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Abstract

The expert tracking algorithm Fixed-Share

depends on a parameter α, called the
switching rate. The switching rate can be
learned online with regret 1

2 log T + O(1)
bits. The current fastest method to achieve
this is based on optimal discretisation of the
Bernoulli distributions into O(

√
T ) bins and

runs in O(T
√
T ) time. However, the exact

locations of these bins have to be determined
algorithmically, and the final number of out-
comes T must be known in advance.

This paper introduces a new discretisation
scheme with the same regret bound for
known T , that specifies the number and po-
sitions of the discretisation points explicitly.
The scheme is especially useful, however,
when T is not known in advance: a new fully
online algorithm is presented, which runs in
O(T

√
T log T ) time and achieves a regret of

1
2 log 3 log T +O(log log T ) bits.

1 Introduction

We will attempt to sequentially predict the outcomes
X1, X2, . . . from an unknown process, where each
outcome takes values in a countable set X . At each
time t ∈ Z

+ = {1, 2, . . .} we have to issue a prob-
ability distribution P (Xt | xt−1) on X , which is al-
lowed to depend on past observations xt−1 = x1,. . . ,
xt−1. Then xt is revealed and we suffer logarithmic
loss − lnP (Xt = xt | xt−1). (For simplicity we con-
sider only logarithmic loss, but results for other loss
functions can be obtained using methods described in
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e.g. [Vovk, 1999].) Suppose our understanding of the
process is very limited, but luckily we do have access
to n experts. Each expert ξ ∈ Ξ = {1, . . . , n} pro-
vides us with her prediction Pξ(Xt | xt−1), on which
we may base our own forecast P (Xt | xt−1). We make
no assumptions about the nature of the experts, so one
may think of human experts, but also of computer al-
gorithms. This is the problem of prediction with expert
advice (for log loss) [Cesa-Bianchi and Lugosi, 2006].

For any T , one may view the predictions P (Xt | Xt−1)
as conditionals of the joint distribution P (XT ) =
∏T
t=1 P (Xt | Xt−1). (We regard the empty sequence

x0 as a certain event, which occurs with probabil-
ity one.) In its most basic setup the goal of predic-
tion with expert advice is to minimise the excess loss
compared to the best expert on any sequence of out-
comes xT : − lnP (xT ) − minξ[− lnPξ(x

T )]. This is
called the regret on xT . A more ambitious goal is
to compare to the performance that can be obtained
by optimally dividing the data into m segments and,
within each segment, using the best expert for that
segment. This is prudent in case the experts them-
selves may improve (study hard) or deteriorate (take
to drinking), but also when their performance depends
on the predictive context (some experts may be good
during spring, others during winter). In this case, if
the optimal segments start at times t1, . . ., tm for a
given sequence xT , the goal is to minimise

− lnP (xT ) −
m

∑

i=1

min
ξ

− lnPξ(x
ti+1−1
ti | xti−1), (1)

where xba = xa, . . . , xb, and tm+1 = T + 1. This is
the approach taken by Herbster and Warmuth [1998];
see also [Vovk, 1999, Cesa-Bianchi and Lugosi, 2006].
Let H(p) = −p ln p − (1 − p) ln(1 − p) and D(p‖q) =
p ln p/q + (1 − p) ln(1 − p)/(1 − q) denote binary en-
tropy and Kullback-Leibler divergence, respectively;
we use ln to denote the natural logarithm and log
for base two. The regret of Herbster and Warmuth’s
Fixed-Share algorithm is bounded from above by
(T − 1)(H(α∗) +D(α∗‖α)) + (m− 1) ln(n− 1) + lnn
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nats, where α is the switching rate, a parameter of the
algorithm that can be interpreted as the probability
of switching between experts; the best regret bound is
obtained when α equals α∗ := (m− 1)/(T − 1).

One clear advantage of Fixed-Share is its computa-
tional efficiency: its running time, which is n ·O(T ), is
as low as that of the standard Bayesian mixture. The
one real disadvantage is having to specify the switching
rate. It is this problem that we address in this paper.
Our contribution should be placed in the context of
three earlier approaches to avoid a priori specification
of the switching rate:

Decreasing Switching Rate One option is to let
the switching rate decrease with time as 1/t [Van Er-
ven et al., 2008, Koolen and de Rooij, 2008]. For this
approach, the regret compared to the best segmenta-
tion in m parts is within lnT +O(m logm) nats from
the bound for Fixed-Share with optimally tuned α.
This is fine if the number of switches in the sequence is
not too large (say, m = O(log T )), but if switches can
occur more frequently, it may not be the best choice.

Bayes with Undiscretised Switching Rate A
second option is to use a Bayesian mixture over α.
Such an algorithm was described very early in the
source coding literature [Volf and Willems, 1998]. This
algorithm, called the Switching Method (not to be con-
fused with the Switch Distribution!), achieves a regret
bounded by 1

2 lnT + O(1) nats compared to the best
Fixed-Share parameter. Note that this bound does
not depend on the number of switches. The drawback
of this approach is that its running time is n · O(T 2),
which is significantly slower than the previous algo-
rithms and may be prohibitive in some applications.

