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Abstract

We derive a PAC-Bayesian generalization
bound for density estimation. Similar to the
PAC-Bayesian generalization bound for clas-
sification, the result has the appealingly sim-
ple form of a tradeoff between empirical per-
formance and the KL-divergence of the pos-
terior from the prior. Moreover, the PAC-
Bayesian generalization bound for classifica-
tion can be derived as a special case of the
bound for density estimation.

To illustrate a possible application of our
bound we derive a generalization bound for
co-clustering. The bound provides a criterion
to evaluate the ability of co-clustering to pre-
dict new co-occurrences, thus introducing the
notion of generalization to this traditionally
unsupervised task.

1 Introduction

The ability to generalize from a sample is one of the
key measures of success in machine learning. However,
the notion of generalization is commonly associated
with supervised learning. One of the main messages
of this work is that it is possible to define and analyze
generalization properties of unsupervised learning ap-
proaches. Similar to supervised learning, optimization
of the generalization abilities of an unsupervised learn-
ing algorithm can prevent it from overfitting.

We derive a PAC-Bayesian generalization bound for
density estimation, which is a typical example of an
unsupervised learning task. PAC-Bayesian generaliza-
tion bounds (McAllester, 1999) are a state-of-the-art
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framework for deriving generalization bounds for clas-
sification models. They combine simplicity with ex-
plicit dependence on model parameters, thus making
them easy to use for classifier optimization.

Theorem 1 (PAC-Bayesian bound for classification).
For a hypothesis set H, a prior distribution P over H
and a loss function L bounded by 1, with a probability
greater than 1−δ over drawing a sample of size N , for
all distributions Q over H:

D(L̂(Q)‖L(Q)) ≤
D(Q‖P ) + 1

2 ln(4N)− ln δ
N

, (1)

where L(Q) = EQ(h)L(h) is the expected and L̂(Q) =
EQ(h)L̂(h) is the empirical loss of a randomized classi-
fier that draws h ∈ H according to Q and then applies
h to classify a sample; D(Q‖P ) = EQ(h) ln Q(h)

P (h) is the

KL-divergence between Q and P and D(L̂(Q)‖L(Q))
is the KL-divergence between two Bernoulli variables
with biases L̂(Q) and L(Q).

Theorem 1 provides 1
2 ln(N) improvement over the

original formulation in (McAllester, 1999) and was
given a simplified proof in (Maurer, 2004). Success-
ful applications of the theorem include a generalization
bound for SVMs (Langford, 2005) and a generalization
bound for classification by categorical features (Seldin
and Tishby, 2008).

In this work we adapt Maurer’s (2004) proof to derive
a generalization bound for density estimation, which
has a form similar to (1). The bound suggests that a
good density estimator should optimize a tradeoff be-
tween the likelihood of the empirical data (measured as
empirical entropy) and the complexity of the estima-
tor (measured as its KL-divergence from a prior). We
then show that the PAC-Bayesian bound (1) follows
as a special case of the bound for density estimation,
thus supporting the wider generality of the latter.

By contrast to the dominant role of generalization in
regularization of classification models, a much more
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popular regularization approach in density estimation
is the MDL principle (Grünwald, 2007). However, it is
known that MDL is prone to overfitting (Kearns et al.,
1997). Barron and Cover (1991) analyzed generaliza-
tion properties of density estimators through an index
of resolvability. The advantage of the PAC-Bayesian
bound over the index of resolvability lies in its explicit
dependence on model parameters, which makes it eas-
ier to use in practice. Devroye et al. (1996) and De-
vroye and Lugosi (2001) provide an extensive analysis
of density estimation from finite samples in the context
of the PAC model. The advantage of PAC-Bayesian
bounds over the PAC approach lies in their built-in
ability to handle heterogeneous and hierarchical model
classes such as separating hyperplanes with all possible
margins or the grid clustering models analyzed here.

To illustrate an application of the PAC-Bayesian
bound for density estimation we derive a generaliza-
tion bound for co-clustering. The most well-known
application of co-clustering is an analysis of word-
document co-occurrence matrices (Slonim and Tishby,
2000; Dhillon et al., 2003). We stress that unlike in the
traditional formulation, where co-clustering is aimed
at approximating the data at hand, we focus on its
out-of-sample performance. Namely, we assume that
words and documents (two categorical variables, X1

and X2) are drawn from some unknown joint proba-
bility distribution p(X1, X2) and we are given a sample
of size N from that distribution. Our goal is to out-
put an estimator q(X1, X2) that will be able to predict
new co-occurrences generated by p. In practice we can
validate a solution by holding out a random subset of
co-occurrence events during training and at the end
test the log likelihood of the holdout set.

