
 408

Spanning Tree Approximations for Conditional Random Fields

Patrick Pletscher
Department of Computer Science

ETH Zurich, Switzerland
pletscher@inf.ethz.ch

Cheng Soon Ong
Department of Computer Science

ETH Zurich, Switzerland
chengsoon.ong@inf.ethz.ch

Joachim M. Buhmann
Department of Computer Science

ETH Zurich, Switzerland
jbuhmann@inf.ethz.ch

Abstract

In this work we show that one can train Con-
ditional Random Fields of intractable graphs
effectively and efficiently by considering a
mixture of random spanning trees of the un-
derlying graphical model. Furthermore, we
show how a maximum-likelihood estimator
of such a training objective can subsequently
be used for prediction on the full graph.
We present experimental results which im-
prove on the state-of-the-art. Additionally,
the training objective is less sensitive to the
regularization than pseudo-likelihood based
training approaches. We perform the experi-
mental validation on two classes of data sets
where structure is important: image denois-
ing and multilabel classification.

1 Introduction

In many applications of machine learning one is inter-
ested in a segmentation of the data into its subparts.
Two areas where this is of immense interest include
computer vision and natural language processing
(NLP). In computer vision one is interested in a
full segmentation of the images into for example
foreground and background or a more sophisticated
labeling including semantic labels such as ‘car’ or
‘person’. In NLP one may be interested in part-
of-speech tagging. Usually in these applications an
annotated and fully segmented set of training data
is provided on which a classifier is trained. While
it is possible to train a classifier for each atomic
part independently, one expects improved accuracy

Appearing in Proceedings of the 12th International Confe-
rence on Artificial Intelligence and Statistics (AISTATS)
2009, Clearwater Beach, Florida, USA. Volume 5 of JMLR:
W&CP 5. Copyright 2009 by the authors.

by assuming an underlying structure arising from
the application. This structure might correspond to
a chain or parse tree for NLP, a grid for computer
vision or a complete graph for multilabel classification.

While probabilistic inference for simple structures like
a chain or a tree are computationally tractable, more
complex graphs like grids or complete graphs, which
include loops, are computationally intractable. A dis-
criminative model that has gained large popularity re-
cently and which allows for a principled integration
of the structure, the data and the labels, is the Con-
ditional Random Field (CRF) [Lafferty et al., 2001].
In this work we consider the training of CRFs for in-
tractable graphs. We here follow the notation of [Sut-
ton and McCallum, 2006] and assume a factor graph
G where C = {C1, . . . , Cp, . . . , CP } are the set of fac-
tors that are parametrized in the same way; sometimes
referred to as clique templates. Each of the clique tem-
plates Cp consists of a subset of factors of G. Given
the observation x, the posterior of a complete segmen-
tation y has the form:

P (y|x; θ) =
1

Z(x; θ)
exp
(∑
Cp∈C

∑
c∈Cp

〈θp, sc(x, yc)〉
)
.

(1)
θ summarizes all the parameters of the model. yc is
a subset of the segmentation that only involves the
variables of factor c. The individual variables yi take
values from a finite set Y. sc(x, yc) denote the suf-
ficient statistics for factor c and Z(x, θ) denotes the
partition sum, which normalizes the distribution:

Z(x; θ) =
∑
y

exp
(∑
Cp∈C

∑
c∈Cp

〈θp, sc(x, yc)〉
)
.

Alternatively, the distribution can be written as an
exponential family distribution.

P (y|x; θ) = exp(〈θ, s(x, y)〉 −A(x; θ)).

Here, the individual sufficient statistics of factors be-
longing to the same clique template are summed up

 409

Spanning Tree Approximations for Conditional Random Fields

and subsequently concatenated into one big vector
s(x, y) (in the corresponding order as in θ). A(x; θ)
denotes the log partition sum.

In this present work we only consider CRFs of factors
that consist of at most two label variables, i.e., a set-
ting where a factor can also be represented as an edge
in an undirected graphical model.

