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Abstract

We extend and apply the PAC-Bayes the-
orem to the analysis of maximum entropy
learning by considering maximum entropy
classification. The theory introduces a mul-
tiple sampling technique that controls an ef-
fective margin of the bound. We further de-
velop a dual implementation of the convex
optimisation that optimises the bound. This
algorithm is tested on some simple datasets
and the value of the bound compared with
the test error.

1 INTRODUCTION

Maximising the entropy of a distribution subject to
certain constraints is a well-established method of reg-
ularising learning or general modelling both in statis-
tics (Kapur & Kesevan, 1992) and machine learning
(Wang et al., 2004; Dudik & Schapire, 2006). The
motivation for the approach is that maximising the en-
tropy is a method of preventing overspecialisation and
hence overfitting of the model. Despite this clear moti-
vation for and interest in the technique there are to our
knowledge no statistical learning theory results that
bound the performance of such heuristics and hence
motivate the use of this approach.

There is an intriguing suggestion that the KL diver-
gence appearing in the PAC-Bayes bound (Langford,
2005) could relate to the entropy of the distribution. It
was this possibility that motivated the work presented
in this paper. The difficulty with applying the PAC-
Bayes framework was that there did not seem to be a
natural way to define the distribution over hypothe-
ses in such a way that the KL divergence measured
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the entropy of the distribution, while the error would
relate to the loss of the corresponding function.

We make this connection through a novel method of
using the distribution to generate outputs that on the
one hand ensures the probability of misclassification
can be bounded by twice the stochastic loss, while on
the other hand the empirical loss is related to the mar-
gin on the training data. Note that we concentrate
on the classification case, though we believe that this
work will lay the foundations for the more interesting
problem of density function modelling using the max-
imum entropy principle (Dudik & Schapire, 2006).

While this work does not prove that using maximum
entropy regularisation is preferable to other methods
currently implemented in commonly used algorithms,
as for example 2-norm regularisation in Support Vec-
tor Machines, or 1-norm regularisation in boosting and
LASSO methods, it places this principle on a firm
foundation in statistical learning theory and in this
sense places it on a par with these other methods. We
do present very preliminary experiments, but the ques-
tion of whether maximum entropy regularisation as an
approach to classification has a significant role to play
in practical machine learning is left for future research.

The paper is organised as follows. Section 2 introduces
the PAC-Bayes approach to bounding generalisation
and gives the application to bounding error in terms
of the entropy of the posterior distribution. Section
3 takes the results of this analysis to create a convex
optimisation for which a dual form is derived that can
be implemented efficiently. In Section 4 we present re-
sults comparing the bound values with test set errors
for some UCI datasets. Despite the inclusion of these
results we wish to emphasise that the main contribu-
tion of the paper is the development of new techniques
that enable the PAC-Bayes analysis to be used to anal-
yse a very different learning algorithm and promises to
enable its application to more general modelling tasks.
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2 ERROR ANALYSIS

We first state the general PAC-Bayes result following
(McAllester, 1998, 1999; Seeger, 2003; Langford, 2005)
after giving two relevant definitions. We assume a class
C of classifiers with a prior distribution P over C and
posterior distribution Q and a distribution D govern-
ing the generation of the input/output samples. We
use eQ to denote the expected error under the distri-
bution Q over classifiers:

eQ = E(x,y)∼D,c∼Q [I [c(x) 6= y]] .

Given a training sample S = {(x1, y1), . . . , (xm, ym)},
we similarly define

êQ =
1

m

m
∑

i=1

Ec∼Q [I [c(xi) 6= yi]] .

Theorem 2.1 ((Langford, 2005)) Fix an arbitrary
D, arbitrary prior P , and confidence δ, then with prob-
ability at least 1 − δ over samples S ∼ Dm, all poste-
riors Q satisfy

KL(êQ‖eQ) ≤
KL(Q‖P ) + ln((m + 1)/δ)

m

where KL is the KL divergence between distributions

KL(Q‖P ) = Ec∼Q

[

ln
Q(c)

P (c)

]

with êQ and eQ considered as distributions on {0, +1}.