Bayes with Discretised Switching Rate A third
approach to get rid of α also uses a Bayesian mix-
ture, but rather than putting a prior on the whole
range [0, 1] of possible values of α, a prior is defined
on a discretised set of parameters α1, α2, . . . , αj . Mon-

teleoni and Jaakkola [2003] argue that O(
√
T ) levels

of discretisation suffice to achieve a regret with re-
spect to Fixed-Share of at most 1

2 lnT + O(1) nats,
like the Switching Method. Their algorithm Learn-α
has running time n · O(T

√
T ) however, a significant

improvement over the Switching Method. However,
while Learn-α does not require a priori knowledge of
α, unlike the other approaches it does require a priori
knowledge of the final number of outcomes T . The al-
gorithm is therefore almost, but not completely, online.
In Section 3.3 we discuss why the so-called doubling
trick is not the best way to eliminate this dependence.

start S1 S2 S3 S4
. . .

X1 X2|X1 X3|X2 X4|X3

Figure 1: Bayesian network for an expert algorithm

Refine-Online In this paper we take the Learn-α
algorithm as a starting point to develop a fourth,
fully online algorithm called Refine-Online. It has
running time n · O(T

√
T log T ), which makes it only

slightly slower than Learn-α. Its regret is bounded by
1
2 log 3 lnT + log 3 ln ln(T + 1) + O(1), which is worse
than the bounds in the two Bayesian approaches, but
would still seem an acceptable price to pay to get a
fast algorithm that is completely online.

Outline In Section 2 we show how probabilistic al-
gorithms for prediction with expert advice can be de-
scribed using Hidden Markov models (HMMs), and
we give basic tools to prove loss bounds for such al-
gorithms. We then state our main results. Section 3
exhibits a new, very simple discretisation scheme that
grants full control over the exact number and place-
ment of discretisation points, in contrast to the dis-
cretisation used by Learn-α, which can only be de-
termined algorithmically. Moreover, we show how this
discretisation can be refined online, so that the final
number of outcomes T does not have to be known.

2 Expert Algorithms as HMMs

Many algorithms for prediction with expert advice can
be described as a hidden Markov model (HMM) P,
where the hidden state St at any time t identifies an
expert ξt to predict outcome Xt [Koolen and de Rooij,
2008]. Figure 1 depicts the corresponding Bayesian
network, where we write Xt|Xt−1 to indicate that the
expert may base her prediction of Xt on all previous
outcomes Xt−1. Each St takes values in a set of hidden
states S = {〈ξ, t, . . .〉 | ξ ∈ Ξ, t ∈ Z

+}, where t denotes
a time index and states with the wrong time index
get probability zero: P(St = 〈ξ, t′, . . .〉) = 0 if t′ 6= t.
Depending on the specifics of the algorithm the hidden
states can contain more information, represented here
by dots. Given a state 〈ξ, t, . . .〉 ∈ S and previous
outcomes xt−1 the probability of Xt is determined by
the prediction of expert ξ:

P(Xt | 〈ξ, t, . . .〉 , xt−1) = Pξ(Xt | xt−1).

The advantage of casting these algorithms as HMMs
is that the standard algorithms for HMMs can be ap-
plied. Specifically, the forward algorithm can compute
the predictions P(X1), . . ., P(XT | xT−1) in time pro-
portional to the number of transitions in the HMM
[Koolen and de Rooij, 2008].
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Bayes We first consider the standard Bayesian pre-
diction strategy that puts a prior w on experts Ξ.
This corresponds to the HMM H with hidden states
{〈ξ, t〉 | ξ ∈ Ξ, t ∈ Z

+}. Initially all experts get prob-
ability according to the prior, H(〈ξ1, 1〉) = w(ξ1), but
afterwards no more switches between experts are al-
lowed: H(〈ξt+1, t+ 1〉 | 〈ξt, t〉) is 1 if ξt+1 = ξt, and 0
otherwise.

Fixed-Share There is also an HMM Fα that cor-
responds to the Fixed-Share algorithm [Koolen and
de Rooij, 2008]. As in [Herbster and Warmuth,
1998], all experts are initially given equal weight,
Fα(〈ξ1, 1〉) = 1/n, which gives the best worst-case
bound. After each outcome, Fα allows switches be-
tween experts to occur with probability α ∈ [0, 1],
which is called the switching rate:

Fα(〈ξt+1, t+ 1〉 | 〈ξt, t〉) =

{

1 − α if ξt+1 = ξt,

α/(n− 1) otherwise.

Note that F0 = H (using a uniform prior w). Naive
application of the forward algorithm to Fα gives O(n2)
transitions per time step, adding up to a total running
time of n2 ·O(T ). This is reduced to O(n) transitions
by introducing an intermediate pool state that first col-
lects all probability mass for switches between experts
and then redistributes it (see [Koolen and de Rooij,
2008] for details). The running time then becomes
n ·O(T ) as in [Herbster and Warmuth, 1998].

2.1 Tracking HMMs and Bernoulli HMMs

The Fixed-Share algorithm has a fixed switching
rate α. This may be generalised to a tracking HMM S

with hidden states {〈ξ, t, α〉 | ξ ∈ Ξ, t ∈ Z
+, α ∈ At}.