Training the CRF consists of finding the maximum-a-
posteriori estimate for examples {(x(n), y(n))}Nn=1 and
a Gaussian prior:

θ̂ = arg max
θ

N∏
n=1

P (y(n)|x(n); θ) exp(−λ‖θ‖22).

Taking the negative logarithm we obtain a convex op-
timization problem, a property of the exponential fam-
ily distribution. In theory we are thus guaranteed
of finding a global minima by following the gradient.
However, computing the data log-likelihood itself or
the exact gradient of the objective w.r.t. the param-
eter θ are intractable for general graphs with loops,
since both computations include computing the parti-
tion sum Z(x; θ). This makes the learning at least as
hard as probabilistic inference, which is computation-
ally intractable in general.

2 Related Work

An established approach is to train the model pa-
rameters for the pseudo-likelihood [Besag, 1975, Ku-
mar and Hebert, 2006]. The pseudo-likelihood is a
tractable approximation of the true likelihood. It
models the unobserved variables independently con-
ditioned on the true label of the Markov blanket. One
problem often encountered with pseudo-likelihood is
the overestimation of the edge parameters [Kumar and
Hebert, 2006]. A heuristic used to relax this problem
is by regularizing only the edge parameters, and not
the node parameters, this is then called the penal-
ized pseudo-likelihood. An alternative approximate
objective is piecewise training [Sutton and McCal-
lum, 2005]. In piecewise training the parameters are
trained over each clique individually and in a second
step these parameters are combined to give a global
model. Piecewise-training has been shown to outper-
form pseudo-likelihood. However, we are unaware of
any comparison to penalized pseudo-likelihood, which
in our tests has performed much better than the stan-
dard pseudo-likelihood.

Another approach is to use an approximate inference
algorithm, such as Loopy Belief Propagation [Yedidia
et al., 2005] in combination with the Bethe free en-
ergy, to compute an approximation of the data log-
likelihood (and possibly the gradient), see e.g. [Vish-

wanathan et al., 2006]. One problem here is that
the learning might get trapped in poor local minima
caused by the approximate inference. This behaviour
has been studied in [Kulesza and Pereira, 2008], where
it was shown that even for relatively good approxima-
tion guarantees of the inference algorithm, one might
end up with poor parameters. Recently there was also
a training proposed in which high-probability label-
ings are generated by an approximate MAP labeling
algorithm. The objective of the training is then to
find parameters that separate these high-probability
labelings from the ground-truth labeling well [Szum-
mer et al., 2008]. However, this approach optimizes a
maximum margin objective rather than trying to find
a maximum likelihood estimator. There also have been
results about approximate training of structural SVMs
in [Finley and Joachims, 2008], where it is shown
that one can give approximation guarantees about the
learning, given an approximation guarantee for the in-
ference. The results presented there are about the
max-margin objective and do not directly apply to the
maximum-likelihood setting.

In this paper, we propose a novel approach that formu-
lates an alternative training objective that is tractable,
similar to the pseudo-likelihood. We use spanning
trees to approximate the intractable graph. It is more
promising since the training step considers globally
normalized probability distributions on tractable sub-
graphs, instead of restricting to locally (per unob-
served variable) normalized distributions as in pseudo-
likelihood.

The use of tractable subgraphs for probabilistic infer-
ence in loopy graphs has been pioneered by Wain-
wright et al. [2003]. While this work gave impor-
tant insights into approximations for probabilistic in-
ference, it assumed that the model is given and no pa-
rameter learning is needed. Our work deals with the
question of how to use tractable subgraphs in training
CRFs. The rationale behind our training objective is
that while we might constrain the model through ig-
noring certain dependencies in the data, at least we
are not trapped in poor local minima created by ap-
proximations of the data log-likelihood during learn-
ing. In our approximate objective the effect of ignoring
dependencies in the data should be mitigated by ran-
domization and averaging over multiple trees.