We consider the following function class

F =

{

fw : x ∈ X 7→ sgn

(

N
∑

i=1

wixi

)

: ‖w‖1 ≤ 1

}

,

where we assume that X is a subset of the ℓ∞ ball of
radius 1, that is all components of x in the support of
the distribution have absolute value bounded by 1.

We are considering a frequentist style bound, so that
we posit a fixed but unknown distribution D that gov-
erns the generation of the input data, be it i.i.d. in the
training set or as a test example. We would like to ap-
ply a margin based PAC-Bayes bound to such 1-norm
regularised classifiers. For a given choice of weight vec-
tor w with ‖w‖1 = 1, for which we may expect many
components to be equal to zero, we wish to create a
posterior distribution Q(w) such that we can bound

P(x,y)∼D(fw(x) 6= y) ≤ 2eQ(w),

where eQ(w) is the expected error under the distribu-
tion Q(w):

eQ(w) = E(x,y)∼D,q∼Q(w) [I [q(x) 6= y]] .

Given a training sample S = {(x1, y1), . . . , (xm, ym)},
we similarly define

êQ(w) =
1

m

m
∑

i=1

Eq∼Q(w) [I [q(xi) 6= yi]] .

We first define the posterior distribution Q(w). The
general form of a classifier q will involve a random
weight vector W ∈ R

N together with a random thresh-
old Θ and the output will be

qW,Θ(x) = sgn (〈W, x〉 − Θ) .

The distribution Q(w) of W will be discrete with

W = sgn(wi)ei; with probability |wi|, i = 1, . . . , N,

where ei is the unit vector with 1 in dimension i and
zeros in all other dimensions. The distribution of Θ is
uniform on the interval [−1, 1].

Proposition 2.2 With the above definitions, we have
for w satisfying ‖w‖1 = 1, that for any (x, y) ∈ X ×
{−1, +1},

Pq∼Q(w)(q(x) 6= y) = 0.5(1− y〈w, x〉).

Proof Consider a fixed (x, y). We have

Pq∼Q(w)(q(x) 6= y)

=

N
∑

i=1

|wi|PΘ (sgn (sgn(wi)〈ei, x〉 −Θ) 6= y)

=
N
∑

i=1

|wi|PΘ (sgn (sgn(wi)xi −Θ) 6= y)

= 0.5

N
∑

i=1

|wi|(1− ysgn(wi)xi)

= 0.5(1− y〈w, x〉),

as required.

Proposition 2.3 With the above definitions, we have
for w satisfying ‖w‖1 = 1, that

P(x,y)∼D (fw(x) 6= y) ≤ 2eQ(w).

Proof By Proposition 2.2 we have

Pq∼Q(w)(q(x) 6= y) = 0.5(1− y〈w, x〉).

Hence, it follows that

Pq∼Q(w)(q(x) 6= y) > 0.5

⇔

fw(x) 6= y.
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We can now estimate the error of the stochastic clas-
sifier

eQ(w) = E(x,y)∼D,q∼Q(w) [I [q(x) 6= y]]

= E(x,y)∼DEq∼Q(w) [I [q(x) 6= y]]

≥ 0.5P(x,y)∼D(fw(x) 6= y),

as required.

We can now make the application of the PAC-Bayes
bound to 1-norm regularised linear classifiers.

Theorem 2.4 Let X be a subset of the ℓ∞ 1-ball in
R

N , and let D be a distribution with support X . With
probability at least 1− δ over the draw of training sets
of size m, we have for all w satisfying ‖w‖1 = 1 that

KL(êQ(w)‖eQ(w)) ≤
1

m

[

N
∑

i=1

|wi| ln |wi|

+ ln(2N) + ln((m + 1)/δ)

]

Proof The result follows from an application of
Proposition 2.1 by choosing the prior to be uniform
on all of the vectors ±ei, i = 1, . . . , N .

The implicit bound given by the KL divergence is not
always easy to read, so we introduce the following no-
tation for the ‘inversion’ of the KL divergence.

KL−1(ê, A) = max
e
{e : KL(ê‖e) ≤ A},

implying that KL−1(ê, A) is the largest value satisfying

KL
(

ê, KL−1(ê, A)
)

≤ A.