Our estimator q(X1, X2) for p(X1, X2) is based on a
grid clustering model which draws on work by Seldin
and Tishby (2008), who used it for classification. By
contrast to co-occurrence data analysis, in the classi-
fication scenario the entries of a matrix are unknown
functions of the parameters (e.g., in the context of col-
laborative filtering the entries are ratings given by the
viewers to movies). In co-occurrence matrices, how-
ever, the entries are joint probability distributions of
the parameters. Although it was shown that both
problems can be solved within a unified framework
(Banerjee et al., 2007) they are different in nature.
This can easily be seen by noting that if we add more
viewers and movies to a collaborative filtering matrix
the previously observed ratings will not change. How-
ever, if we add new words and documents to a word-
document co-occurrence matrix we have to renormal-
ize the joint probability distribution and thus change
the existing values. This difference in nature is also
expressed in the proofs of the generalization bounds.

2 The Law of Large Numbers

We first analyze the rate of convergence of empiri-
cal distributions over finite domains around their true
values. The following result is based on the method
of types in information theory (Cover and Thomas,
1991).

Theorem 2. Let X1, .., XN be i.i.d. distributed by
p(X) and let |X| be the cardinality of X. Denote by
p̂(X) the empirical distribution of X1, .., XN . Then:

EeND(p̂(X)‖p(X)) ≤ (N + 1)|X|−1. (2)

Proof. Enumerate the possible values of X by 1, .., |X|
and let ni count the number of occurrences of value i.
Let pi denote the probability of value i and p̂i = ni

N be
its empirical counterpart. Let D(p̂‖p) be a shortcut
for D(p̂(X)‖p(X)) and H(p̂) = −

∑
i p̂i ln p̂i be the

empirical entropy. Then:

EeND(p̂‖p) =
∑

n1,..,n|X|:∑
i ni=N

(
N

n1, .., n|X|

)
·
|X|∏
i=1

pNp̂i

i · eND(p̂‖p)

≤
∑

n1,..,n|X|:∑
i ni=N

eNH(p̂) · eN
∑

i p̂i ln pi · eND(p̂‖p) (3)

=
∑

n1,..,n|X|:∑
i ni=N

1 =
(
N + |X| − 1
|X| − 1

)
≤ (N + 1)|X|−1.

(4)

In (3) we use the
(

N
n1,..,n|X|

)
≤ eNH(p̂) bound on

the multinomial coefficient, which counts the num-
ber of sequences with a fixed cardinality profile (type)
n1, .., n|X| (Cover and Thomas, 1991). In the second
equality in (4) the number of ways to choose ni-s equals
the number of ways we can place |X| − 1 ones in a se-
quence of N + |X|−1 ones and zeros, where ones sym-
bolize a partition of zeros (“balls”) into |X| bins.

It is straightforward to recover theorem 12.2.1 in
(Cover and Thomas, 1991) from theorem 2. We even
suggest a small improvement over it:

Theorem 3 (12.2.1 in Cover and Thomas, 1991). Un-
der the notations of theorem 2:

P {D(p̂(X)‖p(X)) ≥ ε} ≤ e−Nε+(|X|−1) ln(N+1). (5)

Or, equivalently, with a probability greater than 1− δ:

D(p̂(X)‖p(X)) ≤ (|X| − 1) ln(N + 1)− ln δ
N

. (6)
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Proof. By Markov’s inequality and theorem 2:

P{D(p̂‖p) ≥ ε} = P{eND(p̂‖p) ≥ eNε}

≤ EeND(p̂‖p)

eNε
≤ (N + 1)|X|−1

eNε
= e−Nε+(|X|−1) ln(N+1).

3 A PAC-Bayesian Generalization
Bound for Density Estimation

We extend the results of the previous section by con-
sidering a family H of probability distributions over
a common domain. The simplest example is to think
of H consisting of two biased dice. For any distribu-
tion Q over H we define pQ(X) =

∑
h∈HQ(h)ph(X),

where ph(X) is a distribution over X induced by the
hypothesis h (e.g., one of the dice). It is like choosing
to roll one die at random according to Q and repeat-
ing the experiment several times. In the next theorem
we bound the rate of convergence of the empirical dis-
tribution p̂Q(X) of the above process around pQ(X).
The important point is that the bound holds simulta-
neously for all distributions Q over H.

