the population that item
j should rank higher than the items (j + 1) up to n.
The larger θj is, the less likely it is that Vj(π) will
be large for π coming from the model. When all the
θj parameters are constrained to be equal, the GM
model reduces to the Mallows model, as is evident from
Equation 1.

Theorem 1 ([Fligner and Verducci, 1986])
When π is distributed according to the GM model,
the random variables V1, . . . , Vn−1 are mutually
independent. For all j, the distribution of Vj over {0,
1,. . . ,n− j} is now given by:

P(Vj = p) =
exp(−θjp)

∑n−j

q=0 exp(−θjq)
(3)

The expression in the denominator of (3) is of interest,
and will occur in our analysis of the likelihood function
for computing the search heuristic.

ψj(θ) =

n−j
∑

q=0

exp(−θq) =
1 − exp(−(n− j + 1)θ)

1 − exp(−θ) (4)

It follows from Theorem 1 that ψ(θ1, . . . , θn−1) =
∏n−1
j=1 ψj(θj)

3 Maximum Likelihood Estimation

Suppose we have a dataset of N rankings
π1, π2, . . . , πN over n items labeled 1 to n. We
want to learn the parameters for the Generalized
Mallows model that maximize the likelihood. Let
V̄j =

∑N

i=1 Vj(πi)/N denote the observed mean for
Vj . The log likelihood can be written as follows.

log l = −N
n−1
∑

j=1

(

θj V̄j + logψj(θj)
)

= −N
n−1
∑

j=1

fj(θj , V̄j)

(5)
where the function fj has been introduced for nota-
tional convenience.

The log likelihood for the Mallows model is obtained
simply by setting all the θj parameters in (5) to a single

θ. Let D̄ =
∑N

i=1D(πi)/N =
∑n−1
j=1 V̄j denote the

 394

Mandhani,Meila

observed mean for D. We get the following expression
for the Mallows model.

log l = −N



θD̄ +

n−1
∑

j=1

logψj(θ)



 = −Nf(θ, D̄) (6)

3.1 Estimating θj with fixed π0

Assuming the modal ranking π0 is known, V̄j is known
for all j, and we can treat fj as a function of θj alone.
To maximize the log likelihood each fj is minimized
separately. The following results will be later used to
derive a bound for the maximum likelihood that can
be attained when the ranking π0 is some extension of
a given top-k ranking (a ranking which has only its
top k ranks specified). This will serve as our search
heuristic, and is discussed in depth in Section 4.

Lemma 2 The function fj is strictly convex in θj for
all j. The function f is strictly convex in θ.

Lemma 3

hj(V̄j) = min
θj≥0

fj(θj , V̄j) =

{

log(n− j + 1) if V̄j ≥ (n− j)/2
θj0V̄j + logψj(θj0) otherwise

where θj0 > 0 is the solution of ψ′
j(θj)/ψj(θj) = −V̄j.

Further, the left side of this equation is a strictly in-
creasing function of θj.

Since the left side of the equation above is strictly in-
creasing, it can be solved by doing a binary search over
a suitable real interval. Thus, if π0 is known, the θj
parameters can be determined.

3.2 Search for the Modal Ranking π0

For the Mallows model, maximum likelihood estima-
tion of π0 requires minimizing D̄. This is the well-
known Kemeny ranking problem and is NP-complete
[Bartholdi et al., 1989]. For the GM model, we need to

minimize
∑n−1
j=1

(

θj V̄j + logψj(θj)
)

. Thus, the prob-
lem is no longer purely a combinatorial optimization
task.

We now describe the search method we proposed in
[Meila et al., 2007] for finding the ML π0. We define
the n× n matrix Q where Qij is the fraction of rank-
ings in the dataset in which item i is ranked above
j. Suppose π0 is the ranking (r1, r2, . . . , rn). V̄j is
the per ranking average of the number of elements in
{rj+1, . . . , rn} that are ranked above rj . Observe that
the following holds.

