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Abstract

Many classification problems with structured
outputs can be regarded as a set of inter-
related sub-problems where constraints dic-
tate valid variable assignments. The stan-
dard approaches to these problems include ei-
ther independent learning of individual clas-
sifiers for each of the sub-problems or joint
learning of the entire set of classifiers with
the constraints enforced during learning. We
propose an intermediate approach where we
learn these classifiers in a sequence using pre-
viously learned classifiers to guide learning
of the next classifier by enforcing constraints
between their outputs. We provide a theoret-
ical motivation to explain why this learning
protocol is expected to outperform both al-
ternatives when individual problems have dif-
ferent ‘complexity’. This analysis motivates
an algorithm for choosing a preferred order
of classifier learning. We evaluate our tech-
nique on artificial experiments and on the en-
tity and relation identification problem where
the proposed method outperforms both joint
and independent learning.

1 INTRODUCTION

Classification problems with structured output spaces
are becoming increasingly common in different disci-
plines including natural language processing, compu-
tational biology and computer vision. Solving many
of these problems involves solving a large set of in-
terrelated sub-problems. As an example consider
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the semantic role labeling (SRL) task (Carreras and
Màrquez, 2004a), where a model needs to predict po-
sitions of verbal and nominal predicates in a sentence,
select their sense, and identify their arguments for each
possible argument role. For many of these problems,
it is easy to define a set of constraints which enforce
coherence of the output structure. In semantic role la-
beling, we can observe that a subject and an object of
a verbal predicate always appear on opposite sides of
the verb or given a predicate some of its arguments are
illegal, e.g., the verb say cannot have an object (Pun-
yakanok et al., 2008).

The most common approaches to solving these prob-
lems are either joint learning where global inference
is used to enforce constraints during training (Infer-
ence Based Training, IBT) or independent learning of
individual classifiers with no global inference (Learn-
ing Only, LO). Consistency of the output of a model
learned with the LO method can be improved by en-
forcing constraints at test time (Learning + Inference,
L+I). On a number of problems it has been observed
that when individual sub-problems are easy to learn
in isolation, L+I outperforms IBT (Punyakanok et al.,
2005; Carreras and Màrquez, 2004b). Punyakanok
et al. (2005) presented a theoretical analysis which sug-
gests that if individual problems are linearly separable
then LO should outperform IBT, assuming that each
individual classifier uses a feature set which is smaller
in size than the combined feature set used by the entire
set of classifiers. Artificial experiments (Punyakanok
et al., 2005) also suggested that with limited amount of
training data and low degree of local non-separability,
LO achieves comparable performance with IBT, and
L+I significantly outperforms IBT. However, this sep-
arability requirement is very strong and not realistic in
most real applications; it is very unlikely that all the
sub-problems are easy to learn in isolation. This lim-
itation motivates the development of new techniques
which both do not require local separability for every
sub-problem and achieve better generalization proper-
ties with less training data than IBT.
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In this paper, we relax the local separability assump-
tion and hypothesize that it is possible to order sub-
problems such that for every sub-problem a set of
learned classifiers for the preceding sub-problems helps
to learn a subsequent classifier which renders the con-
sidered sub-problem separable. We propose a training
protocol (sequential learning, SL) which discovers such
an ordering and trains classifiers in this sequence, us-
ing preceding classifiers to guide learning of the next
classifier by enforcing constraints between their out-
puts. Easier sub-problems are solved using a simpler
class of functions, thereby resulting in better gener-
alization with a limited amount of training data. In
section 3.1, we provide theoretical analysis to confirm
this claim. Moreover, whereas enforcing global coher-
ence at testing time with LO classifiers lacks a good
probabilistic motivation, the SL protocol corresponds
to estimating parameters of a joint model. At each
step of the learning sequence, the SL model is refined
to account for labels of the classifier considered on this
step. Therefore, enforcing the constraints with SL cor-
responds to finding the most likely sequence accord-
ing to this learned model, i.e., the Viterbi decoding.
This argument motivates section 3.2, where we demon-
strate that L+I is likely to make incorrect predictions
on rather simple distributions, whereas joint decoding
with SL predicts correct outputs.