The initial states have weights given by S(〈ξ1, 1, α1〉) =
B(〈α1, 1〉) · 1

n , and the transition probabilities are

S(〈ξt+1, t+ 1, αt+1〉 | 〈ξt, t, αt〉)
= B(〈αt+1, t+ 1〉 | 〈αt, t〉) · Fαt

(〈ξt+1, t+ 1〉 | 〈ξt, t〉),
where B, called a Bernoulli HMM, describes the evo-
lution of α. The original Fixed-Share method Fα can
be recovered by using At = {α} and B = B

α
fixed, where

B
α
fixed(〈αt+1, t+ 1〉 | 〈αt, t〉) = B

α
fixed(〈αt+1, 1〉) = 1.

We consider various other options for the Bernoulli
HMM B as well. In general let S

b
a denote the tracking

HMM S defined with respect to the Bernoulli HMM
B
b
a. Thus S

α
fixed = Fα.

It is essential now to distinguish between two levels:
Fixed-Share and the tracking HMM S, which aim to
predict outcomes X1, X2, . . ., operate on the upper
level. On the lower level there is the Bernoulli HMM
B. Although B is used as a building block in the con-
struction of S, it is convenient to also interpret B as

an algorithm for prediction with expert advice in itself.
In this view, let Y1, Y2, . . . be binary outcomes, which
B has to predict, and let Pα denote the Bernoulli dis-
tribution with Pα(Y = 1) = α, extended to sequences
by taking product distributions. In a Bernoulli HMM
the experts are instantiated to such Bernoulli sources,
and are indexed by α ∈ At. Thus B has hidden states
{〈α, t〉 | α ∈ At, t ∈ Z

+} and B(Yt | 〈α, t〉) = Pα(Yt).

The total running time of the forward algorithm ap-
plied to a tracking HMM may be computed by sum-
ming up the number of transitions for each time step.
This is the number of transitions of Fixed-Share,
which is O(n), times the number of transitions of the
corresponding Bernoulli HMM. Thus the forward al-
gorithm for a tracking HMM runs in O(n) times the
running time of the forward algorithm for its Bernoulli
HMM.

All approaches to learning the switching rate that
were discussed in the introduction, including the new
Refine-Online method, can be implemented using
tracking HMMs with different choices for the Bernoulli
HMM B. We will illustrate this for Learn-α. In Sec-
tion 3.3 we do the same for Bro, which defines the
Refine-Online algorithm. From the description of
the Switching Method in [Koolen and de Rooij, 2008]
it is not hard to see how it can be cast as a Bernoulli
HMM as well, but for brevity we do not discuss the
details here.

Example: Learn-α Given the final number of out-
comes, T , the algorithm Learn-α [Monteleoni and
Jaakkola, 2003] applies Bayes at a meta-level to learn
the switching rate α of the Fixed-Share algorithm:
it puts a uniform prior (which gives the best worst-
case bound) on a discretised set AT of switching
rates, where the discretisation depends on T . It
turns out that this approach corresponds exactly to
a tracking HMM SBayes. The corresponding Bernoulli
HMM BBayes has At = AT for all t, initial weights
BBayes(〈α1, 1〉) = 1/|AT | and transition probabilities

BBayes(〈αt+1, t+ 1〉 | 〈αt, t〉) = 1{αt}(αt+1), (2)

where 1A(z) denotes the indicator function, which is
1 if z ∈ A and 0 otherwise. Note that BBayes is ex-
actly the Bayesian HMM H with a uniform prior on
AT , where the experts Ξ have been identified with
Bernoulli parameters AT . In Section 3 we will choose
AT differently from [Monteleoni and Jaakkola, 2003]
based on our new discretisation scheme.

2.2 Regret Bounds

The following lemma will be our main tool to show
regret bounds. It bounds the likelihood ratio between
any two tracking HMMs in terms of the worst-case like-
lihood ratio of their corresponding Bernoulli HMMs.
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In other words, the lemma allows us to lift any uniform
performance guarantees we may prove for Bernoulli
HMMs to the level of tracking HMMs.

Lemma 1 (Lifting Lemma for Tracking). Suppose Ba

and Bb are Bernoulli HMMs, and Bb(y
T−1) > 0 for all

binary sequences yT−1. Then for any xT

Sa(x
T ) ≤ Sb(x

T ) max
yT−1

Ba(y
T−1)

Bb(yT−1)
.

By invoking this lemma with Sa = Fα̂(xT ), where

α̂(xT ) is the best possible switching rate, we can ob-
tain a bound on the regret for any tracking HMM with
respect to the Fixed-Share algorithm with optimally
tuned parameter. This is the idea behind our main
results, which appear as Theorem 1 below. The proof
of the lemma uses the following more general lemma.

Lemma 2. Let P and Q be distributions on countable
space Z ×Ψ such that for all outcomes 〈z, ψ〉 we have
P (z | ψ) = Q(z | ψ) and Q(ψ) > 0. Then, for z ∈ Z,

P (z) ≤ Q(z) · max
ψ∈Ψ

P (ψ)

Q(ψ)
.