Corollary 2.5 Let X be a subset of the ℓ∞ 1-ball in
R

N , and let D be a distribution with support X . With
probability at least 1− δ over the draw of training sets
of size m, we have for all w satisfying ‖w‖1 = 1 that

eQ(w) ≤ KL−1
(

êQ(w), H
)

where

H =

∑N
i=1 |wi| ln(|wi|) + ln(2N) + ln((m + 1)/δ)

m

The expression given by Proposition 2.2 for the empir-
ical error is too weak to obtain a strong bound. We
will therefore ‘boost’ the power of discrimination by
sampling T copies of the distribution q ∼ QT (w) and
then use the classification

qW ,Θ(x) = sgn

(

T
∑

i=1

sgn
(

〈W t, x〉 −Θt
)

)

, (1)

or in other words taking a majority vote of the T sam-
ples to decide the classification given to the input x.
The effect on the KL divergence is a simple multipli-
cation by the factor T , while the bound on the true
error given by Proposition 2.3 remains valid. Hence,
we arrive at the following further corollary.

Corollary 2.6 Let X be a subset of the ℓ∞ 1-ball in
R

N , and let D be a distribution with support X . With
probability at least 1− δ over the draw of training sets
of size m, we have for all w satisfying ‖w‖1 = 1 that

P(x,y)∼D (fw(x) 6= y) ≤ 2KL−1
(

êQT (w), H
)

,

where H =
T

P

N

i=1
|wi| ln(|wi|)+T ln(2N)+ln((m+1)/δ)

m and
êQT (w) is the empirical error of the classifier given by
equation (1).

Finally, note that it is straightforward to compute
êQT (w) using Proposition 2.2 as the following deriva-
tion shows:

êQT (w) =

⌊T/2⌋
∑

t=0

(

T

t

)

(1− P (q(x) 6= y))t

·P (q(x) 6= y)T−t

=

⌊T/2⌋
∑

t=0

(

T

t

)

(1− 0.5(1− y〈w, x〉))
t

· (0.5(1− y〈w, x〉))
T−t

= 0.5T

⌊T/2⌋
∑

t=0

(

T

t

)

(1 + y〈w, x〉)
t

· (1− y〈w, x〉)
T−t

.

The function êQT (w) exhibits a sharper reverse sig-
moid like behaviour as y〈w, x〉 increases and with T
controlling the steepness of the cutoff.

3 ALGORITHMICS

The generalisation bound motivates the following
‘maximum entropy’ optimisation.

min
w,ρ,ξ

N
∑

j=1

|wj | ln |wj | − Cρ + D

m
∑

i=1

ξi

subject to: yi〈w, xi〉 ≥ ρ− ξi, 1 ≤ i ≤ m,

‖w‖1 ≤ 1, ξi ≥ 0, 1 ≤ i ≤ m.

This section will investigate solution of this convex op-
timisation problem using duality methods. We will de-
rive an algorithm that has been implemented in some
small experiments in the next section.
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Using the decomposition of wj = w+
j − w−j with

w+
j , w−

j ≥ 0, we form the Langrangian

L =

N
∑

j=1

(w+
j + w−

j ) ln(w+
j + w−

j )− Cρ + D

m
∑

i=1

ξi

+λ





N
∑

j=1

(w+
j + w−

j )− 1





−

m
∑

i=1

αi



yi

N
∑

j=1

(w+
j − w−

j )xij − ρ + ξi





−

m
∑

i=1

ξiβi −

N
∑

j=1

η+
j w+

j −

N
∑

j=1

η−
j w−

j

Taking derivatives with respect to the primary vari-
ables and setting equal to zero gives

∂L

∂w+
j

= ln(w+
j + w−

j ) + 1−

m
∑

i=1

αiyixij + λ

−η+
j = 0, (2)

∂L

∂w−
j

= ln(w+
j + w−

j ) + 1 +

m
∑

i=1

αiyixij + λ

−η−
j = 0 (3)

∂L

∂ξi
= D − αi − βi = 0,⇒ αi ≤ D (4)

∂L

∂ρ
= −C +

m
∑

i=1

αi = 0,⇒

m
∑

i=1

αi = C. (5)

Furthermore, adding equations (2) and (3) gives

w+
j + w−

j = exp

(

η+
j + η−

j

2
− 1− λ

)

, (6)

while subtracting them gives

m
∑

i=1

αiyixi =
1

2

(

η
− − η

+
)

. (7)

Finally, summing over j and adding w+
j times equation

(2) plus w−
j times equation (3) gives

N
∑

j=1

(w+
j + w−

j ) ln(w+
j + w−

j ) +

N
∑

j=1

(w+
j + w−

j )

+λ
N
∑

j=1

(w+
j + w−

j )−
m
∑

i=1

αiyi

N
∑

j=1

(w+
j − w−

j )xij

−

N
∑

j=1

η+
j w+

j −

N
∑

j=1

η−
j w−

j = 0.