Alternating iterative approaches where in one step the
mixture weights over the different tractable subgraphs
are learned (as in Wainwright’s work) and in a sec-
ond step the model parameters for the given mixture
weights are learned, might be beneficial. However,
as with other approximate probabilistic inference ap-
proaches for parameter estimation, one would have to
come up with a strategy for identifying local minima

 410

Pletscher, Ong, Buhmann

Figure 1: Examples of intractable graphs. Left: Grid
graph often encountered in computer vision. Right:
Complete graph in multilabel classification. For sim-
plicity we do not show a factor graph, but an undi-
rected graphical model, where the edges represent fac-
tors. The underlying graph is shown by dashed edges.
We superimpose two examples of maximal loop-free
coverings of the factors by a spanning tree. Note that
loops “going through” observed nodes are allowed, as
this does not pose any computational problems.

created by the approximation. Our work is meant to
explore what can be achieved by a simple uniform mix-
ture of tractable subgraphs.

3 Training a CRF by a mixture of
spanning trees

Our approximate training objective considers random
spanning trees of the intractable graph. For the span-
ning tree we can compute all the required quantities
exactly. The underlying assumption being that a ran-
dom spanning tree still captures some of the important
dependencies in the data. We thus propose the alter-
native (regularized) training objective:

θ̂SP = arg max
θ

(N∏
n=1

∑
t∈sp(G(n))

P (t, y(n)|x(n); θ)
)
×

exp(−λ‖θ‖22). (2)

with

P (t, y(n)|x(n); θ) = P (y(n)|x(n), t; θ)P (t).

Here sp(G) denotes the set of all maximal coverings
of the factors of G, such that no loops exist between
unobserved variables. For factors of at most two un-
observed variables this corresponds to the set of all
spanning trees (on the unobserved variables) in an
undirected graphical model. P (y|x, t; θ) is the same
distribution given in (1), restricted to only the factors
of spanning tree t

P (y|x, t; θ) =
1

Z(x, t; θ)
exp
(∑
Cp∈C

∑
c∈Ct

p

〈θp, sc(x, yc)〉
)
,

where c ∈ Ctp is a shorthand for c ∈ Cp ∧ c ∈ t. The
partition sum Z(x, t; θ) must also be adapted corre-
spondingly. Again we can write this distribution in an
exponential family form:

P (y|x, t; θ) = exp(〈θ, s(x, y, t)〉 −A(x, t; θ)).

Here s(x, y, t) is the sufficient statistics that we get
by only summing up factors that are included in the
spanning tree t. The objective in (2) can be moti-
vated as follows: We consider a generative model for
the labels in which first a random spanning tree of the
undirected model is drawn. In a second step the labels
of the tree are sampled according to a Gibbs distribu-
tion. In this setting the chosen tree is treated as a
hidden variable. There are two key points to stress:
First, P (y|x, t; θ) for a given spanning tree t can be
trained efficiently and exactly as probabilistic infer-
ence for a tree is tractable. Second, the estimate of
θ̂SP is not consistent for intractable graphs and will
not converge to θ̂ for such cases. The two training ob-
jectives consider two different problems and the suf-
ficient statistics s(x, y) and s(x, y, t) differ to a large
extent in densely connected graphs. Nevertheless, we
can construct from θ̂SP an estimate of θ̂, this is de-
scribed in subsection 3.1. This then allows us to per-
form prediction on the full graph with approximate
probabilistic inference, such as Loopy Belief Propaga-
tion. Two examples of maximal loop-free coverings are
given in Figure 1.