The proof of the following theorem reveals a close re-
lation between the PAC-Bayesian bounds and results
in information theory, such as Sanov’s theorem (Cover
and Thomas, 1991). In addition, we recover the origi-
nal PAC-Bayesian bound for classification (1) as a spe-
cial case of the following theorem.
Theorem 4. Let H be a hypothesis class (possibly un-
countably infinite), such that each member h of H in-
duces a probability distribution ph(X) over a random
variable X with cardinality |X|. Let P be a prior dis-
tribution over H. Let Q be an arbitrary distribution
over H and pQ(X) = E

Q(h)ph(X) a distribution over
X induced by a randomized process that first chooses a
hypothesis h ∈ H according to Q(h) and then draws X
according to ph(X). Let p̂Q(X) be an empirical distri-
bution over X obtained by performing N draws of X
according to pQ(X). Let D(p̂Q‖pQ) be a shortcut for
D(p̂Q(X)‖pQ(X)). Then for all distributions Q over
H with a probability greater than 1− δ:

D(p̂Q‖pQ) ≤ D(Q‖P ) + (|X| − 1) ln(N + 1)− ln δ
N

.

(7)

Proof. We adapt Maurer’s (2004) proof of theorem
1 by substituting the result on the concentration of
EeND(L̂(Q)‖L(Q)) in the classification scenario with the
result on the concentration of EeND(p̂(X)‖p(X)) in the-
orem 2. Denoting the sample by S = {X1, .., XN}, by
(2) we have:

(N + 1)|X|−1 ≥ E
P (h)ES

eND(p̂h(X)‖ph(X))

= E
S
E

P (h)e
ND(p̂h(X)‖ph(X))

= E
S
E

Q(h)e
ND(p̂h(X)‖ph(X))−ln

P (h)
Q(h)

≥ E
S
eEQ(h)[ND(p̂h(X)‖ph(X))−ln

P (h)
Q(h) ]

(8)

≥ E
S
eND(p̂Q(X)‖pQ(X))−D(Q‖P ), (9)

where (8) is justified by the convexity of the exponent
function and (9) by the convexity of the Kullback-
Leibler divergence. By Markov’s inequality and (9):

P
S

{
D(p̂Q‖pQ) >

D(Q‖P ) + (|X| − 1) ln(N + 1)− ln δ
N

}
= P

S

{
eND(p̂Q(X)‖pQ(X))−D(Q‖P ) >

(N + 1)|X|−1

δ

}
≤ E

S
eND(p̂Q(X)‖pQ(X))−D(Q‖P )

(N + 1)|X|−1
δ ≤ δ.

To recover the PAC-Bayesian theorem 1 from theo-
rem 4 in the case of zero-one loss let X be the er-
ror variable. Then L(h) = EX = ph{X = 1} and
L(Q) = pQ{X = 1}. As well, |X| = 2. Substituting
this into (7) we obtain (1) up to a factor of 1

2 lnN . By
the convexity of D(L̂(Q)‖L(Q)) it is possible to show
that the result holds for any loss bounded by 1 (Mau-
rer, 2004). The improvement of 1

2 lnN in theorem 1 is
achieved by showing that in the case where L(h) = EX
the expectation EeND(L̂(h)‖L(h)) ≤ 2

√
N instead of the

more general bound EeND(p̂(X)‖p(X)) ≤ (N + 1)|X|−1

for distributions we have in theorem 2.

4 Smoothing

Although we bounded D(p̂Q(X)‖pQ(X)) in the pre-
vious section, the value of interest in many appli-
cations is usually not D(p̂Q(X)‖pQ(X)), but rather
−EpQ(X) ln p̂Q(X). The latter corresponds to the ex-
pected performance (in log loss) of the model p̂Q(X)
when samples are drawn by pQ(X). Or, in the lan-
guage of information theory, to the expected code
length of encoder p̂Q when samples are generated by
pQ. This follows the classical PAC spirit, which states
that performance guarantees should be provided with
respect to the true, unknown data-generating distri-
bution. Unfortunately, −EpQ(X) ln p̂Q(X) cannot be
bounded since p̂Q(X) is not bounded from zero. To
cope with this, we define a smoothed version of p̂ we
call q:

qh(X) =
p̂h(X) + γ

1 + γ|X|
, (10)

qQ(X) = E
Q(h)qh(X) =

p̂Q(X) + γ

1 + γ|X|
. (11)
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In the following theorem we show that if

D(p̂Q(X)‖pQ(X)) ≤ ε(Q) and γ =
√
ε(Q)/2

|X| , then

−EpQ(X) ln qQ(X) is roughly within ±
√
ε(Q)/2 ln |X|

range around H(p̂Q(X)). The bound on
D(p̂Q(X)‖pQ(X)) is naturally obtained by theorem
4. Thus, the performance of the density estimator
qQ is optimized by distribution Q that minimizes the
tradeoff between H(p̂Q(X)) and 1

ND(Q‖P ).

Note that for a uniform distribution u(X) = 1
|X| the

value of−Ep(X) lnu(X) = ln |X|. Thus, the theorem is
interesting when

√
ε(Q)/2 is significantly smaller than

1. For technical reasons we encounter in the proofs
of the next section, the upper bound in the follow-
ing theorem is stated for −EpQ(X) ln qQ(X) and for
−EQ(h)Eph(X) ln qh(X). We also denote ε = ε(Q) for
brevity.