Proof. P (z) =
∑

ψ P (ψ)P (z | ψ) ≤
maxψ

P (ψ)
Q(ψ)

∑

ψ Q(ψ)P (z | ψ) = Q(z)maxψ
P (ψ)
Q(ψ) .

Proof of Lemma 1. Let Yt = 1 − 1{ξt}(ξt+1) for t =
1, . . . , T indicate whether or not a switch occurs. Now
let Z = X T and Ψ = {0, 1}T−1, and notice that for
any

〈

xT , yT−1
〉

∈ Z × Ψ we have

Sa(x
T , yT−1) = F(xT | yT−1)Ba(y

T−1)

Sb(x
T , yT−1) = F(xT | yT−1)Bb(y

T−1),

where F(xT | yT−1) ≡ Fα(xT | yT−1) denotes a condi-
tional probability in the Fixed-Share HMM that does
not depend on α. Lemma 2 completes the proof.

The lifting lemma is tight in the following sense. Con-
sider two experts, whose predictions for all xt−1 are
simply P1(Xt = 1 | xt−1) = 1 and P2(Xt = 0 | xt−1) =
1, respectively. Then any tracking HMM S with cor-
responding Bernoulli HMM B has S(xT ) = B(yT−1),
where yt = 1 − 1{xt}(xt+1) identifies whether the t-th
and (t+1)-th outcomes are the same or not. Hence the
regret is maximised for xT such that the corresponding
yT−1 maximises Ba(y

T−1)/Bb(y
T−1).

Section 3 introduces two new Bernoulli HMMs. We
already mentioned the first one, BBayes, in the ex-
ample above. In Section 3.2 we provide a uniform
bound on its regret compared to any Bernoulli dis-
tribution. Then in Section 3.3 we define Bro, which
does not require T to be known in advance, and ex-
tend the results from Section 3.2 to bound the re-
gret of Bro. The Refine-Online algorithm is de-
fined using this second Bernoulli HMM. Combining

these results with Lemma 1 and the observation that
B
α
fixed(yT ) = Pα(yT ) for all yT , we directly obtain the

main results of this paper:

Theorem 1 (Learning the Switching Rate). Let
BBayes be as in Definition 2 below. Then for any
α ∈ [0, 1] and any data xT such that T > 1, the regret
of SBayes compared to Fα is bounded by

ln
Fα(xT )

SBayes(xT )
≤ 1

2 ln(T − 1) + 2.8,

and the regret of Sro is bounded by

ln
Fα(xT )

Sro(xT )
≤ log 3

(

1
2 ln(T − 1) + ln ln(T )

)

+ 23.1.

(For T = 1, SBayes(x) = Sro(x) = Fα(x) for any x.)

While this theorem yields a bound for SBayes compara-
ble to that given in [Monteleoni and Jaakkola, 2003],
the analysis is different: in the end it is based on
Lemma 1, which can only be usefully applied when
good uniform bounds on the prior probability of the
expert sequence, as established in Section 3.2, are
available. In contrast, the analysis in [Monteleoni and
Jaakkola, 2003] only requires a good bound on the
Kullback-Leibler divergence D(α̂‖α̈) between the opti-
mal switching rate α̂ and the best discretised parame-
ter α̈ ∈ AT . In other words, the only region where the
discretisation precision actually matters is close to α̂.
But their analysis does not readily generalise to other
Bernoulli HMMs such as Bro.

3 Discretisation of Bernoulli Sources

In this section we define two Bernoulli HMMs, BBayes

and Bro, and derive bounds on their worst-case regret.
The first is based on a fixed discretisation of the set
of Bernoulli distributions, where the optimal number
of discretisation levels depends on the total number
of outcomes T , which therefore has to be known. The
resulting tracking HMM, SBayes, is similar to Learn-α,
but with the added advantage that the exact number
and locations of the discretisation points are explicitly
speficied. Moreover, we obtain an explicit constant.

The analysis of BBayes is also an essential stepping
stone to the specification of the second Bernoulli HMM
Bro, whose discretisation of the set of Bernoulli distri-
butions is not fixed; instead the discretisation is refined
every time the number of outcomes gets large enough
that it pays to do so.

Preliminaries As before, let Pα denote the
Bernoulli distribution with Pα(Y = 1) = α. For
any binary sequence yT , the maximum likelihood pa-
rameter is α̂(yT ) = T−1

∑T
t=1 yt. When the data se-

quence is clear from context, we usually abbreviate
α̂ ≡ α̂(yT ). The maximum likelihood is a sufficient
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statistic: for any α and T , the probability Pα(yT )
is completely determined by α̂. We therefore define
Pα(α̂) := αα̂(1 − α)1−α̂, allowing any α̂ ∈ [0, 1], not
just rational values. Note that T lnPα(α̂) = lnPα(yT ).

3.1 Discretisation

The analysis below is based on a different parametri-
sation of the Bernoulli distributions. For α ∈ [0, 1] and
φ ∈ [0, π/2], let φ(α) = arcsin

√
α and α(φ) = sin2 φ.

It is convenient to think of φ-parameters as points in
the first quadrant of the unit circle. The parametri-
sation has many elegant properties; for example the
Fisher information is constant. Similar arcsine trans-
formations are well-known in the statistical literature
[Anscombe, 1948, Freeman and Tukey, 1950]. In the

following we will use Pα(α̂) and Pφ(φ̂) interchange-
ably, where the intended parametrisation should be
clear from the parameter name and the context.