So far we have converted an intractable problem into
another hard problem, since many interesting prob-
lems have exponentially many spanning trees over
which we would need to marginalize. Nevertheless, in
theory it is possible to sum over all spanning trees in
running time cubic in the number of variables by the
Matrix-Tree Theorem [Tutte, 1984]. For many practi-
cal applications a cubic running time is too slow and
we thus decided to sample a small number of spanning
trees T ⊆ sp(G) uniformly at random by the algorithm
described in [Wilson, 1996]. In our implementation we
only sample the spanning trees once at the beginning
of the training and then keep them fixed. We sample
the spanning trees for each training example indepen-
dently. However, alternative approaches where e.g., a
spanning tree is sampled anew at each iteration of the
optimization are also possible. Ignoring the sampling
of the spanning trees (of which the expected running
time is proportional to the mean hitting time), the
running time of one optimization step is O(|T |m|Y|2),
where m denotes the number of variables.

To learn the parameters we use BFGS, a quasi-Newton
method. For this we also need the derivative of the log-
likelihood w.r.t. the parameters. For only one sample

 411

Spanning Tree Approximations for Conditional Random Fields

(x, y) and without regularizer it is given by

∂`(y|x, θ)
∂θ

=
∂

∂θ
log
(∑

t P (t) exp(〈θ, s(x, y, t)〉)∑
t,y′ P (t) exp(〈θ, s(x, y′, t)〉)

)
=
∑
t

P (t|y, x; θ)s(x, y, t)

−
∑
y′,t

P (t, y′|x; θ)s(x, y′, t)

The gradient has a similar form as in hidden
CRFs [Quattoni et al., 2007] and can be reformu-
lated as a combination of the features, weighted by the
marginals. All of the quantities involved can be com-
puted efficiently. The hidden variable in our frame-
work is the spanning tree along which we are working.
We are unable to prove convexity for (2), but we ob-
served empirically that in the experimental results we
always converged to the same solution for different ini-
tializations.

There are two advantages of the objective in (2) when
compared to pseudo-likelihood. First, it can capture
longer-range dependencies between variables than only
between neighboring variables. Second, it is less sen-
sitive to overestimation of the edge parameters, as the
objective does indeed model a joint distribution of all
the labels, whereas pseudo-likelihood models them in-
dependently conditioned on the true label of the neigh-
boring variables. One disadvantage might arise from
dropping certain dependencies in training, which can
be prevented to a certain extent by dropping the de-
pendencies at random.

3.1 MAP inference

Once we have trained the parameters, we also want
to predict segmentations on unseen data. For this we
usually look for the maximum-a-posterior (MAP) la-
beling, which is also computationally intractable for
general graphs. Here we answer the question of how
to use the parameters learned with the objective in (2)
to obtain a MAP labeling. Computing the MAP for
one spanning tree is easy, but generally we would want
to consider the whole graph and not just one of its
spanning trees. We experimented with two approaches
for inference, each with different strengths and weak-
nesses.

Voting Compute MAP labelings for several random
spanning trees t ∈ T and finally for each variable take
a majority vote over the different MAP solutions we
get. Formally we can express the label y∗i for a node i
as follows:

y∗i = arg max
yi

∑
t∈T

δ(yMAP
i (t) = yi)

with
yMAP(t) := arg max

y
P (y|x, t; θ̂SP).

Rescaling Rescale the parameters θ̂SP according to
the connectivity in the spanning trees relative to the
full graph. In other words we adjust the parameters
θ̂SP such that the inner product with the full suffi-
cient statistics leads to similar values as observed in
the training phase. We have

y∗ = arg max
y

P (y|x; θ′)

with

θ
′

p =
∑
t∈T P (t)|Ctp|
|Cp|

θ̂SPp ,

and we get θ′ by concatenation of the individual θ
′

p.
Here we assume that the underlying factor graphs for
the individual samples are the same, otherwise we also
need to average over the set sizes of the samples. To
compute arg maxy P (y|x; θ′) we can use approximate
inference algorithms like Loopy Belief Propagation or
graph-cut. Instead of computing a MAP, we can also
use maximum-marginal inference with parameters θ′.

We also experimented with a voting strategy based
on the marginals instead of the MAP, which however
led to similar results. We expect the voting strategy
to work well in settings where max-marginal inference
works better than MAP, which we confirmed experi-
mentally. A more sophisticated algorithm for the MAP
inference could also be developed, by considering the
MAP over a subsample of spanning trees as discussed
in [Meila and Jordan, 2000].