Theorem 5. Let X be a random variable dis-
tributed according to pQ(X) and assume that
D(p̂Q(X)‖pQ(X)) ≤ ε. Then −EpQ(X) ln qQ(X) is

minimized for γ =
√
ε/2

|X| . For this value of γ the fol-
lowing inequalities hold:

−EpQ(X) ln qQ(X) ≤ −EQ(h)Eph(X) ln qh(X) (12)

≤ H(p̂Q(X)) +
√
ε/2 ln |X|+ φ(ε),

(13)

−EpQ(X) ln qQ(X) ≥ H(p̂Q(X))−
√
ε/2 ln |X| − ψ(ε),

(14)

where:

ψ(ε) =
√
ε

2
ln

1 +
√

ε
2√

ε
2

and φ(ε) = ψ(ε)+ln(1+
√
ε

2
).

Note that both φ(ε) and ψ(ε) go to zero approximately
as −

√
ε/2 ln

√
ε/2.

Proof. By the KL-divergence bound on the L1 norm
(Cover and Thomas, 1991):

‖p̂Q(X)− pQ(X)‖1 ≤
√

2D(p̂Q(X)‖pQ(X)) ≤
√

2ε.
(15)

We start with a proof of (13):

− EQ(h)Eph(X) ln qh(X)
= EQ(h)E[p̂h(X)−ph(X)] ln qh(X)− EQ(h)Ep̂h(X) ln qh(X)

= EQ(h)E[p̂h(X)−ph(X)] ln
p̂h(X) + γ

1 + γ|X|

− EQ(h)Ep̂h(X) ln
p̂h(X) + γ

1 + γ|X|

≤ −1
2
‖p̂Q(X)− pQ(X)‖1 ln

γ

1 + γ|X|

+ EQ(h)H(p̂h(X)) + ln(1 + γ|X|)

≤ H(p̂Q(X))−
√
ε/2 ln

γ

1 + γ|X|
+ ln(1 + γ|X|),

(16)

where (16) is justified by the concavity of the entropy
function H and (15). By differentiation (16) is mini-

mized by γ =
√
ε/2

|X| . By substitution of this value of
γ into (16) we obtain (13). Inequality (12) is justified
by the concavity of the ln function. Finally, we prove
the lower bound (14):

−EpQ(X) ln qQ(X)

=
∑
x

(p̂Q(x)− pQ(x)) ln qQ(x)−
∑
x

p̂Q(x) ln qQ(x)

≥ −1
2
‖p̂Q(X)− pQ(X)‖1 ln

1 + γ|X|
γ

+H(p̂Q(X))

≥ H(p̂Q(X))−
√
ε/2 ln

|X|(1 +
√
ε/2)√

ε/2
.

5 Generalization Bound for Density
Estimation with Grid Clustering

As an example of an application of the bounds devel-
oped in the previous sections we derive a generaliza-
tion bound for density estimation with grid cluster-
ing. The goal is to find a good estimator for an un-
known joint probability distribution p(X1, .., Xd) over
a d-dimensional product space X1× ..×Xd based on a
sample of size N from p. Each of the i sub-spaces, Xi,
is assumed to be a categorical space of known cardinal-
ity ni. As an illustrative example, think of estimating
a joint probability of words and documents (X1 and
X2) from their co-occurrence matrix. We denote el-
ements of Xi by xi and random variables accepting
values in Xi by Xi. The goodness of an estimator q
for p is measured as −Ep(X1,..,Xd) ln q(X1, .., Xd).

By theorem 3, to obtain a meaningful bound for a
direct estimation of p(X1, .., Xd) we need N to be ex-
ponential in ni-s, since the cardinality of the random
variable 〈X1, .., Xd〉 is

∏
i ni. To reduce this depen-

dency to be linear in
∑
i ni we restrict the estimator

q(X1, .., Xd) to be of the factor form:

q(X1, .., Xd) =
∑

C1,..,Cd

q(C1, .., Cd)
∏
i

q(Xi|Ci)

=
∑

C1,..,Cd

q(C1, .., Cd)
∏
i

q(Xi)
q(Ci)

q(Ci|Xi).

(17)

We emphasize that the above decomposition assump-
tion is only on the estimator q, but not on the gener-
ating distribution p.
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5.1 Hypothesis Space

In order to apply the PAC-Bayesian bound we have to
define a hypothesis space H. Following (Seldin and
Tishby, 2008) we choose H to be a set of all hard
grid partitions of the categorical input product space
X1×..×Xd. We regard C1, .., Cd in (17) as cluster vari-
ables. A partition (hypothesis) h ∈ H is defined by a
hard mapping of each xi ∈ Xi to a cluster variable Ci
(along the dimension i). Soft assignments q(Ci|Xi) are
regarded as averaging over hard assignments. Thus,
the set of distributions Q = {q(Ci|Xi)}di=1, the right-
most in (17), define a distribution over H.