V̄j =

n
∑

i=j+1

Qrirj
(7)

1 2 3

2 3 3 1 1 2

Figure 1: Search Tree for three items

Suppose we know only the top j ranks of π0. We
then know all items not in the top j and can still
determine V̄j . It follows that we can determine V̄i
∀ i ≤ j. From V̄i we can determine θi. Thus, if we
know the top j ranks of π0, we can determine the por-
tion

∑j

i=1

(

θiV̄i + logψi(θi)
)

of the log likelihood. The
search method depends on this key observation.

Each node of the search tree is an item. A node at
depth j represents a partial ranking (r1, r2, . . . , rj) in
which the top j ranks are known. This partial ranking
is obtained by following the unique path down from the
root of the tree to this node. The node will have (n−j)
children corresponding to the (n−j) ways in which the
next item can be chosen. The leaf nodes occur at depth
(n−1). They represent complete rankings and are the
goal nodes of the search. Figure 1 shows the complete
search tree for n = 3.

In an A⋆ search on this tree, the cost for a node x
at depth j is given by

∑j

i=1

(

θiV̄i + logψi(θi)
)

. The
heuristic function is a crucial aspect of the search, and
determines whether or not it will be tractable. Fur-
ther, we would like it to be admissible meaning it
should be a lower bound on the remaining cost for
reaching a goal node. With an admissible heuristic,
A⋆ search will always return the optimal solution. We
present our proposed heuristic in the next section.

4 Heuristic Functions for the Search

The search method for finding π0 explores the same
tree for both the Mallows and GM models, but they
have different cost functions. The associated heuristic
functions will differ too. For a node x at depth k of the
tree, we will denote the heuristics for the Mallows and
GM models by L and H respectively. In this paper,
we show how H can be computed. The problem of
computing L has been studied in [Conitzer et al., 2006]
and [Meila et al., 2007]. It is instructive to first briefly
discuss how L can be computed.

4.1 Mallows Model Search Heuristics

Suppose node x represents the partial ranking
(r1, . . . , rk). The cost at x is given by

∑k

j=1 V̄j .
L is a lower bound on the remaining cost which is

 395

Learning Exponential Models of Rankings

∑n−1
j=k+1 V̄j . Let S be the set of items not in the par-

tial ranking at x. Equation 7 implies that for any items
u, v ∈ S, exactly one of Quv and Qvu will occur in the
expression

∑n−1
j=k+1 V̄j . If v is ranked above u, the for-

mer will occur. Otherwise, the latter will. This leads
us to the following lower bound.

L =
∑

u,v∈S

min(Quv, Qvu) (8)

While computing L naively would take O(n−k)2 time,
using L for the parent node of x, we can compute L
for x in O(n− k) time.

In fact,
∑n−1
j=k+1 V̄j is just the Kemeny score “D̄” for

the restriction of the input rankings to items in S. The
techniques of [Conitzer et al., 2006] are thus directly
applicable. They give us the following four ways for
computing L, using a directed graph constructed from
the input rankings: (1) L0 is the same as (8); (2) L1 is
based on edge-disjoint cycles; (3) L2 is based on cycles
(not necessarily edge-disjoint); (4) L3 is based on a LP
relaxation of the integer linear program that gives the
minimum weight feedback edge set. The relationship
L0 ≤ L1 ≤ L2 ≤ L3 holds. Thus, there is a trade-
off between the tightness of the bound and the cost of
computing it.

4.2 GM Model Search Heuristic – Concave
Minimization

The cost at node x is now given by
∑k

j=1(θj V̄j +

logψj(θj)). The remaining cost is
∑n−1
j=k+1(θj V̄j +

logψj(θj)). Recall that once V̄j is known for some
j, θj is then determined from it by minimizing the
function fj as described in Lemma 3. This minimized
value is hj(V̄j) where hj is defined in the lemma. The

remaining cost can be written as
∑n−1
j=k+1 hj(V̄j). The

heuristic H must be a lower bound for this expression.