The proposed technique is related to classifier
pipelines, standard in statistical natural language pro-
cessing (NLP) (Finkel et al., 2006; Bunescu, 2008),
where the output of a classifier trained for one sub-
problem is provided as an input to the subsequent
classifier. As an example, consider the case where
predicted part-of-speech tags of words in a sentence
are given as input to a syntactic parser which, in
turn, outputs hierarchical syntactical representation
used as input to a SRL model (Carreras and Màrquez,
2004a). The primary motivation for pipelines is to re-
duce computational expense relative to joint learning
and, therefore, there is relatively little work analyzing
the generalization properties of pipelines. From this
perspective, the contribution of this paper is construc-
tion of a novel pipeline architecture where subsequent
stages are integrated only by means of constraints, de-
velopment of a criterion for finding a preferred order of
sub-problems in these pipelines, and theoretical anal-
ysis of the resulting method. Interestingly, our conclu-
sions dispute a general belief in NLP that joint mod-
eling is preferable to pipelines.1 However, the most

1The CoNLL 2008 shared task examined joint learn-
ing of syntactic and semantic structures (Surdeanu et al.,
2008), hoping to use joint learning to improve upon the
standard pipeline approach. Results were mixed with the
best systems not using joint learning, but other competitive
systems getting improvement from using joint learning.

successful joint learning techniques (Collobert and We-
ston, 2008; Henderson et al., 2008) exploit shared in-
ternal representation, such as vectors of latent vari-
ables in graphical models or hidden layers in neural
networks, to relate underlying properties of jointly
learned sub-problems. This aspect of joint learning
lies outside of the scope of this paper.

We evaluate our approach with artificial experiments
and a real problem, the entity and relation identifica-
tion task (Roth and Yih, 2004). For artificial exper-
iments, we consider sequence labeling with randomly
generated constraints and variable complexity of the
individual sub-problems. The model trained with the
SL method achieves significantly higher accuracy than
LO, L+I, and IBT when the amount of training data
is limited. As expected, IBT achieves the best per-
formance as the amount of training data is increased.
On the entity and relation identification task we show
that the SL method outperforms all alternatives.

The remainder of the paper is structured as follows.
Section 2 begins with a formal definition of the prob-
lem and the standard approaches. We then intro-
duce the SL method as a way to address the discov-
ered limitation of IBT, LO, and L+I. Section 3 starts
with consideration of learning bounds for LO, SL, and
IBT, demonstrating that the SL method is expected to
achieve better accuracy under the stated assumptions.
The second part of section 3 considers the probabilistic
argument behind SL and argues that joint inference
with SL is appropriate. In section 4, we provide an
empirical evaluation.

2 SEQUENTIAL LEARNING

As discussed in the preceding section, we consider
structured problems where we need to learn a map-
ping from the input space X to the structured out-
put space Y. We further assume that the task can
be decomposed into T sub-problems. For each of
these sub-problems, t, we associate a scoring function
φ(yt, xt, wt), where yt is a vector of variables to be
inferred, wt is a vector of parameters and xt is the
features of x ∈ X used by the classifier t. Vector xt
is normally a collection of local features of input x
for each variable in the vector yt. For simplicity of
notation we will assume that exactly one variable is
associated with every sub-problem for every input ele-
ment x (i.e., yt is a scalar), though methods discussed
in this section apply to the general case and in the
experimental evaluation we also consider a more com-
plex scenario. Global inference is used to maintain
structural consistency of the outputs:

ŷ = arg max
y

(c(y) +
T∑
t=1

φ(yt, xt, wt)),
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where c is a predefined function which equals −∞ if
output y is illegal and 0 otherwise, possibly depending
on x. In the LO and L+I scenarios, each classifier is
trained independently, whereas with IBT all T classi-
fiers are trained jointly to optimize a global objective.
The structured Perceptron algorithm (Collins, 2002)
is one example of an IBT training algorithm.

for t = 1 : T do
for k /∈ {s1,..., st−1} do

(1) Estimate wk of the model
P (yk|x<t, w<t, wk) ∝
eφ(yk,xk,wk)