We note that for any distribution p(X1, .., Xd)
the distribution Q over H induces a distribution
pQ(C1, .., Cd), which is a probability distribution
over the coarsened space defined by cluster variables
C1, .., Cd and corresponding to p - see (20) below. In
section 5.3 we provide rates of convergence of empir-
ical frequencies p̂Q(C1, .., Cd) to pQ(C1, .., Cd), where
p̂Q(C1, .., Cd) is determined by the empirical distribu-
tion p̂(X1, .., Xd) and Q. The rates depend on the size
of the coarsened cluster space rather than on the size of
the input space. In section 5.4 we show how to smooth
the empirical counts in order to obtain an estimator
q(X1, .., Xd) of the form (17) for p with guarantees on
−Ep(X1,..,Xd) ln q(X1, .., Xd).

5.2 Some Additional Definitions

We denote the cardinality of Ci by mi. The value of
mi can vary in the range of 1 ≤ mi ≤ ni, where mi = 1
corresponds to the case where all xi-s are mapped to
a single cluster and mi = ni corresponds to the case
where each xi is mapped to a separate cluster. For
a fixed distribution Q over H the values of mi-s are
fixed. We use this to denote the number of partition
cells in hypotheses selected by Q by M =

∏
imi.

We define qi(Ci) = 1
ni

∑
xi
q(Ci|xi) to be a marginal

distribution over Ci corresponding to a uniform
distribution over Xi and the conditional distribu-
tion q(Ci|Xi) of our choice. Then IU (Xi;Ci) =
1
ni

∑
xi,ci

q(ci|xi) ln[q(ci|xi)/qi(ci)] is the mutual infor-
mation between Xi and Ci corresponding to the uni-
form distribution over Xi and the conditional distribu-
tion q(Ci|Xi) of our choice.

Let h ∈ H be a hard clustering and let ci = h(xi)
denote the cluster that xi is mapped to in h. We define
the distribution over 〈C1, .., Cd〉 induced by p and h,
its extension for Q, and the corresponding marginals:

ph(c1, .., cd) =
∑

x1,..,xd:
h(xi)=ci

p(x1, .., xd), (18)

ph(ci) =
∑

xi:h(xi)=ci

p(xi), (19)

pQ(c1, .., cd) =
∑
h

Q(h)ph(c1, .., cd)

=
∑

x1,..,xd

p(x1, .., xd)
∏
i

q(ci|xi), (20)

pQ(ci) =
∑
h

Q(h)ph(ci) =
∑
xi

p(xi)q(ci|xi). (21)

Recall that we have no access to p, but only to the em-
pirical distribution p̂(X1, .., Xd) defined by the sample.
We define the empirical counterparts of ph and pQ,
that we call p̂h and p̂Q, by substitution of p̂(X1, .., Xd)
and p̂(Xi) instead of p(X1, .., Xd) and p(Xi) in equa-
tions (18), (19), (20), and (21) above.

We extend the definition of ph to 〈X1, .., Xd〉 by re-
quiring it to have the factor form of (17):

ph(X1, .., Xd) = ph(h(X1), .., h(Xd))
∏
i

p(Xi)
ph(h(Xi))

= ph(C1, .., Cd)
∏
i

p(Xi)
ph(Ci)

for Ci = h(Xi),

(22)

pQ(X1, ., Xd) =
∑

C1,.,Cd

pQ(C1, ., Cd)
∏
i

p(Xi)
pQ(Ci)

q(Ci|Xi).

(23)

Finally, we define the empirical counterparts by sub-
stitution of p̂ instead of p in (22) and (23).

5.3 Assurances on Empirical Density
Estimates in Grid Clustering

Our first result in this section concerns conver-
gence (in KL-divergence) of the empirical estimates
p̂Q(X1, .., Xd), p̂Q(C1, .., Cd), and p̂(Xi) to their true
values. An interesting point about the following the-
orem is that the cardinality of the random variable
〈X1, .., Xn〉 is

∏
i ni. A direct application of theorem

4 would insert a dependency on
∏
i ni into the bound.