Our approach for computing H has three parts. First,
we establish the concavity of the cost function. Sec-
ond, we define a convex domain for the cost function
corresponding to valid vectors of V̄j values. Third,
we determine the tightest such domain using graph-
theoretic techniques.

Lemma 4 The function hj is differentiable every-
where. Its derivative is given by:

h′j(V̄j) =

{

0 if V̄j ≥ (n− j)/2
θj otherwise

where θj > 0 is the solution of ψ′
j(θj)/ψj(θj) = −V̄j.

Thus, hj is strictly increasing in the interval (0, n−j2),
and then becomes constant.

Lemma 5 The function hj is concave.

Lemma 6 The multivariable function h defined below
is concave.

h(V̄k+1, V̄k+2, . . . , V̄n−1) =

n−1
∑

j=k+1

hj(V̄j)

For the Mallows model search, the remaining cost has
a simple combinatorial interpretation as the minimum
weight feedback edge set in a directed graph [Conitzer
et al., 2006]. For the GM model, we are dealing with
a continuous multivariable function. Lemma 6 tells us
that it is concave. We will lower bound it by minimiz-
ing it over a convex set. In fact, the constraints that
define this convex set are obtained by generalizing the
idea in (8) for computing L.

We compute constants αk+1, αk+2, . . . , αn−1 such that
the following inequalities hold. We describe how they
are computed later.

V̄k+1 + V̄k+2 + . . . + V̄n−1 ≥ αk+1

V̄k+2 + . . . + V̄n−1 ≥ αk+2

...
...

...
...

...
V̄n−1 ≥ αn−1

(9)
Each constraint is linear and defines a halfspace. They
together define an unbounded polyhedron in (n− k −
1)-dimensional space. Further, this polyhedron has a
unique vertex which is the intersection of the (n−k−1)
hyperplanes corresponding to the constraints in (9). It
is determined by solving the system of linear equations
obtained by converting the constraints into equalities.
This system is upper triangular and is trivially solved.
The unique vertex of this polyhedron is (αk+1 −αk+2,
αk+2 −αk+3, . . . , αn−1 −αn), where we define αn = 0
for notational convenience.

We will compute H by minimizing the concave func-
tion h over this polyhedron. Since each hj is bounded,
h must attain its minimum value. We know from con-
vex analysis [Rockafellar, 1972] that if a concave func-
tion attains its minima over a convex set it must do
so at an extreme point. Thus, h is minimized at the
unique vertex of this polyhedron. This leads us to a
key result.

Theorem 7 Given the constraints in (9), a lower

bound H for
∑n−1
j=k+1 hj(V̄j) can be computed as fol-

lows.

H =
n−1
∑

j=k+1

hj(αj − αj+1)

4.3 GM Model Search Heuristic –
Combinatorial Minimization

We now discuss how the αj constants are computed.
Consider the set S of (n− k) items not in the partial

 396

Mandhani,Meila

ranking at node x. We construct a graph G having
a node for each item in S. For items u, v ∈ S, the
edge uv is assigned min{Quv, Qvu} as weight. Let βj
denote the weight of the minimum weight clique of
(n − j) nodes in the complete graph G. Note that
(V̄j+1 + · · · + V̄n−1) represents the Kemeny score “D̄”
for some (n − j) items in S. Thus, βj or any value
smaller than it works as αj+1. The argument is the
same as given for (8).

Let Gc denote the complement graph of G in which
edge uv is given weight (1-min{Quv, Qvu}). Then, the
maximum weight clique of size (n−j) in Gc has weight
1
2 (n−j)(n−j−1)−βj . Finding the max weight clique is
NP-hard. Suppose we had some way of approximating
it to a factor R, and γj is the approximate value we
get for the clique weight. Then, we have the following.