∑
y<t

ec(y<t,yk)+
Pt−1

j=1 φ(ysj
,xsj

,wsj
)

on Dt = {(x(i)
<t, x

(i)
k , y

(i)
k )Ni=1}

(2) Compute expected error estimate εk
end for
st = arg mink εk

end for

Figure 1: Sequential learning algorithm

As argued above, for many real tasks different sub-
problems might have different properties; whereas
some of them can be successfully learned in isola-
tion, other probably require some form of joint learn-
ing to capture more complex interdependencies. With
sequential learning, we are attempting to construct
an ordering s1,..., sT of these sub-problems such as
that every sub-problem st can be successfully learned
by jointly learning sub-problems s1,..., st. Moreover,
when considering a problem st we do not attempt
to retrain parameters for the preceding classifiers,
ws1 ,..., wst−1 , focusing only on estimating parameter
vector wst . Therefore the previously learned classi-
fiers guide learning by decreasing the score for local
predictions yst

if yst
can only be composed with un-

likely outputs ys1 ,..., yst−1 and increasing in the op-
posite case. In order to find a preferred ordering
s1,..., sT , on every step t we train each of the remaining
classifiers k /∈ {s1,..., st−1} jointly with all the classi-
fiers s1,..., st−1 to predict yk given xs1 ,..., xst−1 and xk.
Then, using the test error estimators appropriate for
the learning method, we select the problem st which
is expected to have the most reliable predictions. This
algorithm is presented formally in Figure 1. Note that
in Figure 1, we assume that we have a log-linear prob-
ability model and, therefore, can marginalize over pre-
dictions of the previous classifiers ys1 ,..., yst−1 . Also,
we use x<t and y<t to denote sequences of variables
(xs1 . . . xst−1) and (ys1 . . . yst−1) respectively. The con-
straint indicator function c, when applied to an assign-
ment of a subset of variables, equals zero if there exists
such an assignment in coordination with other output
variables such that the composed output is legal. Oth-
erwise, c equals negative infinity.

In practice, marginalization over the set of variables
may not be feasible either for computational reasons
or because the learner does not automatically induce
a probability estimator. E.g., even though a linear
classifier learned with Perceptron or SVM can be used
to estimate the probability (Platt, 1999), the factor
regulating sharpness of the distribution needs to be
selected by hand and may even require adjustment
during the course of learning. Therefore, in this case
we propose replacing marginalization by selecting the
score of the most likely sequence ys1 ,..., yst−1 which,
when composed with the considered yk, satisfies the
constraints. The algorithm for the Perceptron train-
ing presented in Figure 2 is an example instantiation of
the conceptual algorithm in Figure 1. For simplicity,
we assume that only one pass over the training is done
when training each vector wk although more passes
would normally be required. As motivated by the
Novikoff Theorem (Novikoff, 1963), we use the num-
ber of Perceptron updates as a criterion when deciding
which of the candidate classifiers is more reliable.2

for t = 1 : T do
for k /∈ {s1,..., st−1} do
εk = 0, wk = 0
for i = 1 : N do
ŷk = arg maxyk

wTk f(x(i)
k , yk)

+ maxy<t
c(y<t, yk) +

∑t−1
j=1 w

T
sj
f(x(i)

sj , ysj
)

if ŷk 6= y
(i)
k then

wk = wk + f(x(i)
i , y

(i)
k )− f(x(i)

i , ŷk)
εk = εk + 1 { counting updates}

end if
end for

end for
st = arg mink εk

end for
Figure 2: Sequential learning with Perceptron

3 ANALYSIS

In this section we provide a theoretical motivation for
the SL algorithm. First, we demonstrate the use of
sequential learning results in better covering number
bounds (Zhang, 2002) on the expected classification
error than that of LO and IBT if sub-problems are
not locally separable but can be made separable with
the help of the preceding classifiers in the learning
sequence. Secondly, we demonstrate that enforcing
global coherence of the SL classifier is statistically mo-
tivated and preferable to L+I even when sub-problems
are equally complex to learn.