We now describe an explicit discretisation scheme for
the φ-parameter of Bernoulli distributions that is es-
pecially easy to refine incrementally in online settings.

Definition 1 (k-Discretisation). For k ∈ {1, 2, . . .}
define the k-discretisation as the set Dk :=
{δk, 2δk, 3δk, . . . , (2k−1)δk}∪{1

2δk, π/2− 1
2δk} of 2k+1

discretisation points, where δk = π2−k−1.

This is a uniform discretisation made slightly denser
at the boundaries. The (k + 1)-discretisation adds a
new point midway between any two points in the k-
discretisation, except at the boundaries, which require
special care. Thus Dk ⊂ Dk+1, which will turn out to
facilitate incremental refinement in the online setting.

Given k-discretisation Dk, any point ψ ∈ [0, π/2] has
a set Nk(ψ) of neighbours in Dk, which is defined as

Nk(ψ) =











{φ1} if ψ > π/2 − δk/2,

{φ2} if ψ < δk/2,

{φ1, φ2} otherwise,

where φ1 = max{φ ∈ Dk | φ ≤ ψ} and φ2 = min{φ ∈
Dk | φ ≥ ψ}. (Note that φ1 = φ2 if ψ ∈ Dk.)

3.2 The Offline Bernoulli HMM BBayes

In the example above, we defined the offline Bernoulli
HMM BBayes using an unspecified set AT of discreti-
sation points. We now complete the definition.

Definition 2. BBayes is the Bernoulli HMM as intro-
duced in (2), defined with respect to AT = {α(φ) | φ ∈
Dk(T )}, where k(T ) =

⌈

1
2 log(Tπ2(2 −

√
2))

⌉

.

As the number of transitions per time step equals |AT |
for this Bernoulli HMM, the forward algorithm for
BBayes runs in O(T

√
T ) time.

We proceed to analyse the regret of BBayes in the worst
case over all possible binary sequences yT ∈ {0, 1}T .
The following lemma is at the basis for all of the fol-
lowing results. Its proof, and the proofs of the other
results in this section, are deferred to the appendix.

Lemma 3 (Generalised Divergence Bound). Suppose
φ1, φ2 and φ3 all lie in [0, π/4] and φ2 > 0. Then

ln
Pφ1

(φ3)

Pφ2
(φ3)

= D(φ3‖φ2) −D(φ3‖φ1)

≤







4(φ2 − φ1)(φ2 − φ3) if φ3 ≤ φ2,

4(φ2 − φ1)(φ2 − φ3)
φ3

φ2
otherwise.

(3)

Note that by symmetry in π/4 the lemma can also
be applied to φ′i = π/2 − φi for i = 1, 2, 3. Al-
though it provides a bound on the Kullback-Leibler
divergence, which is an expected quantity, we use it to
prove results on individual sequence regret. In partic-
ular, Lemma 3 will typically be applied with φ3 set to
the maximum likelihood φ̂ for some binary sequence.
As a notational reminder, φ3 will be called φ̂ in the
remainder.

The following consequence of Lemma 3 is an impor-
tant intermediate result. It expresses that the re-
gret of using the best discretisation point rather than
the maximum likelihood is O(δ2k), which means that

O(
√
T ) uniformly spaced discretisation points suffice

to achieve an O(1) overall worst-case regret. Using the
φ-parametrisation is crucial; in the α-parametrisation
the discretisation points must be packed extra densely
near the boundaries of the parameter space.

Lemma 4 (Discretisation Lemma). For any φ̂ ∈
[0, π/2] and φ ∈ (0, π/2) it holds that

min
φ∈Nk(φ̂)

ln
Pφ̂(φ̂)

Pφ(φ̂)
≤ (8 − 4

√
2)δ2k ≤ 2.4 δ2k.

Specifically, for BBayes we obtain the following worst-
case regret bound.

Theorem 2 (Offline Discretisation). For any binary
sequence yT ∈ {0, 1}T and any α ∈ [0, 1]

ln
Pα(yT )

BBayes(yT )
≤ 1

2 lnT + 2.8.

3.3 The Online Bernoulli HMM Bro

We shall now define the remaining properties of the
Refine-Online Bernoulli HMM, Bro, using Dk as be-
fore. But since we do not know T , rather than choos-
ing a fixed k as a function of T , we let k increase by one
every time the precision threatens to become insuffi-
cient, roughly doubling the number of discretisation
points. The critical step in the definition of Bro will
describe how to patch things up whenever k increases.
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Figure 2: Refinement from D2 to D3.

Our approach is more subtle than the doubling trick,
which is often used to deal with unknown T [Cesa-
Bianchi and Lugosi, 2006]. Naive doubling can be
done in two ways. The simplest is to restart the al-
gorithm completely each time the precision needs to
be increased. But then the Bernoulli parameter has to
be relearned in each segment, which results in a signif-
icantly worse loss bound of order O(ln2 T ). Alterna-
tively, one might revisit previous data and continue by
setting the algorithm’s weights as if the increased pre-
cision had been used from the start. But this requires
the algorithm to store all data indefinitely; moreover,
we have not been able to improve our loss bound using
this approach. In the following we therefore suggest a
more advanced way of doubling, which redistributes
the weights of the algorithm without looking at old
data whenever the precision is increased.