However, by using the factor form of ph(X1, .., Xd) we
are able to reduce the dependency to M+

∑
i ni, which

is linear instead of exponential in ni - see (26) below.
The bounds on p̂Q(C1, .., Cd) and p̂(Xi) in (24) and
(25) are used in the next section to construct an esti-
mator for p with generalization guarantees.
Theorem 6. For any probability measure p over in-
stances and an i.i.d. sample S of size N according
to p, with a probability of at least 1 − δ for all grid
clusterings Q = {qi(Ci|Xi)}di=1 the following holds si-
multaneously :

D(p̂Q(C1, ., Cd)‖pQ(C1, ., Cd)) ≤
∑
i niIU (Xi;Ci) +K1

N
(24)
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K1 =
∑
i

mi lnni + (M − 1) ln(N + 1) + ln
d+ 1
δ

,

D(p̂(Xi)‖p(Xi)) ≤
(ni − 1) ln(N + 1) + ln d+1

δ

N
. (25)

As well, with a probability greater than 1− δ:

D(p̂Q(X1, ., Xd)‖pQ(X1, ., Xd)) ≤
∑
i niIU (Xi;Ci) +K2

N
(26)

K2 =
∑
i

mi lnni+

[
M +

∑
i

ni − d− 1

]
ln(N+1)−ln δ.

Proof. The proof is based on theorem 4. To apply the
theorem we have to define a prior P over H and then
to calculate D(Q‖P ). There is a small caveat, since
the cardinality M =

∏
imi of the random variable

〈C1, .., Cd〉 changes when we change mi-s. However,
we recall that for a fixed Q the values of mi-s are fixed.
Let us denote by m̄ = (m1, ..,md) a vector counting
the number of clusters used along each dimension. We
slice H into slices denoted by Hm̄, according to the
number of clusters used along each dimension. Obvi-
ously, Hm̄-s are disjoint. We handle each Hm̄ indepen-
dently and then combine the results to obtain theorem
6. We use h|i to denote a partition induced by h along
dimension i, thus h = h|1× ..×h|d. In the subsequent
two lemmas, adapted from (Seldin and Tishby, 2008)
with some improvements, we define a prior P over Hm̄
and then calculate D(Q‖P ).

Lemma 1. It is possible to define a prior P over Hm̄
that satisfies:

P (h) ≥ 1
exp

[∑
i

(
niH(qh|i) + (mi − 1) lnni

)] , (27)

where qh|i denotes the cardinality profile of cluster
sizes along dimension i of a partition corresponding
to h.

Lemma 2. For the prior defined in lemma 1:

D(Q‖P ) ≤
∑
i

[niIU (Xi;Ci) + (mi − 1) lnni]. (28)

Proof of Lemma 1. To define the prior P over Hm̄ we
count the hypotheses in Hm̄. There are

(
ni−1
mi−1

)
≤

nmi−1
i possibilities to choose a cluster cardinality pro-

file along a dimension i. (Each of the mi clusters has
a size of at least one. To define a cardinality profile
we are free to distribute the “excess mass” of ni −mi

among the mi clusters. The number of possible dis-
tributions equals the number of possibilities to place
mi − 1 ones in a sequence of (ni −mi) + (mi − 1) =
ni − 1 ones and zeros.) For a fixed cardinality pro-
file qh|i = {|ci1|, .., |cimi

|} (over a single dimension)

there are
(

ni

|ci1|,..,|cimi
|
)
≤ eniH(qh|i ) possibilities to as-

sign Xi-s to the clusters. Putting all the combinatorial
calculations together we can define a distribution P (h)
over Hm̄ that satisfies (27).

At this juncture it is worth stressing that by contrast
to most applications of the PAC-Bayesian bound, in
our case the prior P and the posterior Q are defined
over slightly different hypothesis spaces. The poste-
rior Q is defined for named clusterings - we explicitly
specify for each Xi the “name” of Ci it is mapped
to. And the prior P is defined over unnamed parti-
tions - we only check the cardinality profile of Ci, but
we cannot recover which Xi-s are mapped to a given
Ci. Nevertheless, the “named” distribution Q induces
a distribution over the “unnamed” space by summing
over all possible name permutations. This enables us
to compute D(Q‖P ) we need for the bound.

Proof of Lemma 2. We use the decomposition
D(Q‖P ) = −EQP (h) − H(Q) and bound −EQP (h)
and H(Q) separately. We further decompose
P (h) = P (h|1)..P (h|d) and Q(h) in a similar manner.
Then −EQ lnP (h) = −

∑
i EQ lnP (h|i), and similarly

for D(Q‖P ). Therefore, we can treat each dimension
independently.

To bound −EQ lnP (h|i) recall that qi(ci) =
1
ni

∑
xi
q(ci|xi) is the expected distribution over car-

dinalities of clusters along dimension i if we draw a
cluster ci for each value xi of Xi according to q(Ci|Xi).
Let qh|i be a cluster cardinality profile obtained by
such an assignment and corresponding to a hypothesis
h|i. Then by lemma 1:

−EQ lnP (h|i) ≤ (mi − 1) lnni + niEqi
H(qh|i). (29)

To bound Eqi
H(qh|i) we use the result on the negative

bias of empirical entropy estimates cited below. See
(Paninski, 2003) for a proof.