3.2 Grid Graphs and Complete Graphs

In our experiments we will consider two instances of
the general model given in (1). The first model is
often used in computer vision and considers a grid
graph where all the vertex and edge potentials are
parametrized in the same way denoted by θv and θe,
respectively:

P (y|x; θ) =
1

Z(x; θ)
exp
(∑
i∈V
〈θv, si(x, yi)〉

+
∑

(i,j)∈E
i<j

〈θe, sij(x, yi, yj)〉
)
.

The undirected graphical model is given as G = (V,E)
and the sufficient statistics in the model above are
features extracted from possibly overlapping image
patches. Another specific problem we will consider
is multilabel classification, which can be modeled as

 412

Pletscher, Ong, Buhmann

follows:

P (y|x; θ) =
1

Z(x; θ)
exp
(∑
i∈V
〈θi, si(x, yi)〉

+
∑

(i,j)∈E
i<j

〈θij , sij(x, yi, yj)〉
)
.

In this model each label-label co-occurrence is mod-
elled by a parameter θij and each class i is
parametrized by θi. The graph is given by the com-
plete graph and yi ∈ {0, 1} describes whether a data
point has label i. In the simplest case, sij ignores x
and is 1 for all configurations of yi, yj .

3.3 Informative Spanning Trees

For the case when we have a grid graph with common
parameters, the linearity of the dot product allows us
to analyze the log likelihood `(y|x; θ) in more detail.
For a particular tree t ∈ sp(G) the exact model and
the spanning tree model have the same terms corre-
sponding to the vertices. Hence, the difference in log
likelihood is given by

`(y|x; θ)− `(y|x, t; θ) =

〈
θe,

∑
(i,j)∈E\t
i<j

sij(x, yi, yj)

〉

−A(x; θ) +A(x, t; θ).

Observe that the sum in the expression above is over
the edges which are not contained in the spanning tree.

This means that we do not lose any information by the
spanning tree approximation when the feature vector
sij(x, yi, yj) = 0 for (i, j) ∈ E\t. In models with cat-
egorical observations and the edge features as the ab-
solute difference (for example as in the Ising model),
this corresponds to the case when neighboring obser-
vations are equal. Of course we do not expect this to
be true in general, but this indicates possible further
improvements in the spanning tree approximation by
choosing spanning trees that pass through regions with
high edge features.

4 Evaluation

We evaluate our algorithm on a number of synthetic
and real world data sets to gain better insights into
the spanning tree approximation. In some of the ex-
periments we show the classification error for different
regularization parameters λ. We point out that in the
penalized pseudo-likelihood the regularization is dif-
ferent than in the other methods, as only edge param-
eters are regularized. In reality we have the regularizer
λ‖β � θ‖22, where β denotes a 0/1 vector of the same

dimension as θ, with 0 for all node parameters and
1 otherwise; and � denotes the elementwise product.
Hence the hyperparameter λ for which the smallest
test error is obtained by penalized pseudo-likelihood
does not in general correspond to the hyperparameter
minimizing the test error for the spanning tree train-
ing.

4.1 Comparison to exact training on toy data

In this experiment we compare our training method to
the gold-standard which is the exact training. For the
exact training all computations are performed exactly
(up to numerical errors) and absolutely no approxi-
mations are made. Obviously, exact training is feasi-
ble only for very small grids, in our case, we consider a
3×3 grid with a fixed labeling (lower right 2×2 corner
label 2, otherwise label 1). As features we added Gaus-
sian noise (for varying variance σ2) to the labels. In
the comparison we also include the results from train-
ing the penalized pseudo-likelihood. We evaluate the
training approaches based on exact MAP prediction
by exhaustive enumeration.