We first define B
k
ro with respect to a function k : Z

+ →
Z

+, called the discretisation function. It identifies the
discretisation set Dk(t) to be used at time t, and should
have the property that k(t + 1) = k(t) or k(t + 1) =
k(t) + 1 for all t. Thus At = {α(φ) | φ ∈ Dk(t)}. The
discretisation function for Refine-Online is

κ(t) =
⌊

1
2 log t+ log log(t+ 1)

⌋

+ 1,

and we simply write Bro for B
κ
ro.

The initial weights of the states are B
k
ro(〈α1, 1〉) =

1/|Dk(1)|. It remains to define the transition proba-
bilities between states. For consecutive times t and
t + 1 when the discretisation does not change, i.e.
k(t) = k(t + 1), these transitions are similar to those
for the Bayesian Bernoulli HMM in (2); for times when
the discretisation does change, the probabililities are
given by a refinement function dk : Dk×Dk+1 → [0, 1].
Thus, B

k
ro(〈αt+1, t+ 1〉 | 〈αt, t〉)

=

{

1{αt}(αt+1) if k(t) = k(t+ 1),

dk(t)(φ(αt), φ(αt+1)) otherwise.

The refinement function dk, which determines our
patch-up strategy, is chosen such that φt+1 gets some
mass from each of its neighbours in Nk(t)(φt+1):

dk(φt, φt+1) =

1Nk(φt+1)(φt) ·
{

1
2 if φt ≤ δk or φt ≥ 1

2π − δk,
1
3 otherwise.

The refinement function is illustrated by Figure 2
for k = 2, but note that as k(t) gets larger, the
case that dk(φt, φt+1) = 1/3 becomes most impor-
tant. Also note there are at most three transitions
for each discretisation point per time step. The for-
ward algorithm therefore runs in time proportional to
∑T
t=1 |Dk(t)| ≤ T |Dk(T )|. In particular for Bro (k = κ)

its running time is O(T
√
T log T ).

While it may seem redundant to allow for converging
paths in the HMM, we do need such a structure for the
proof of the lemma below, which bounds the weights of
the newly introduced discretisation points. The idea
is to compare the weight that is accumulated in any
state 〈αt, t〉 after observing yt, to Pαt

(yt). Let t(k) =
min{t ∈ Z

+ | k(t) = k} be the first time at which the
k-discretisation is used. If the discretisation function
k were strictly increasing, this would be its inverse.

Lemma 5 (Refinement Lemma). For any yt ∈ {0, 1}t,
any φ ∈ Dk(t) it holds that

ln
Pφ(y

t)

Bkro(y
t, 〈α(φ), t〉) ≤ ln |Dk(1)|

+

k(t)
∑

k=k(1)+1

ln 3 + (4 − 2
√

2)π2 t(k) − 1

4k
. (4)

In particular for the discretisation function κ we get

ln
Pφ(y

t)

Bro(yt, 〈α(φ), t〉) ≤ log 3
(

1
2 ln t+ln ln(t+1)

)

+20.7.

Using this lemma it is not hard to provide a worst-case
regret bound for Bro.

Theorem 3 (Online Discretisation). For any binary
sequence yt ∈ {0, 1}t and any α ∈ [0, 1]

ln
Pα(yt)

Bro(yt)
≤ log 3

(

1
2 ln t+ ln ln(t+ 1)

)

+ 23.1.

Here the constant is the sum of the constants ap-
pearing in Lemmas 4 and 5. The proof of this the-
orem is based on the regret of the discretisation point
φ̈(yt) ∈ Dk(t) that is closest to the unconstrained max-

imum likelihood φ̂(yt). There are O(log t) discretisa-

tion points sufficiently close to φ̂(yt). Taking this into
account would result in an improved constant in front
of the ln ln(t+1) term, but the term would not vanish
and the proof would become more complex.

4 Conclusion

We have presented a new discretisation scheme for
Bernoulli sources that achieves a regret bound of
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1
2 lnT +2.8 nats if the final number of outcomes, T , is
known in advance, but unlike the approach in [Mon-
teleoni and Jaakkola, 2003] specifies the exact num-
ber and positions of the discretisation points explic-
itly. This scheme is most useful, however, when T is
not known in advance: in Section 3.3 the HMM Bro

was presented that achieves a regret of 1
2 log 3 lnT +

log 3 ln ln(T + 1) + 23.1 nats without knowing T in
advance. The predictions of Bro can be computed in
O(T

√
T log T ) time using the standard forward algo-

rithm for HMMs.

Our interest in Bernoulli sources stems from Lemma 1,
which shows that these bounds directly translate into
regret bounds for learning the switching rate for
the Fixed-Share algorithm. As discussed in Sec-
tion 2.1, running times also carry over. We call the
new algorithm for the case where T is not known
Refine-Online.