γj ≥
1

R

(

1

2
(n− j)(n− j − 1) − βj

)

βj ≥
1

2
(n− j)(n− j − 1) −Rγj (10)

The right side of (10) gives us αj+1. To complete
the discussion, we need an algorithm for approximat-
ing the max-weight cliques in the graph Gc. While
no constant factor approximations are known for arbi-
trary graphs, this problem is easier for graphs like Gc

whose edge weights satisfy the triangle inequality. We
employ a simple greedy algorithm which was shown
by [Birnbaum and Goldman, 2006] to give an approx-
imation of R = 2. It constructs a max-weight clique
C in a stepwise manner. In each step, it adds to C
the node which augments the clique weight the most.
Thus, it adds the node u for which

∑

v∈C wuv is max-
imum. The algorithm terminates when C has reached
the desired size. Note that in constructing a max-
weight clique of size (n− k) for Gc, the algorithm will
also yield max-weight cliques of all smaller sizes. In
a single sweep, we get all the γj values that we need
to compute all the αj values. The total time taken is
O(n− k)2.

The smaller R is, the higher the value we get for αj+1,
and the tighter the bound in (9). In practice, this
greedy algorithm gives a much better approximation
than R = 2 for the graphs Gc we are working with.
These graphs are not arbitrary, and have been gener-
ated in a specified way from a matrix Q which satisfies
particular constraints. Figure 2 shows the value of R
obtained when estimating max-weight cliques of dif-
ferent sizes for the Gc corresponding to the root node
of the search tree. The various input matrices Q are
described in Section 6. Each plotted point is the mean
value of 25 independent runs. We always got R < 1.03.
Based on these results, in our experiments we used
R = 1.05 in (10) for determining the αj values.

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

0 2 4 6 8 10 12 14

Clique Size k

R
at

io
 R

random Q model Q, =0.001 model Q, =1

1

1.005

1.01

1.015

1.02

1.025

1.03

0 5 10 15 20 25

Clique Size k

R
at

io
 R

random Q model Q, =0.001 model Q, =1

Figure 2: Approximation Ratio R given by the greedy
algorithm for finding the max-weight clique for graphs
Gc corresponding to different kinds of matricesQ, with
n = 15 (top) and n = 25 (bottom).

5 Related Work

We saw that the maximum likelihood π0 for the Mal-
lows model is just the Kemeny ranking for the input
rankings. Finding it has been well-studied in both AI
and theoretical computer science [Conitzer et al., 2006,
Ailon et al., 2005, Even et al., 1998]. However, find-
ing the ML π0 for the GM model is more general, and
not a purely combinatorial problem. Most methods in
the vast literature on finding Kemeny rankings do not
easily transfer to it. Here we will focus on some that
do.

[Cohen et al., 1999] propose a greedy algorithm for
finding the Kemeny ranking. It successively chooses
the items ranked 1 to n in that order. In step j, among
the (n − j + 1) remaining candidates for rank j, it
chooses the one that minimizes V̄j . The function to

be minimized is D̄ =
∑n−1
j=1 V̄j . Their greedy strat-

egy is a natural and intuitive choice. Moreover, it can
be easily generalized to estimate π0 for the GM model
where we need to minimize

∑n−1
j=1 hj(V̄j). In step j, we

now choose for rank j the item that minimizes hj(V̄j).
However, we know from Lemma 4 that hj is increas-

 397

Learning Exponential Models of Rankings

ing. Thus, hj(V̄j) is minimized by just minimizing V̄j .
Their greedy algorithm works unchanged for the GM
model.