2If the number of variable instances differs between sub-
problems, the number of Perceptron updates should be
scaled by the proportion of variable instances appearing
in the training set for the considered classifier k.
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3.1 ERROR BOUNDS

This section focuses on the per-variable error as it is
the most commonly used method to measure accuracy
of a classifier for structured predictions. Also, predict-
ing a partially correct structure is generally preferable
to predicting a completely incorrect structure.3 There-
fore, for SL and LO methods we bound the expected
error of individual classifiers and for IBT we bound
the per-variable error of the entire predicted sequence.
The goal is to demonstrate that under the conditions
stated above, the average of the upper bounds for SL
over t is lower than the average of the bounds for LO
and also lower than the bound for IBT. The key intu-
ition is that the LO method uses a low capacity func-
tion class for every sub-problem, and might not be
sufficiently powerful for some of these sub-problems.
With IBT, we use a powerful function class for all the
sub-problems although some of them are likely to be
easier and not requiring this power. Conversely, in the
SL approach we try to use simpler function classes for
simpler problems and more powerful classes for more
complex problems, therefore balancing their capacity
and their ability to learn from the training data.

Without loss of generality, we assume that the dis-
covered order of classification agrees with the original
ordering of the sub-problems, i.e., st = t. We also con-
sider only linear models and the modification of the SL
algorithm described above, where we add to the local
score, wTt f(x(i)

t , yt), the sum of the scores of the most
likely sequence y1,..., yt−1, as in Figure 2. We limit our
consideration to each sub-problem being a binary clas-
sification task, yt ∈ {0, 1}, although the results triv-
ially generalize to multi-class and multi-variable cases.

As the LO protocol involves independent binary clas-
sifiers for each sub-problem, we can simply restate the
result described in (Zhang, 2002):

Theorem 1. ((Zhang, 2002), Th. 6) If the data is
bounded ‖xt‖ ≤ at then there is a constant C such
that with probability 1−η over n > 1 random samples,
the classification error of wLOt is bounded

err(wLOt ) ≤ LLO(wLOt )
n

+

√
C

n
(ln

1
η

+ a2
t‖wLOt ‖22 lnn),

where LLO(wLOt ) = |{i : (wLOt )Tx(i)
t (2y(i)

t − 1) < 1}|
is the number of samples with the margin less than 1.

We cannot directly apply results of (Zhang, 2002)
to structured prediction with constrained classifiers
(IBT), but we can use the technique similar to that
considered in (Collins, 2002; Taskar et al., 2004); the

3The average per-label loss is equal to the expected
Hamming error divided by the length of the sequence.

key point is to demonstrate that the set of prede-
fined constraints do not influence generalization per-
formance.
Theorem 2. If the data is bounded ‖xt‖2 ≤ at then
there is a constant C such that with probability 1 − η
over n > 1 random samples, the per-variable er-
ror of the constrained model parametrized by wIBT is
bounded

err(wIBT ) ≤L
IBT (wIBT )

n

+

√√√√C

n
(ln

1
η

+
T∑
t=1

a2
t‖wIBTt ‖22 lnn),

where LIBT(wIBT ) equals to
n∑
i=1

sup
v:|v(y)−ϕ(y,x(i),wIBT )|≤dH(y,y(i))

dH(arg maxy v(y), y(i))
T

is the per-variable margin loss and the Hamming
distance dH(y, y′) is the number of mismatching
variables, the function ϕ(y, x, wIBT ) = c(y, x) +∑T
t=1 (wIBTt )T f(xt, yt) is the global score for the out-

put sequence y, v : Y → R is a distorted scoring func-
tion ϕ(y, x(i), wIBT ).

Proof. The space constraints do not allow us to present
the proof in detail and we explain only the proof strat-
egy. We bound the multi-error-level covering number
Nmul
∞ (Fc, ε, n) for the considered constrained function

class Fc = {ϕ(y, x, w),∀w, |wIBTt | < bt} (see (Taskar,
2004), def. A.1.9 for the multi-error-level covering
number definition) by the product of the covering num-
bers for linear function with bounded norms of param-
eter vectors

∏T
t=1N∞(FL, ε, n). This is done using

the technique similar to (Collins, 2002; Taskar, 2004).
Using the bound on N∞(FL, ε, n) (Th. 4, (Zhang,
2002)), we can substitute the Nmul

∞ (Fc, ε, n) in theo-
rem A.1.12 (Taskar, 2004). Then the statement of this
theorem follows using the same argument as outlined
in (Taskar, 2004).