Subtracting this from the objective we obtain

L = −

N
∑

j=1

(w+
j + w−

j )− λ.

Using equation (6) we obtain the dual problem

max
α,η+,η−

L = −

N
∑

j=1

exp

(

η+
j + η−

j

2
− 1− λ

)

− λ

subject to:

m
∑

i=1

αiyixi =
1

2

(

η
− − η

+
)

,

η+
j , η−

j ≥ 0, 1 ≤ j ≤ N,

m
∑

i=1

αi = C,

0 ≤ αi ≤ D, 1 ≤ i ≤ m.

Finally, using equation (7) we can eliminate η
+ and

η
− to obtain a simplified expression

max
α

L = −

N
∑

j=1

exp

(∣

∣

∣

∣

∣

m
∑

i=1

αiyixij

∣

∣

∣

∣

∣

− 1− λ

)

−λ

subject to:
m
∑

i=1

αi = C 0 ≤ αi ≤ D, 1 ≤ i ≤ m.

Taking a gradient ascent algorithm we can update α

along the gradient given by

α← α + ζ

(

∂L

∂α

)

(8)

where
(

∂L

∂α

)

t

= −

N
∑

j=1

|wj |sgn

(

m
∑

i=1

αiyixij

)

ytxtj + µ, (9)

where we have introduced a Lagrange multiplier µ for
the 1-norm constraint on α and

|wj | = A exp

(∣

∣

∣

∣

∣

m
∑

i=1

αiyixij

∣

∣

∣

∣

∣

− 1

)

(10)

with A = exp(−λ) chosen so that
∑N

j=1 |wj | = 1. We
should only involve those αi in the update for which
0 < αi < D, or if αi = 0 and the gradient is positive,
or if αi = D and the gradient is negative. After the
update with small learning rate ζ we move each αi

back into the interval [0, D] and update µ by

µ← µ− τ

(

m
∑

i=1

αi − C

)

, (11)

for a smaller learning rate τ . Note that by equation
(7) and the definition of η

+ and η
−

sgn(wj) = sgn

(

m
∑

i=1

αiyixij

)

, (12)
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since wj positive implies η−
j − η+

j > 0.

Hence, the resulting algorithm is given as follows.

Algorithm Maximum Entropy Classification
Input: Matrix of m training examples X , Parameters

C, D.
Output: Vector of weights w
1. Initialise αi = 1/C for all i
2. Initialise µ = 0
3. Compute |w| using equation (10) with A chosen

so 1-norm is 1.
4. Compute gradients using equation (9)
5. I = (1 : m)
6. repeat
7. repeat
8. update α(I) using equation (8)
9. if αi 6∈ [0, D] remove i from I and set αi

to 0 or D.
10. Compute |w| using equation (10) with A

chosen so 1-norm is 1.
11. Compute gradients for indices I using

equation (9)
12. until no change
13. Update µ using equation (11)
14. Compute all gradients using equation (9)
15. Include in I any i for which αi = 0 but gradi-

ent positive, or αi = D and gradient negative
16. until no change;
17. Use equation (12) to adjust the sign of wj .

3.1 KERNEL MAXIMUM ENTROPY

We are able to extend the current framework to non-
linear features through using the kernel trick and com-
puting a Cholesky decomposition of the resulting ker-
nel matrix.

K = X ′X

= R′Q′QR

= R′R

The computation of Rij corresponds to evaluating the
inner product between φ(xi) with the new basis vector
qj for j < i. The basis vector qj are the result of an
implicit Gram-Schmidt orthonomalisation of the data
in the feature space. We are able to view the new rep-
resentation as a new projection function into a lower
dimensional subspace. This new representation of the
data in the columns of matrix R, ri, which gives the
exact same kernel matrix.