[Fligner and Verducci, 1988] propose a class of models
which have a ranking π0 as parameter and which spec-
ify the distribution for each Vj . The random variables
Vj are defined exactly as in Section 2. They call such a
model strongly unimodal if P(Vj = x) is a decreasing
function of x ∀j. π0 will clearly be the mode for such a
model. Suppose π0 is (r1, r2, . . . , rn), and Ri denotes
the rank of item ri in some ranking π drawn from the
distribution. They show that for a strongly unimodal
model, the expectations of the random variables Ri
satisfy E(R1)<E(R2)<. . .<E(Rn). Thus, if we sort
the items in increasing order of average ranks in the
dataset, the resulting ranking σ0 is likely to be close
to π0. For estimating π0, they propose a local search
starting at σ0. At each step, it moves to the neigh-
bor that maximizes the likelihood. The neighbors of a
ranking σ are the (n− 1) rankings obtained by swap-
ping two adjacent items in σ. The search terminates
when a local maxima is reached. The Mallows and GM
models are both strongly unimodal, and this method
can be used to estimate π0 for them.

[Fligner and Verducci, 1993] is a rich collection of pa-
pers covering work on probabilistic models for rankings
in the statistics community. It is interesting to note
that many of these models, while being simple to de-
fine, are quite difficult to treat analytically. In the GM
model, the independence of the random variables Vj is
the key to it being analytically tractable and having
interpretable parameters.

6 Experiments

Our first set of experiments evaluate the performance
of our proposed heuristic for the GM model search.
We are interested in both the tractability of search,
and the quality of the results obtained. The second
set look to validate the GM model by fitting it to a
small but real dataset of rankings.

6.1 Evaluation of Heuristic Performance

Recall that the matrix Q represents all that we need
to know about the input dataset. We worked with
two kinds of input matrices Q. A “model Q” matrix
is obtained from a set of rankings sampled from an
instance of the GM model itself. The θj parameters
of the model decreased linearly so that θn−1 = 0.5θ1.
Thus, θ1 determined all the θj values and was a pa-
rameter that we varied. We used a set of 1000 rankings
from this model. The second kind of input Q matrix
we used was obtained by setting each Qij with i < j to

a random value in [0, 1]. Since Qij +Qji = 1, the re-
maining values are automatically determined. We will
refer to such a Q matrix as “random Q”. Note that
the choice of synthetic input data allows us to care-
fully evaluate how the heuristic performance depends
on properties of the input data. This would be hard
to do with a real dataset.

For each configuration of input parameters, we re-
peated the experiment 25 times i.e., we generated 25
different Q matrices and used each as input. The val-
ues reported are the mean value over 25 runs. Our
implementation was in Java. It had access to 1500
MB memory and ran on a 2.8 GHz Linux machine.

Figure 3 evaluates the tractability of the search when
employing our proposed heuristic. The top plot mea-
sures the number of nodes generated as a multiple of
the minimum possible number which is n(n + 1)/2.
The search generates this minimum number when it
follows a straight path from root node to goal, thereby
expanding exactly (n− 1) nodes. As θ1 increases, the
number of nodes generated decreases exponentially.
Thus, the more consensus there is in the input rank-
ings, the better the performance of the heuristic. For
large enough θ1, the search will be optimal and gen-
erate the minimum possible number of nodes. When
θ1 becomes small enough, the search runs out of mem-
ory. Note that the complete search tree does not fit
in memory even for n = 15. Thus, the search would
fail without the heuristic. The bottom plot of Figure
3 shows the total running time and follows a similar
trend, as we would expect.

We now compare the quality of the estimates given by
our method with those given by other existing meth-
ods. In particular, we compare with the greedy al-
gorithm of [Cohen et al., 1999] and the local search
method of [Fligner and Verducci, 1988], both of which
we described previously. We will denote them by
“Greedy” and “FV” respectively. We denote our
method by SRT (Search over Rankings Tree).

We compare the log likelihood of the models estimated
by the different methods. For this experiment, we use
the random Q matrix as input instead of the model
Q. It represents a more challenging dataset and is ex-
treme in several ways. First, it can be shown that in
general such a matrix cannot be obtained from a set
of full rankings. Second, as every element of Q is a
sample from the uniform distribution over [0, 1], the
V̄j values that are computed during the search repre-
sent sums of n′ = (n − j) independent random vari-
ables.1 Hence, for all but the smallest n′ values, in fact

1The V̄j values computed on various branches of the
search tree are not independent but each V̄j separately is
composed of independent random variables.