For the SL method, we state the following result which
is similar to Theorem 2, but individually bounds the
expected error for every sub-problem and not the av-
erage error over them:
Theorem 3. If the data is bounded ‖xt‖2 ≤ at then
there is a constant C such that with probability 1 − η
over n > 1 random samples, the classification error
the SL classifier for problem t is bounded

err(wSL≤t ) ≤
LSL(wSL≤t )

n

+

√√√√C

n
(ln

1
η

+
t∑

t′=1

a2
t′‖wSLt′ ‖22 lnn),
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where the margin loss LSL(wSL≤t )

n∑
i=1

sup
v:|v(y)−ϕ≤t(y,x(i),wIBT )|≤dH(y,y(i))

I[(arg max
y

v(y))t = y
(i)
t ]

is the number of training instances for which
the distorted scoring function predicts the
wrong label at position t, ϕ≤t(y, x, wSL) =
c(y, x) +

∑t
t′=1 (wSLt′ )T f(xt′ , yt′) is the local score

(wSLt )T f(xt, yt) corrected by the scores given by the
classifiers for the previous sub-problems.

Proof. The proof is similar to the proof of Theorem 2.
The crucial difference is that instead of using the av-
erage per-variable loss we use the loss which penal-
izes errors only on the component yt. Note, that the
multi-error-level metric and the multi-error-level cov-
ering number are still defined in terms of the Hamming
distance.4

The theorem suggests instead of fixing the weights
learned on the previous iteration, we may want to train
the entire vector wSL≤t . However, it would not only in-
crease computational expense but also complicate joint
inference (see section 3.2).

Comparing the bound for the SL method (Theorem 3)
and the bound for the LO method (Theorem 1), we
can observe that there exist tasks which are difficult
to solve locally but easy to solve in a sequence, i.e.,
for every t > 1 we can achieve the same margin loss
term (first term) in LO only for which a2

t‖wLOt ‖22 >∑t
t′=1 ‖wSLt′ ‖22.5 This situation might happen, e.g.,

when there are no predictive features for decision y
(i)
t

on many samples x(i) whereas features for previous
sub-problems x(i)

t′ , t′ < t are reliable predictors and
output y(i)

t′ constrains assignments of y(i)
t . Therefore,

for such tasks we expect better accuracy with the SL
method than with the use of the LO approach.

Similarly, if every sub-problem is as easy to learn by
SL method as by the global scoring function used

in IBT, i.e., formally LIBT (wIBT ) ≥
PT

t=1 L
SL(wSL

≤t )

T
for ‖wSLt ‖2 ≤ ‖wIBTt ‖2, then the bound for the IBT
method (Theorem 2) is greater than the average over
T bounds for the SL method (Theorem 3). This is
the case when features predictive of yt in windows xt′

4This corresponds to the analysis in (McAllester, 2007),
where arbitrary loss functions are bounded using PAC-
Bayesian bounds based upon the Hamming distance.

5Here we assume that C is equal for both problems.
Formally, we should explicitly define the C coefficient for
each bound to perform comparison. However, the behavior
of the coefficients C should be expected similar for every
bound. Also, if we unwrap C presenting lower-order terms
this would not give any additional insight.

t′ > t are noisy or the subsequent sub-problems are
much harder than sub-problem t and do not help to
increase the margin. This implies that the bounds will
predict that the SL method is expected to outperform
the IBT method under such conditions.

We demonstrated that for tasks which are decompos-
able into sub-problems easily solvable in a sequence
but not solvable in isolation that the SL method is ex-
pected to perform better than both LO and IBT meth-
ods. The difference in accuracy with respect to IBT is
likely to be especially large when only small amount of
training data is available because in this case stronger
regularization is required to achieve competitive accu-
racy and any difference in the regularization term will
have a larger effect.