0

0.1

0.2

0.3

0.4

0.5

0 0.4 0.8 1.2 1.6

er
ro

r
ra

te

noise σ

exact
span/rescale MAP

span/vote
pen. PL (λ = 1000)

approximate

Figure 2: Test error for different training objectives on
the 3× 3 grid with fixed labeling.

In Figure 2, we observe as expected that exact train-
ing is superior when compared to penalized pseudo-
likelihood. However, we had to heavily penalize the
edge weights for the penalized pseudo-likelihood: with
λ = 1000 on the edges and no regularization of the
node parameters. Decreasing λ for the penalized
pseudo-likelihood resulted in worse performance for
moderate to high noise levels. Also, regularizing both,
the edge and node parameters, i.e. a L2 regularizer
on θ, as done in standard pseudo-likelihood, proved
detrimental. For exact training and the spanning tree
training we used a regularizer of λ = 0.1, but the re-
sults were comparable over two orders of magnitude of

 413

Spanning Tree Approximations for Conditional Random Fields

Figure 3: Overview of the binary image denoising data
set. First row: original images, second row: images
corrupted by bimodal noise, third row: labeling as in-
ferred by our algorithm.

λ. Comparing the accuracy of exact training and the
spanning tree approximation shows a difference of usu-
ally around 2-3%. However, for high values of noise,
the spanning tree learning combined with voting infer-
ence seem to perform favorably. One possible expla-
nation for this is that maximum marginal prediction
often shows better results than MAP. Approximate
training with LBP resulted in similar performance as
the spanning tree approaches, in some runs the esti-
mated parameters were however substantially inferior,
leading to a large variance.

4.2 Binary image denoising task

We consider the binary image denoising dataset of Ku-
mar and Hebert [2006] shown in Figure 3. It includes
two observation sets that are perturbed by unimodal
and bimodal Gaussian noise, respectively. We would
like to point out that we use a slightly different model
than Kumar and Hebert [2006], as they consider an
objective where the node potentials are already the log
class probabilities of a logistic regression classifier. In
our model we do not normalize the node potentials.

Since the training set was fairly small, we could not
sensibly define a validation set, and hence used the
training set to select λ. Our results are summarized
in Table 1. Observe that we perform slightly worse
in the unimodal dataset but significantly better in the
bimodal dataset.

We investigated the effect of the number of spanning
trees sampled for each example. For training, we did
not see any improvement by using more than one span-
ning tree. This can be explained by observing that
for an image grid most of the configurations of la-
bels/features are already present in a single spanning
tree. However, for inference by voting, increasing the
number of spanning trees improves the performance
(Figure 4). This is as expected since the coverage of

Table 1: Pixelwise classification error (%). Compari-
son to published work, where KH refers to the results
published in [Kumar and Hebert, 2006, Kumar et al.,
2005]. There for the unimodal dataset MAP inference
was used, for the bimodal dataset maximum-marginal
(MM) inference was used. We average over 5 different
runs, where the training/test set is fixed and the
spanning trees are resampled anew for each run.

unimodal bimodal

spanning
voting 2.63± 0.01 5.23 ± 0.01

rescale/MAP 2.33± 0.01 5.69± 0.03
rescale/MM 2.53± 0.01 5.26± 0.01

KH 2.30 5.48

0.04

0.06

0.08

0 50 100 150 200

er
ro

r
ra

te
(l

o
g

sc
a
le

)

number of spanning trees

bimodal
unimodal

Figure 4: Test error on the binary image denoising
datasets as a function of the number of spanning trees
used for the inference by voting.

the edges increases with the number of spanning trees
and hence we obtain a better estimate.

Similar to the toy problem, for varying noise level, the
rescale and voting inference approaches show different
merits. On the unimodal dataset the rescaling ap-
proach performs better, whereas on the bimodal data
set the trend is inverted and voting performs better
(Table 1). If we use the rescale approach together
with max-marginal inference, we get similar test error
as the voting approach.