 398

Mandhani,Meila

1

10

100

1000

10000

100000

0 0.5 1 1.5 2

N
od

es
 /

M
in

 P
os

si
bl

e
15 items 20 items 25 items

0.01

0.1

1

10

100

1000

10000

0 0.5 1 1.5 2

T
im

e
(s

ec
on

ds
)

15 items 20 items 25 items

Figure 3: Top: Number of search tree nodes gener-
ated, as a multiple of the minimum possible number.
Bottom: Running time for the A⋆ search.

for n′ around 10 or larger, V̄j will obey the Central
Limit Theorem and will be distributed around n′/2
with standard deviation

√
n′/2. In our experiments,

the range of V̄j at a branch of the search tree was of
the order of one standard deviation. For example, for
n = 50, n − 1 = 49 the range of the V̄1 at the first
branching was [49/2 ± 3.5] = [21, 28] out of a possible
range [0, 49]. Values of V̄j near (n−j)/2 induce θj esti-
mates near 0. Adding to this the fact that the function
fj(θj , V̄j) varies slowly around (0, (n − j)/2) leads to
the conclusion that the range of values for the log like-
lihood

∑n−1
j=1 fj for random Q is very small. Further,

it shrinks with increasing n at a rate of 1/
√
n. Thus,

the difference in log likelihood between the optimal π0

and the worst is small and decreases as n increases. We
give this explanation to show that if the advantage of
SRT decreases with increasing n, this is at least partly
the reason.

In order to compare over a larger range of n values,
we modify SRT to revert to beam search when it runs
out of memory rather than not return any solution.
The top plot of Figure 4 shows how much the negative

0

1

2

3

4

5

6

7

0 10 20 30 40 50

Number of Items

%
 G

ai
n

in
 -

ve
 lo

g
L

Greedy FV

0

100

200

300

400

500

600

0 10 20 30 40 50

Number of Items

D
is

ta
nc

e
fr

om
 S

R
T

 R
an

ki
ng

Greedy FV

Figure 4: Top: Percentage increase in negative log
likelihood obtained from other methods compared to
that given by SRT. Bottom: Kendall distance of the
ranking π0 obtained from other methods from the π0

given by SRT.

log likelihood for π0 given by other methods exceeds
that given by SRT. As n increases, the degree to which
it outperforms decreases as we explained above. The
bottom plot of Figure 4 shows that though the log
likelihood values for the other methods are only a few
percent higher, they actually represent π0 estimates
that are quite far from the π0 given by SRT.

While this section has focused on comparing SRT to its
potential competitors, it is natural to ask how much
the computationally expensive lower bound H helps
the A⋆ search. Hence, we tried to run the search with
the trivial zero lower bound. The results were off the
chart, and the algorithm did not terminate even for
n = 15.

6.2 Validation on Real Data

The search for the GM model is computationally more
expensive compared to the Mallows model due to the
more complicated cost function. Here we look to de-
termine if this extra cost is justified.

 399

Learning Exponential Models of Rankings

Table 1: Negative log likelihood of the Mallows and
GM models on Neftochim data from 5-fold CV

-Log Likelihood
GM Mallows

Group 1 7.370 8.037
Group 2 7.367 7.676
Group 3 7.965 8.001
All Groups 7.413 8.043

Our data consists of rankings of seven different con-
cerns regarding the construction of the Neftochim
chemical plant in Bulgaria in 1999. They were pro-
vided by three groups of participants. The first group
consisted of 193 people living in towns close to the pro-
posed plant. The second group consisted of 47 people
in a town further away than the first group. The final
group consisted of 20 experts which included engineers
and environmentalists. We would expect to see con-
sensus in the rankings provided by different groups,
and the Mallows and GM models to fit this data well.