φ̂ : φ(xi)→ ri.

where ri is the ith column of R. The resulting kernel
maximum entropy maximisation is

max
α

L = −

N
∑

j=1

exp

(∣

∣

∣

∣

∣

m
∑

i=1

αiyiri

∣

∣

∣

∣

∣

− 1− λ

)

−λ

subject to:

m
∑

i=1

αi = C 0 ≤ αi ≤ D, 1 ≤ i ≤ m.

4 EXPERIMENTS

4.1 TESTING THE BOUND

Initially we test the algorithm and resulting bound on
two of UCI datasets summarised in Table 1. We are
interested in observing the behaviour of the bound for
a given training and testing set in the linear case. In
this following experiment we fix C = 1 and D = 1

0.05ℓ
where ℓ is the number of samples.

Table 1: Datasets considered

Data Features Training Testing
Ionosphere 34 250 101

Breast 9 487 196

The algorithm was run on each of these sets and the
bound of Corollary 2.6 was computed for different val-
ues of T . Figure 1 shows a plot of the value of the
bound for the Ionosphere data as a function of T . As
indicated in Section 2, T controls the rate at which
the values dip as we move away from the margin, but
we pay a penalty in the multiplication of the KL di-
vergence. Hence, its role is very similar to the mar-
gin parameter in SVM learning bounds. Note that we
should introduce an extra penalty of ln(40)/m as we
have effectively applied the theorem 40 times for the
different values of T , but we ignore this detail in our
reported results. A plot for the Breast Cancer dataset
is given in Figure 2.

Finally, Table 2 shows the test error with that given by
the minimum bound (over T ) on these small datasets.

Table 2: Test errors and bound values

Data Error Bound
Ionosphere 0.22 0.94

Breast 0.02 0.51

While the bound values are far from non-trivial, they
do show that the bound is able to deliver interesting
values, particularly in the case of the Breast cancer
dataset. Note that the factor of 2 has been included,
something frequently omitted in reporting PAC-Bayes
simulation results.
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Table 3: Datasets description: Each row contains the name of the dataset, the number of samples and features
(i.e. attributes) as well as the total number of positive and negative samples.

Dataset # Samples # Features # Positive Samples # Negative Samples
Votes 52 16 18 34
Glass 163 9 87 76

Haberman 294 3 219 75
Bupa 345 6 145 200
Credit 653 15 296 357
Pima 768 8 269 499

BreastW 683 9 239 444
Ionosphere 351 34 225 126
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Bound on Ionosphere

Figure 1: Plot of bound as a function of T for Iono-
sphere dataset

4.2 LINEAR & NONLINEAR RESULTS

We now test the algorithm in its linear and nonlin-
ear variation on the eight UCI datasets summarised
in Table 3. Furthermore, we are able to observe that
the bound in Corollary 2.5 does not depend on C, D
therefore allowing us to choose values that minimise
the bound.

We first consider using the linear feature space and
compare the maximum entropy algorithm with a Sup-
port Vector Machine (SVM) (with linear kernel) us-
ing cross-validation to determine the best C value,
while the C and D for the maximum entropy method
were chosen to optimise the bound. Table 4 gives the
test errors for the two algorithms on the UCI datasets
together with the bound value for the maximum en-
tropy method. The algorithm has very similar qual-
ity on Votes, Bupa, and Pima. The maximum en-
tropy method performs better on Glass, Haberman
and Credit, while SVM is better on Ionosphere and
significantly better on BreastW. Overall the results are
encouraging though the BreastW results are concern-
ing and require further investigation.
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Figure 2: Plot of bound as a function of T for Breast
Cancer dataset

In the nonlinear case we compute the Guassian kernel
with a variety of values for the width parameter γ.
For the maximum entropy method we first perform a
complete Cholesky decomposition of the kernel matrix
and use the obtained features as the representation of
the data. The γ value was determined using cross-
validation for both algorithms, with the parameters C
for the SVM also determined by cross-validation, but
C and D for the maximum entropy method chosen
to optimise the bound. Table 5 shows the results for
both algorithms together with the bound values for
the maximum entropy method. In this case the two
methods give similar results for Votes only, with the
maximum entropy method performing slightly worse
that the SVM in Glass and Bupa, but considerably
worse on the other datasets.