3.2 PROBABILISTIC ARGUMENT

If we ignore any prior distribution over the parameter
vector wt we can assume that the step (1) in the SL
algorithm in Figure 1 consists of maximization of the
following conditional log-likelihood∑
x≤t,yt

PD(x≤t)PD(yt|x≤ t) ln
eφ(yt,xt,wt)P̂ (yt|x<t, w<t)∑
y′t
eφ(y′t,xt,wt)P̂ (y′t|x<t, w<t)

,

where PD is the empirical distribution and

P̂ (yt|x<t, w<t) ∝
∑
y<t

ec(yt,y<t)+
Pt−1

t′=1
φ(yt′ ,xt′ ,wt′ )

can be regarded as the probability estimate for yt
based on the previous wt′ and x<t. This estimate is
proportional to the total probability which the model
associates with all the assignments to the sequence of
variables y<t compatible with the proposed assignment
to yt. Therefore during this learning step we try to
find the parameter vector wt which corrects this esti-
mate P̂ (yt|x<t, w<t) to get the best possible estimate
of PD(yt|x≤ t). When we compute estimates P̂ , we
sum over all the possible sequences and it follows that

P̂ (y|x,w) =
ec(y)+

PT
t=1 φ(yt,xt,wt)∑

y′ e
c(y′)+

PT
t=1 φ(y′t,xt,wt)

is the estimate of the conditional probability P (y|x).
Consequently, we can use this estimate to find the most
likely structure according to the model trained with
the SL method. Therefore, enforcing constraints at
test time is appropriate for the SL method.

It is well known that the accuracy of the LO method
can also be improved by using global inference at
test time (L+I) (Punyakanok et al., 2005). This ap-
proach normally increases both the per-variable ac-
curacy and leads to more coherent structures. How-
ever, it lacks a good probabilistic motivation. LO is
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trained to be an estimator of the local probability
P (yt|xt): P̂ (yt|xt, wt) ∝ eφ(yt,xt,wt), and if we sub-
stitute these estimates in the global model, as done in
L+I, the marginal distributions P̂ (yt|xt) of the result-
ing global model will differ from the empirical distri-
bution PD(yt|xt).

This drawback is not only of theoretical interest,
but results in wrong predictions on a rather simple
task. As an example, consider the following illustra-
tive problem. The goal is to predict a binary out-
put sequence of 3 variables given 3 variable input se-
quence x = (x1, x2, x3) ∈ {0, 1}3 such that the input
distribution is uniform. The constraints dictate that
only two output sequences are possible: (0, 0, 0) and
(1, 1, 1), the second sequence is generated if all the in-
put elements are equal to 1, otherwise the former is
selected. We consider prediction of yt given the single
binary variable xt as each of 3 sub-problems. The LO
method estimated on an infinite amount of training
data will predict (0, 0, 0) on any input. Even enforcing
constraints would not help because the L+I model will
overestimate the probability P (y2 = 1|x1 = 1, x2 = 1)
and P (y3 = 1|x = (1, 1, 1)). Of critical note is that
this would not happen with the SL learning method.
The reason is clear if we recollect that w2 is selected
to correct the estimate P̂ (yt|x<t, w<t). This correction
eliminates the underestimation mentioned above and
leads to the correct classification on all inputs. Even
though this problem is artificial and in solving such a
task, we would not normally want to decompose the
problem according to the method described, this illus-
trates general problems with features predictive of yt
not appearing in xt, but appearing in xt′ , t′ 6= t. Also,
this demonstrates that sequential learning helps even
when the sub-problems are equally difficult to learn.

4 EMPIRICAL EVALUATION

In this section, we present experiments on artificial
and real data. For artificial experiments, we generate
data such that complexity of individual sub-problems
varies. For experiments on real data, we consider the
entity and relation recognition problem.

4.1 ARTIFICIAL EXPERIMENTS

In these experiments, we generally follow the set-up
of the synthetic experiments in (Punyakanok et al.,
2005). Each example is a set of T points in d-
dimensional real space with its labels being a sequence
of binary variables, y ∈ {0, 1}T , labeled according to:

y = arg min
y

c(y) +
T∑
t=1

(2yt − 1)wTt xt,

where c(y) is equal to 0 on all the outputs except
to the random number of illegal vectors y, where
it equals negative infinity. We sample components
of each parameter vector wt uniformly in the range
[−2T−t, 2T−t] and the input distribution xt is uniform
over [−1,+1]d. It follows that the components of xt
with smaller t are better features of yt than compo-
nents of xt with greater t. Therefore, we would expect
that sub-problems with smaller t can be successfully
learned in isolation whereas sequential learning should
help with other sub-problems. This corresponds to
what we would expect in real applications; some of the
problems are easier to learn than the others. Note,
that we do not explicitly enforce existence of a sub-
problem ordering such that the SL method is able to
classify elements with a large margin.