For each group separately and for all groups together,
we did ML estimation of both the Mallows and GM
models using SRT, and compared their goodness of
fit. We did 5-fold cross-validation, and computed the
negative log likelihood per ranking. Table 1 shows that
the GM model clearly provides a better fit for this data
than the Mallows model. Further, the other methods
(Greedy and FV) failed to find the ML π0 even in this
simple setting.

7 Conclusions

While ML estimation of the Mallows model has been
well-studied as the rank aggregation or Kemeny rank-
ing problem, the estimation of the GM model has been
virtually neglected since the original work of [Fligner
and Verducci, 1986]. However, the GM model often
fits data much better than Mallows due to its gener-
ality. For example, it can model the scenario of there
being high consensus about the top ranked items, and
little about the others.

The A⋆ search method we proposed in [Meila et al.,
2007] for learning these two models was ineffective for
the GM model in the absence of a suitable heuristic
function. This paper provides the first non-trivial ad-
missible heuristic for the GM model search. As the
reader has seen, this cost function is considerably more
complex than that for the Mallows model. Conse-
quently, developing our lower bound H required the
combination of techniques from convex analysis and
approximation algorithms for graphs. Moreover, our
method strikes a reasonable tradeoff between compu-

tational cost and accuracy.

Our method turns the A⋆ search from a theoretical tool
into a tractable algorithm that is exact with high prob-
ability. While it remains significantly more computa-
tionally expensive than the other approximate meth-
ods, we experimentally showed that it outperforms
them in accuracy. Finally, it is more general and has
the potential to extend to missing data, Bayesian in-
ference and other related problems.

References

Nir Ailon, Moses Charikar, and Alantha Newman. Aggre-
gating inconsistent information: ranking and clustering.
In STOC, pages 684–693, New York, NY, USA, 2005.
ACM.

J.J. Bartholdi, C.A. Tovey, and M.A. Trick. Voting
schemes for which it can be difficult to tell who won the
election. Social Choice and Welfare, 6:157–165, 1989.

Benjamin E. Birnbaum and Kenneth J. Goldman. An im-
proved analysis for a greedy remote-clique algorithm us-
ing factor-revealing lps. In APPROX-RANDOM, pages
49–60, 2006.

William W. Cohen, Robert E. Schapire, and Yoram Singer.
Learning to order things. J. Artif. Intell. Res. (JAIR),
10:243–270, 1999.

Vincent Conitzer, Andrew J. Davenport, and Jayant
Kalagnanam. Improved bounds for computing Kemeny
rankings. In AAAI, 2006.

Cynthia Dwork, S. Ravi Kumar, Moni Naor, and
D. Sivakumar. Rank aggregation methods for the web.
In WWW, pages 613–622, 2001.

Guy Even, Joseph Naor, Baruch Schieber, and Madhu Su-
dan. Approximating minimum feedback sets and mul-
ticuts in directed graphs. Algorithmica, 20(2):151–174,
1998.

Michael A. Fligner and Joseph S. Verducci. Distance based
ranking models. Journal of the Royal Statistical Society,
1986.

Michael A. Fligner and Joseph S. Verducci. Multistage
ranking models. Journal of the American Statistical As-
sociation, 83, 1988.

Michael A. Fligner and Joseph S. Verducci, editors. Proba-
bility Models and Statistical Analyses for Ranking Data.
Springer-Verlag, 1993.

Guy Lebanon and John Lafferty. Conditional models on
the ranking poset. In Advances in NIPS, 2003.

C. L. Mallows. Non null ranking models. Biometrika, 1957.

Marina Meila, Kapil Phadnis, Arthur Patterson, and Jeff
Bilmes. Consensus ranking under the exponential model.
In UAI, 2007.

David M. Pennock, Eric Horvitz, and C. Lee Giles. Social
choice theory and recommender systems: Analysis of
the axiomatic foundations of collaborative filtering. In
AAAI/IAAI, pages 729–734, 2000.

R.T. Rockafellar. Convex Analysis. Princeton University
press, 1972.