The results for the non-linear datasets are disappoint-
ing and we speculate that this is because of the poor
choice of representation using the Cholesky decompo-
sition. There is a possibility of using the bound to
prioritise the choice of features by selecting features
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Table 4: Test errors and bound values for the linear max entropy algorithm and test errors for the SVM using a
linear kernel. The C SVM parameter was selected using cross validation while the C, D max entropy parameters
where selected by minimising the bound.

Data SVM Error Max Entropy Error Max Entropy Bound
Votes 0.3464± 0.0113 0.3464± 0.0113 1.5515± 0.0047
Glass 0.4662± 0.0056 0.4600± 0.0144 1.3730± 0.0003

Haberman 0.2551± 0.0000 0.2517± 0.0059 1.2742± 0.0015
Bupa 0.4203± 0.0026 0.4203± 0.0026 1.2680± 0.0006
Credit 0.2788± 0.0679 0.2512± 0.0072 1.2023± 0.0007
Pima 0.3503± 0.0013 0.3503± 0.0013 1.1883± 0.0002

BreastW 0.0658± 0.0488 0.6501± 0.0017 1.1959± 0.0006
Ionosphere 0.2422± 0.0261 0.2849± 0.0471 1.2599± 0.0006

Table 5: Test errors and bound values for the non linear max entropy algorithm and test errors for the SVM
using a Gaussian kernel. The C, γ SVM parameter was selected using cross validation while the C, D max
entropy parameters where selected by minimising the bound, the Gaussian γ parameter was selected using
cross-validation.

Data SVM Error Max Entropy Error Max Entropy Bound
Votes 0.0926± 0.1604 0.0926± 0.1604 1.5601± 0.0026
Glass 0.2760± 0.0159 0.2884± 0.1488 1.3608± 0.0142

Haberman 0.2483± 0.0257 0.3129± 0.0915 1.2044± 0.0744
Bupa 0.2958± 0.0200 0.3130± 0.0127 1.2713± 0.0005
Credit 0.2834± 0.0674 0.3737± 0.0449 1.2066± 0.0001
Pima 0.2525± 0.0242 0.2942± 0.0257 1.1924± 0.0001

BreastW 0.0366± 0.0154 0.0483± 0.0432 1.1996± 0.0005
Ionosphere 0.0741± 0.0300 0.1652± 0.0486 1.2664± 0.0030

greedily that maximise the value

∣

∣

∣

∣

∣

m
∑

i=1

αiyixij

∣

∣

∣

∣

∣

that appears in the dual objective. This would corre-
spond to the criterion used in boosting where the αi

give a pseudo distribution over the examples in which
the weak learner must give good correlation with the
target. This could be used to drive a general boosting
strategy for selecting weak learners from a large pool.
This is, however, beyond the scope of this paper and
will be the subject of further research.

5 CONCLUSIONS

The paper has developed new technology for apply-
ing PAC-Bayes analysis to an approach that has been
of interest both in statistics and machine learning,
namely the implementation of the principle of max-
imum entropy. Though developed only for classifica-
tion in the current paper we believe that the extension
to more complex tasks such as density modelling where
the technique comes into its own will now be possible.

In addition we have analysed the resulting convex op-

timisation problem that arises from the derived bound
and shown how a dual version gives rise to a simple
and efficient algorithmic implementation of the tech-
nique. It is an interesting feature of this algorithm
that though the weight vector w is not sparse the dual
variables α are as one might expect from the result-
ing 1-norm constraint and as our experiments demon-
strate.

Finally, we have implemented the algorithm on some
UCI datasets and demonstrated that the factor T in
the bound behaves in a similar manner to a margin
parameter. We have use the bound to drive the model
selection over the two parameters C and D of the algo-
rithm and have demonstrated that the approach can
be applied in kernel defined featured spaces using the
Cholesky decomposition to generate an explicit repre-
sentation.While the results for the linear feature rep-
resentations are very encouraging those for the non-
linear case are somewhat disappointing. We speculate
that more care needs to be taken in the choice of rep-
resentation in this case.
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