Per-label accuracy curves for IBT, L+I and IBT are
presented in Figures 3 and 4 respectively. We do not
present curves for LO, but, as expected, the accu-
racy of LO was significantly lower than for L+I (Pun-
yakanok et al., 2005), e.g., even on smaller datasets of
100 and 200 instances LO was below L+I by 2% and
3% in average, respectively.
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Figure 3: Comparison of learning strategies with dif-
ferent training dataset size

For the SL model, we used joint inference as discussed
in section 3.2. To obtain both curves we considered
sequences of 5 elements where the input dimension-
ality d for each problem was set to 100. The results
are averaged over 10 different problem instances gener-
ated as explained above. The learning algorithm used
for all experiments is the averaged Perceptron (Fre-
und and Schapire, 1998). The SL protocol, except for
preserving the averaged vector and running the train-
ing iteration more than once,6 was identical to the one
shown in Figure 2. The size of the testing set was equal

6The number of iterations was tuned independently for
each learning strategy on an additional problem instance.
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to 10,000 sequences. Figure 3 illustrates how accuracy
changes with increase of the dataset size, the num-
ber of illegal output sequences was randomly chosen
in each of 10 problem instances. For experiments in
Figure 4, we fix the dataset size and vary the number
of illegal output sequences.
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Figure 4: Comparison of learning strategies with dif-
ferent number of illegal outputs

As shown in Figure 3, the SL method was better than
the alternative approaches when the number of train-
ing instances less or equal to 400. This improvement
was consistent across different problem instances: the
SL methods was statistically significantly better on 9,
8 and 9 problems out of 10 when using 50, 100 and
200 training instances, respectively. This agrees with
theoretical analysis presented in section 3.1. From Fig-
ure 4, we can conclude that the SL method was better
than the alternatives with any number of illegal out-
puts and the improvement increases with the number
of illegal outputs. For the smaller number of illegal
outputs, results of SL, IBT and L+I are virtually the
same. This is not surprising, because the SL method
(as well as IBT) can improve accuracy only if individ-
ual classifiers are indeed constrained. Even a single
real constraint (e.g. the constraint for the SRL prob-
lem that an object and a subject of each verb predicate
should lie on opposite sides of the verb) normally re-
duces the number of legal outputs by at least a factor
of two, so this is not a strong requirement.

4.2 REAL-WORLD DATA

The second set of experiments deals with the prob-
lem of simultaneously recognizing entities and rela-
tions (Roth and Yih, 2004). We use the same datasets
as in (Roth and Yih, 2004), which defines 3 types of en-
tities (person, location and organization) and 5 types
of binary relations (located in, work for, org based in,

live in, kill). The goal is to decide on the entity type
and predict for each pair of entities in a sentence
whether they participate in a relation and, if so, se-
lect its type. Detailed description of the dataset and
the task can be found in (Roth and Yih, 2004). We
split the dataset into a training set (815 sentences,
2632 entities, 1206 relations), a development set (333
sentences, 1070 entities and 426 relations) and a test-
ing set (287 sentences, 943 entities and 432 relations).
As features for entity classifiers we use: words inside
the entity (unigrams), number of words in the entity,
2 preceding and 2 subsequent words, and also we test
whether a word of the entity belongs to the list of
common personal names and large cities as described
in (Roth and Yih, 2004). Similarly, in a relation classi-
fier we use the bag-of-words representation of the sen-
tence, words in the potential arguments, and distance
between them in the sentence. We define only a simple
set of constraints which enforce for each relation con-
sistency between its type and types of its arguments,
e.g., for the relation live in the first argument should
be person and the second one is location. The learn-
ing algorithm we use is the averaged Perceptron with
thick separation. All the parameters were tuned on
the development set and a single model trained with
each strategy was evaluated on the final testing set.

We consider each multiclass classification problem as
a set of binary classification tasks (one-vs-all) and the
SL method attempts to select a preferred order for con-
strained learning of these 14 classification tasks (note
that two classifiers corresponds to each ordering of ar-
guments in a relation, one per each ordering of its ar-
guments and there exists also an additional classifier
which predicts that a pair of entities is not related).