Theorem 7 (Paninski, 2003). Let X1, .., XN be i.i.d.
distributed by p(X) and let p̂(X) be their empirical dis-
tribution. Then:

EpH(p̂) = H(p)− EpD(p̂‖p) ≤ H(p). (30)

By (30) EqiH(qh|i) ≤ H(qi). Substituting this into
(29) yields:

−EQ lnP (h|i) ≤ niH(qi) + (mi − 1) lnni. (31)

Now we turn to compute EQ lnQ(h|i). To do so
we bound lnQ(qh|i) from above. The bound follows
from the fact that if we draw ni values of Ci ac-
cording to q(Ci|Xi) the probability of the resulting
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type is bounded from above by e−niHU (Ci|Xi), where
HU (Ci|Xi) = − 1

ni

∑
xi,ci

q(ci|xi) ln q(ci|xi) (see the-
orem 12.1.2 in (Cover and Thomas, 1991). Thus,
EQ lnQ(h|i) ≤ −niHU (Ci|Xi), which together with
(31) and the identity IU (Xi;Ci) = H(qi)−HU (Ci|Xi)
completes the proof of (28).

We return to the proof of theorem 6. Recall that there
are

∏
i ni disjoint subspaces Hm̄ of H and that each

Q is defined over a single Hm̄. By theorem 4 and
lemma 2, for the prior P over Hm̄ defined in lemma
1, with a probability greater than 1 − δ

(d+1)
∏

i ni
we

obtain (24) for each Hm̄. In addition, by theorem 3
with a probability greater than 1− δ

d+1 inequality (25)
holds for each Xi. By a union bound over the

∏
i ni

subspaces of H and the d variables Xi we obtain that
(24) and (25) hold simultaneously for all Q and Xi

with a probability greater than 1− δ.

To prove (26), fix some hard partition h and let Chi =
h(Xi). Then:

D(p̂h(X1, .., Xd)‖ph(X1, .., Xd))

= D(p̂h(X1, .., Xd, C
h
1 , .., C

h
d )‖ph(X1, .., Xd, C

h
1 , .., C

h
d ))

= D(p̂h(C1, .., Cd)‖ph(C1, .., Cd))

+D(p̂h(X1, .., Xd|Ch1 , .., Chd )‖ph(X1, .., Xd|Ch1 , .., Chd ))
= D(p̂h(C1, .., Cd)‖ph(C1, .., Cd))

+
∑
i

D(p̂h(Xi|Chi )‖ph(Xi|Chi ))

= D(p̂h(C1, .., Cd)‖ph(C1, .., Cd))

+
∑
i

D(p̂(Xi)‖p(Xi))−
∑
i

D(p̂h(Chi )‖ph(Chi ))

≤ D(p̂h(C1, .., Cd)‖ph(C1, .., Cd)) +
∑
i

D(p̂(Xi)‖p(Xi))

And:

EeND(p̂h(X1,..,Xd)‖ph(X1,..,Xd))

≤ EeND(p̂h(C1,..,Cd)‖ph(C1,..,Cd))
∏
i

EeND(p̂(Xi)‖p(Xi))

≤ (N + 1)M+
∑

i ni−(d+1),

where the last inequality is by theorem 2. From here,
following the lines of the proof of theorem 4 we obtain:

(N + 1)M+
∑

i ni−(d+1)

≥ EeND(p̂Q(X1,..,Xd)‖pQ(X1,..,Xd))−D(Q‖P ),

and, continuing with that proof that with a probability
greater than 1− δ:

D(p̂Q(X1, .., Xd)‖pQ(X1, .., Xd))

≤
D(Q‖P ) + [M +

∑
i ni − d− 1] ln(N + 1)− ln δ

N
.

Finally, taking the prior P over H defined in lemma 1
(this time we give a weight of (

∏
i ni)

−1 to each Hm̄
and obtain a prior over the whole H) and taking the
calculation of D(Q‖P ) in lemma 2 we obtain (26).

5.4 Construction of a Density Estimator

Our goal now is to construct an esti-
mation q(X1, .., Xd) for p(X1, .., Xd) with
guarantees on performance measured as
−Ep(X1,..,Xd) ln q(X1, .., Xd). Note that although
we bounded D(p̂Q(X1, .., Xd)‖pQ(X1, .., Xd)) it does
not yet provide guarantees on the performance of
p̂Q(X1, .., Xd) since it is not bounded from zero.
It is also problematic to use theorem 5 to smooth
p̂Q(X1, .., Xd) directly, since the cardinality of the
random variable 〈X1, .., Xd〉 is