Figure 5 shows the train and test error for different val-
ues of λ. We observe that the spanning tree objective
is more insensitive to the regularizer and performs well
over a wide range of regularizer parameters λ, which is
not observed for penalized pseudo-likelihood training,
where sensitivity to λ is high.

4.3 Multiclass image denoising

While the experiment in the previous subsection is im-
portant as a comparison to previously published re-
sults, the experiment does not show the full potential

 414

Pletscher, Ong, Buhmann

0.05

0.1

0.15

-6 -4 -2 0 2 4 6

er
ro

r
ra

te
(l

o
g

sc
a
le

)

log10 λ

voting test
voting train

resc. MAP test
resc. MAP train

resc. MM test
resc. MM train

approximate test
approximate train

0.05

0.1

0.15

0.3

-6 -4 -2 0 2 4 6

er
ro

r
ra

te
(l

o
g

sc
a
le

)

log10 λ

pen. PL test
pen. PL train

PL test
PL train

Figure 5: Influence of the hyperparamter on the bi-
modal image denoising dataset. Top: spanning tree
and approximate training. Bottom: pseudo-likelihood
training. The approximate training shows a similar
behaviour w.r.t. the regularizer as the spanning tree
objectives, the variance and error are however larger.

of our models. We are ultimately interested in more
complex scenarios where the number of states per vari-
able is bigger than two. It is also important to study
a scenario where certain labels only interact with sub-
sets of other labels. We created a novel data set similar
in spirit to the one in [Kumar and Hebert, 2006] with
the extensions mentioned above. We created images
of chess boards with two different player figures, each
player occupying half of his fields. The positions of the
figures are sampled randomly. The RGB colors of the
different labels involved (two fields, two players) are
selected such that they are equidistant in the RGB
space. We then add Gaussian noise to the colors for
varying noise levels.

Our spanning tree based training approach success-
fully identifies the dependencies between the labels
and does not assign a player’s label to an opponent’s

0.01

0.1

1

-3 -2 -1 0 1 2 3 4 5

er
ro

r
ra

te
(l

o
g

sc
a
le

)

log10 λ

span/rescale MAP
span/voting

pen. PL
PL

approximate

Figure 6: Test error on the chess board data set for a
noise level of 1.

field even for high levels of noise. In the experiments
we observed that penalized pseudo-likelihood performs
slightly better for small noise levels, the difference
is however not statistically significant. For higher
noise, the spanning tree approximation performs bet-
ter (9.3%±0.1 test error vs. 10.1%±0.1), see Figure 6.
We also included results of approximate training where
the log-partition sum is approximated by the Bethe
free energy computed by Loopy Belief Propagation,
which showed inferior performance. Observe that the
spanning tree training is again less sensitive to changes
in hyperparameter λ.

4.4 Multilabel problem: Yeast dataset

Here we consider a different graph structure. We
use the multilabel yeast data set containing 14 la-
bels from Elisseeff and Weston [2001]. The underlying
graphical model (a complete graph) as well as the pre-
diction step (arg maxy〈θ, s(x, y)〉) of our model are the
same as in [Finley and Joachims, 2008]. The key dif-
ference is that we train a CRF by maximum-likelihood
whereas Finley and Joachims [2008] train a structural
SVM by a maximum-margin objective.

We performed 5-fold cross-validation on the training
data (where the model was subsequently trained on
the full training data). We obtained a test error of
19.98%± 0.06, which is slightly superior (but not sta-
tistically significant) than the best published result of
20.23±0.53% [Finley and Joachims, 2008] where exact
training was used. For the penalized pseudo-likelihood
we got an unsatisfactory test error of 21.27%± 0.03.
We show in Figure 7 the performance for different set-
tings of λ. We used 3 spanning trees per example in
the training. However, we could again not find statis-
tically significant evidence that training on more than
one spanning tree per example helps. For a complete

 415

Spanning Tree Approximations for Conditional Random Fields

graph of size K we have K(K − 1)/2 edges of which
K − 1 are contained in one spanning tree. The proba-
bility of missing an edge in an independently sampled
spanning tree t is thus given by

P ((i, j) 6∈ t) =
(

1− 2
K

)
.