Results for the SL, IBT and L+I strategies are shown
in Table 1. We observe that the SL strategy outper-
forms both alternatives on relations. Results on en-
tities are similar for all the strategies, which is not
surprising as the entity predictions are more reliable
and less affected by the constraints. Not surprisingly,
the entity classifiers were learned before the relation
classifiers in the preferred order were automatically
discovered by the SL method. Importantly, additional
experiments on the development set demonstrate that
the discovered ordering of relation learning is indeed
meaningful; we observe that random perturbations of
this order seriously affect the resulting accuracy, by
up to 8% in the F1 score for relations. Also, despite
training in our experiments on a smaller training set
and using a simpler feature set we achieve the accu-
racy competitive with the one reported in (Roth and
Yih, 2004): around 86% on entities and around 55%
on relations with their best approach.
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Table 1: Scores on the joint named entity and relation
recognition problem.

Relations Entities Average
P R F1 Accuracy F1

SL 73.5 35.9 48.2 89.5 68.9
IBT 81.2 31.0 44.8 89.2 67.0
L+I 74.5 31.7 44.5 89.2 66.8

5 CONCLUSIONS

In this paper, we propose a novel strategy for learning
classifiers for problems with structured output. The
proposed method selects a preferred order of train-
ing of classifiers for individual sub-problems and trains
them in this order using previously learned classifiers
to guide learning of the subsequent ones by enforc-
ing coherence constraints between their predictions.
The proposed approach is theoretically motivated and
demonstrated to outperform both joint and indepen-
dent learning strategies on synthetic data and on a real
natural language processing task. The approach has
a potentially large number of applications in various
areas where structured prediction problems are con-
sidered. The method can be easily generalized to use
‘weak’ constraints more common in such areas as com-
puter vision where it is difficult to define constraints
that hold for all the data instances.
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Carreras, X. and Màrquez, L. (2004b). Online learn-
ing via global feedback for phrase recognition. In
Proceedings of NIPS-2003.

Collins, M. (2002). Discriminative training methods
for hidden Markov models: Theory and experiments
with perceptron algorithms. In Proc. of Conf. on
Empirical Methods in Natural Language Processing.

Collobert, R. and Weston, J. (2008). A unified archi-
tecture for natural language processing: Deep neural
networks with multitask learning. In Proc. ICML.

Finkel, J. R., Manning, C. D., and Ng, A. Y. (2006).
Solving the problem of cascading errors: Approx-
imate bayesian inference for linguistic annotation
pipelines. In In Proc. of Conference on Empirical
Methods in Natural Language Processing.

Freund, Y. and Schapire, R. (1998). Large margin clas-
sification using the Perceptron algorithm. In Proc.
COLT.

Henderson, J., Merlo, P., Musillo, G., and Titov, I.
(2008). A latent variable model of synchronous pars-
ing for syntactic and semantic dependencies. In
Proc. CoNLL-2008 Shared Task.

McAllester, D. (2007). Generalization bounds and con-
sistency for structured labeling. In Bakir, G., Hof-
mann, T., Scholkopf, B., Smola, A., Taskar, B., , and
Vishwanathan, S. V. N., editors, Predicting Struc-
tured Data. MIT Press.

Novikoff, A. (1963). On convergence proofs for per-
ceptrons. In Proceeding of the Symposium on the
Mathematical Theory of Automata, volume 12.

Platt, J. C. (1999). Probabilistic outputs for sup-
port vector machines and comparision to regular-
ized likelihood methods. In Smola, A., Bartlett,
P., Scholkopf, B., and Schuurmans, D., editors, Ad-
vances in Large Margin Classifiers, pages 61–74.
MIT Press.

Punyakanok, V., Roth, D., and Yih, W. (2008). The
importance of syntactic parsing and inference in se-
mantic role labeling. Computational Linguistics,
34(2).

Punyakanok, V., Roth, D., Yih, W., and Zimak, D.
(2005). Learning and inference over constrained out-
put. In Proc. IJCAI.

Roth, D. and Yih, W. (2004). A linear programming
formulation for global inference in natural language
tasks. In Proc. of the Annual Conference on Com-
putational Natural Language Learning (CoNLL).

Surdeanu, M., Johansson, R., Meyers, A., Màrquez,
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