∏
i ni and this factor

will enter into smoothing and subsequent bounds. To
get around this we utilize the factor form of ph and
the bounds (24) and (25). We define an estimator q
in the following way:

qh(C1, .., Cd) =
p̂h(C1, .., Cd) + γ

1 + γM
, (32)

q(Xi) =
p̂(Xi) + γi
1 + γini

, (33)

qh(ci) =
∑

xi:h(xi)=ci

q(xi), (34)

qh(X1, .., Xd) = qh(Ch1 , .., C
h
d )
∏
i

qh(Xi)
qh(Chi )

. (35)

And for a distribution Q over H:

qQ(C1,.., Cd) =
p̂Q(C1, .., Cd) + γ

1 + γM
, (36)

qQ(Ci) =
∑
xi

q(xi)q(Ci|xi) =
p̂Q(Ci) + γiqi(Ci)ni

1 + γini
,

(37)

qQ(X1,.., Xd) =
∑
h

Q(h)qh(X1, .., Xd)

=
∑

C1,..,Cd

qQ(C1, .., Cd)
∏
i

q(Xi)
qQ(Ci)

q(Ci|Xi).

(38)

In the following theorem we provide a bound on
−Ep(X1,..,Xd) ln qQ(X1, .., Xd). Note, that we take the
expectation with respect to the true, unknown distri-
bution p that may have an arbitrary form.

Theorem 8. For the density estimator qQ(X1, .., Xd)
defined by equations (33), (36), (37), and (38),
−Ep(X1,..,Xd)qQ(X1, .., Xd) attains its minimum at γ =√
ε/2

M and γi =
√
εi/2

ni
, where ε is defined by the right-

hand side of (24) and εi is defined by the right-hand
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side of (25). At this optimal level of smoothing, with a
probability greater than 1−δ for all Q = {q(Ci|Xi)}di=1:

−Ep(X1,..,Xd) ln qQ(X1, .., Xd)

≤ −I(p̂Q(C1, .., Cd)) +
√
ε/2 lnM + φ(ε) +K3

(39)

K3 =
∑
i

[H(p̂(Xi)) + 2
√
εi/2 lnni + φ(εi) + ψ(εi)],

where I(p̂Q(C1, .., Cd)) =
∑
iH(p̂Q(Ci)) −

H(p̂Q(C1, .., Cd)) is the multi-information between
C1, .., Cd with respect to p̂Q(C1, .., Cd).

Proof.

−Ep(X1,..,Xd) ln qQ(X1, .., Xd)
= −Ep(X1,..,Xd) ln EQ(h)qh(X1, .., Xd)
≤ −EQ(h)Ep(X1,..,Xd) ln qh(X1, .., Xd)

= −EQ(h)Ep(X1,..,Xd) ln qh(Ch1 , .., C
h
d )
∏
i

q(Xi)
qh(Chi )

= −EQ(h)[Eph(C1,..,Cd) ln qh(C1, .., Cd)]

−
∑
i

Ep(Xi) ln q(Xi) +
∑
i

EQ(h)Eph(Ci) ln qh(Ci)

≤ −EQ(h)[Eph(C1,..,Cd) ln qh(C1, .., Cd)]

−
∑
i

Ep(Xi) ln q(Xi) +
∑
i

EpQ(Ci) ln qQ(Ci)

At this point we use (13) to bound the first and the
second term and the lower bound (14) to bound the
last term and obtain (39).

To summarize, recall that qQ(X1, .., Xd) is defined
by our choice of Q = {q(Ci|Xi)}di=1 and quanti-
ties determined by Q and the sample p̂(X1, .., Xd).
The bound (39) suggests that a good estimator qQ
for p(X1, .., Xd) should optimize a tradeoff between
−I(p̂Q(C1, .., Cd)) and

∑
i
ni

N IU (Xi;Ci). It is easy to
see that co-clustering is a special case of our analy-
sis when we have only two variables X1 and X2. The
above tradeoff suggests a modification of the original
formulation of co-clustering in (Dhillon et al., 2003),
which states that a solution should maximize I(C1, C2)
alone. The suggested tradeoff can be used for model
selection.

6 Discussion

We presented a PAC-Bayesian generalization bound
for density estimation. The bound suggests a tradeoff
between an estimator’s complexity and its empirical
performance that should be optimized to achieve bet-
ter out-of-sample performance. We applied the bound

to derive a generalization bound for density estimation
with grid clustering in categorical product spaces.

We note that we were able to make use of the factor
form of the distribution induced by grid clustering to
derive a better concentration result. In future research
it would be useful to extend this result to more general
independence assumptions and graphical models.

Another direction we would like to highlight is the
way we transformed the formulation of co-clustering
(an unsupervised task) to make sense of its generaliza-
tion properties. It would be worthwhile to find a simi-
lar transformation of other clustering tasks to conduct
their rigorous evaluation.
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