The probability of missing an edge in N independent
spanning trees decreases exponentially in N . For the
yeast data set we have K = 14 labels and 1500 training
examples. If we independently sample one spanning
tree for each example, we have N = 1500 and the
probability of missing an edge is less than 10−100.

0.1

1

-3 -2 -1 0 1 2 3

er
ro

r
ra

te
(l

o
g

sc
a
le

)

log10 λ

voting test
voting train

resc. MAP test
resc. MAP train

pen. PL test
pen. PL train

Figure 7: Test error on the yeast multilabel data set
for different regularizers.

5 Conclusion

We presented an alternative approximate training ob-
jective for CRFs based on mixtures of spanning trees.
Similar in spirit to pseudo-likelihood we can train this
objective exactly. The key difference to approaches
such as pseudo-likelihood and piecewise training is
that the distribution is globally normalized over all
variables, with some dependencies removed, instead
of normalizing over a small set of variables (possibly
conditioned on the Markov blanket). We have demon-
strated that the spanning tree approximation can be
trained efficiently and it shows state-of-the-art predic-
tion performance. Furthermore, we have found it to be
less sensitive to the hyperparameter, which is not the
case for pseudo-likelihood and its penalized version.

Acknowledgments

We would like to thank the anonymous reviewers for
their valuable feedback which helped improve the pa-
per. We thank Yvonne Moh for proof-reading an early

version of this work. This work was supported in parts
by the Swiss National Science Foundation (SNF) un-
der grant number 200021-117946.

References

J. Besag. Statistical analysis of non-lattice data. The
Statistician, 24:3:179–195, 1975.

A. Elisseeff and J. Weston. A kernel method for
multi-labelled classification. In NIPS, pages 681–
687, 2001.

T. Finley and T. Joachims. Training structural SVMs
when exact inference is intractable. In ICML, 2008.

A. Kulesza and F. Pereira. Structured learning with
approximate inference. In NIPS, 2008.

S. Kumar and M. Hebert. Discriminative Random
Fields. IJCV, 68(2):179–201, 2006.

S. Kumar, J. August, and M. Hebert. Exploiting infer-
ence for approximate parameter learning in discrim-
inative fields: An empirical study. In EMMCVPR,
2005.

J. Lafferty, A. McCallum, and F. Pereira. Conditional
Random Fields: Probabilistic Models for Segment-
ing and Labeling Sequence Data. In ICML, 2001.

M. Meila and M. I. Jordan. Learning with mixtures of
trees. JMLR, 1:1–48, 2000.

A. Quattoni, S. Wang, L. P. Morency, M. Collins, and
T. J. Darrell. Hidden-State Conditional Random
Fields. IEEE PAMI, 29(10):1848–1852, 2007.

C. Sutton and A. McCallum. An introduction to con-
ditional random fields for relational learning. In In-
troduction to Statistical Relational Learning. MIT
Press, 2006.

C. Sutton and A. McCallum. Piecewise training for
undirected models. In UAI, 2005.

M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs
using graph cuts. In ECCV, 2008.

W. T. Tutte. Graph Theory. Addison-Wesley, 1984.
S. Vishwanathan, N. Schraudolph, M. Schmidt, and

K. Murphy. Accelerated training of conditional ran-
dom fields with stochastic gradient methods. In
ICML, pages 969–976, 2006.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky.
Tree-based reparameterization framework for anal-
ysis of sum-product and related algorithms. IEEE
TIT, 49(5):1120–1146, 2003.

D. Wilson. Generating Random Spanning Trees More
Quickly Than the Cover Time. In STOC, 1996.

J. Yedidia, W. Freeman, and Y. Weiss. Constructing
free energy approximations and generalized belief
propagation algorithms. IEEE TIT, 51:2282–2312,
2005.