Analogues to Lemma 1 may easily be proved for
any expert algorithm that involves a repeated binary
choice with fixed probability, like elementwise mixtures
[Koolen and de Rooij, 2008].

Future Research The worst-case regret for
Bernoulli sources is 1

2 log T + O(1) [Cesa-Bianchi and
Lugosi, 2006, Thm 9.2]. This provides a lower bound
on the worst-case regret for tracking HMMs, because
Lemma 1 is tight. The lower bound is achieved by
SBayes, but for Sro a log 3 factor appears. This factor
can be explained as follows. When the discretisa-
tion is refined, each new point gets mass from two
neighbours, but our analysis in Lemma 4 only takes
the best neighbour into account. It is an interesting
open question whether the optimal bound could be
achieved, at least up to O(log log T ), by improving
either the refinement function or the analysis.
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A Proofs

Generalised Divergence Bound (Lemma 3)
The equality follows by rewriting definitions. The in-
equality is proved as follows. For any concave function
f with derivative f ′, and any x and y, it holds that

(x− y)f ′(x) ≤ f(x) − f(y) ≤ (x− y)f ′(y). (5)

In particular for lnPφ(φ3) as a function of φ:

ln
Pφ1

(φ3)

Pφ2
(φ3)

≤ (φ1 − φ2)

(

2α3
cosφ2

sinφ2
− 2(1 − α3)

sinφ2

cosφ2

)

= 2(φ1 − φ2)
cos2 φ2 − cos2 φ3

sinφ2 cosφ2
. (6)

Since cos2 φ is a concave function of φ as well, we can
use (5) once more to find

− 2(φ2 − φ3) sinφ2 cosφ2 ≤ cos2 φ2 − cos2 φ3

≤ −2(φ2 − φ3) sinφ3 cosφ3.
(7)

If φ2−φ3 ≥ 0, then plugging the left-hand side into (6)
gives the first case of (3). For φ2 − φ3 < 0 we first
combine the inequality on the right hand side of (7)
with (6) to find

ln
Pφ1

(φ3)

Pφ2
(φ3)

≤ 4(φ1 − φ2)(φ3 − φ2)
sinφ3 cosφ3

sinφ2 cosφ2
. (8)

As sinx cosx = sin 2x and sinx is concave on [0, π/2],

we also get by (5) that sinφ3 cosφ3

sinφ2 cosφ2
≤ 1+ 2(φ3−φ2)

tan(2φ2)
≤ φ3

φ2
,

where the second inequality follows by tanx ≥ x for
x ∈ [0, π/2]. With (8) this completes the proof.

Discretisation Lemma (Lemma 4) We first show

that for any 0 < φ1 ≤ φ̂ ≤ φ2 ≤ π/4 it holds that

min
φ∈{φ1,φ2}

ln
Pφ̂(φ̂)

Pφ(φ̂)
≤ 4(φ2 −

√

φ1φ2)
2. (9)
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This follows by relaxing Lemma 3 to get lnPφ̂(φ̂) −
lnPφ1

(φ̂) ≤ 4(φ1 − φ̂)2(φ̂/φ1)
2 (strictly monotonically

increasing in φ̂) and lnPφ̂(φ̂)− lnPφ2
(φ̂) ≤ 4(φ2 − φ̂)2

(strictly decreasing). At the maximising φ̂ =
√
φ1φ2

the bounds are equal. Substitution completes the
proof of (9).

To prove Lemma 4, assume w.l.o.g. that φ̂ ≤ π/4; the
other case is symmetric. Then φ ≤ π/4 for all φ ∈
Nk(φ̂). If Nk(φ̂) = {φ̂}, the lemma is trivially true. If

Nk(φ̂) = {δk/2}, then φ̂ ≤ δk/2 and from Lemma 3

we get lnPφ̂(φ̂) − lnPδk/2(φ̂) ≤ 4( 1
2δk − φ̂)2 ≤ δ2k. If

Nk(φ̂) = { 1
2δk, δk} we similarly obtain a bound of δ2k.

Finally suppose that Nk(φ̂) = {iδk, (i+1)δk} for some
integer i ≥ 1. Then application of (9) yields

min
φ∈{iδk,(i+1)δk}

ln
Pφ̂(φ̂)

Pφ(φ̂)
≤ 4

(

(i+ 1) −
√

i(i+ 1)
)

δ2k,

which is maximised by i = 1.

Offline Discretisation (Theorem 2) Let φ̂ denote
the maximum likelihood and φ̈ = argmaxφ∈Dk

Pφ(y
T )

denote the maximum likelihood in Dk. The theorem
follows by ln BBayes(y

T ) ≥ lnPφ̈(y
T ) + lnw(φ̈) and

Lemma 4.

Lemma 6. Suppose that 0 < φ1 ≤ φ2 ≤ π/4 and

define ψ = 1
2 (φ1 + φ2). Then for any φ̂ ∈ [0, π/2],

min
φ∈{φ1,φ2}

ln
Pψ(φ̂)

Pφ(φ̂)
≤ 2(φ2 − φ1)(φ2 −

√

φ1φ2). (10)

Proof. As lnPφ(φ̂) is a concave function of φ achieving

its maximum at φ = φ̂, we have for φ̂ < φ1 or φ̂ > φ2

that minφ∈{φ1,φ2} lnPψ(φ̂)/Pφ(φ̂) ≤ 0, such that (10)

is satisfied. Therefore assume w.l.o.g. that φ1 ≤ φ̂ ≤
φ2. At the worst-case φ̂, the bounds from Lemma 3
must be equal; solving yields φ̂ =

√
φ1φ2. Substitution

in one of the bounds completes the proof.

Lemma 7. For all ψ ∈ Dk+1 and any φ̂ ∈ [0, π/2],

min
φ∈Nk(ψ)

ln
Pψ(φ̂)

Pφ(φ̂)
≤ (4−2

√
2)δ2k =

(4 − 2
√

2)π2

4k+1
. (11)

Proof. Assume w.l.o.g. that ψ < π/4. Then φ ≤ π/4
for all φ ∈ Nk(ψ). If ψ ∈ Dk, then the lemma is triv-
ially true. If ψ = δk+1/2, then Nk(ψ) = {δk/2}, and

as lnPφ(φ̂) is concave in φ and achieves its maximum

at φ = φ̂, (11) is satisfied if φ̂ > δk/2. If φ̂ ≤ δk/2

it follows by Lemma 3 that lnPδk+1/2(φ̂)/Pδk/2(φ̂) ≤
4(δk+1/2)(δk/2 − φ̂(yt)) ≤ 1

2δ
2
k. If neither of these

cases apply, we must have Nk(ψ) = {φ1, φ2} with
φ1 = iδk and φ2 = (i + 1)δk for some integer i ≥ 1,

and ψ = (φ1 + φ2)/2. In that case we apply Lemma 6
to find

min
φ∈Nk(ψ)

ln
Pψ(φ̂)

Pφ(φ̂)
≤ 2δ2k(i+ 1 −

√

i(i+ 1)),

which is maximised by i = 1.

Refinement Lemma (Lemma 5) Abbreviate
〈α(φ), t〉 to 〈φ, t〉 and let b(t) denote the right-hand
side of (4). The proof of the first part of the lemma
is by induction on t. The case t = 1, for which b(t) =
ln |Dk(1)|, is verified by noting that Bro(y

1, 〈φ, 1〉) =
Pφ(y

1)/|Dk(1)|. Suppose the bound is valid for some t.
To show that it is also valid for t+ 1, we use that

ln
Pφt+1

(yt+1)

Bro(yt+1, 〈φt+1, t+ 1〉) − ln
Pφt+1

(yt)

Bro(yt, 〈φt, t〉)

≤ min
φt∈Dk(t)

ln
Pφt+1

(yt+1)

Bro(yt+1, 〈φt+1, t+ 1〉 | yt, 〈φt, t〉)
= min
φt∈Dk(t)

− ln Bro(〈φt+1, t+ 1〉 | 〈φt, t〉).

In case k(t+1) = k(t) the bound does not change (i.e.
b(t+ 1) = b(t)), because for φt = φt+1 ∈ Dk(t) it holds
that Bro(〈φt+1, t+ 1〉 | 〈φt, t〉) = 1, and by induction
lnPφt

(yt)−ln Bro(y
t, 〈φt, t〉) ≤ b(t). Now suppose that

k(t+ 1) = k(t) + 1. Then

min
φt∈Dk(t)

− ln Bro(〈φt+1, t+1〉 | 〈φt, t〉) + ln
Pφt+1

(yt)

Bro(yt, 〈φt, t〉)

= min
φt∈Nk(t)(φt+1)

− ln dk(t)(φt, φt+1) + ln
Pφt+1

(yt)

Bro(yt, 〈φt, t〉)

≤ ln 3 + min
φt∈Nk(t)(φt+1)

ln
Pφt+1

(yt)

Pφt
(yt)

+ b(t)

≤ ln 3 + (4 − 2
√

2)π2 t

4k(t)+1
+ b(t) = b(t+ 1),

where the first inequality holds by induction and the
last inequality follows from Lemma 7.

For the second part of the lemma we bound t(k) using
√

t(k) log(t(k)+1) ≤ 2k ≤ 2
√

t(k) log(t(k)+1). (12)

From the left-hand side of (12) we get
√

t(k) ≤
2k/(log(t(k) + 1)) ≤ 2k/( 1

2 log t(k) + log log(t(k) + 1)).
(We omit the tedious proof of the last inequality.)
Together with the right-hand side of (12) it follows
that

√

t(k) ≤ 2k(k − 1)−1, which implies t(k) ≤
4k(k− 1)−2 ≤ (4k +1)(k− 1)−2. The result follows by
plugging this bound into b(t).

Online Discretisation (Theorem 3) Fix an ar-
bitrary sequence yt, and define the global maximum
likelihood φ̂ = φ̂(yt) and the nearest discretisation

point φ̈ = argmaxφ∈Dk(t)
Pφ(y

t). Then ln
P

φ̂
(yt)

Bro(yt) ≤

t ln
P

φ̂
(φ̂)

P
φ̈
(φ̂)

+ ln
P

φ̈
(yt)

Bro(yt,〈α(φ̈),t〉)
. The latter two terms can

be bounded using Lemmas 4 and 5, respectively.


