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Abstract

The contributions of this paper are three-fold.
First, we present a general formulation for reap-
ing the benefits from both non-negative data fac-
torization and semi-supervised learning, and the
solution naturally possesses the characteristics
of sparsity, robustness to partial occlusions, and
greater discriminating power via extra unlabeled
data. Then, an efficient multiplicative updating
procedure is proposed along with its theoretic
justification of the algorithmic convergency. Fi-
nally, the tensorization of this general formula-
tion for non-negative semi-supervised learning is
also briefed for handling tensor data of arbitrary
order. Extensive experiments compared with
the state-of-the-art algorithms for non-negative
data factorization and semi-supervised learning
demonstrate the algorithmic properties in spar-
sity, classification power, and robustness to im-
age occlusions.

1 INTRODUCTION

Motivated by the psychological and physiological evidence
for parts-based representations in the brain (Lee & Seung,
1999), recently techniques for non-negative and sparse rep-
resentation have been well studied for finding non-negative
bases with few nonzero elements. Non-negative matrix fac-
torization (NMF) (Lee & Seung, 1999), as a pioneering
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work for such a purpose, has shown its powerful capability
for parts-based representations of images and other types
of data. NMF is distinguished from other holistic-based
methods by its use of non-negativity constraints, which en-
sure that an image could only be formed from non-negative
bases in a non-subtractive way, and therefore lead to a
parts-based representation.

Following the work of NMF, many algorithms have been
proposed for non-negative data decomposition and clas-
sification. Li et al. (2001) imposed extra constraints to
reinforce the basis sparsity of NMF; also matrix-based
NMF has been extended to non-negative tensor factoriza-
tion (NTF) (Hazan et al., 2005; Shashua & Hazan, 2005)
for handling the data encoded as high-order tensors. Wang
et al. proposed the Fisher-NMF (2004), which was fur-
ther studied by Kotsia et al. (2007), by adding an extra
term of scatter difference to the objective function of NMF.
Tao et al. (2005) proposed to employ local rectangle bi-
nary features for image reconstruction. Recently, Yang et
al. (2008a) proposed a general solution for supervised non-
negative graph embedding by integrating the characteristics
of both intrinsic and penalty graphs (Yan et al., 2007) with
non-negative data factorization.

Most of these algorithms proposed for non-negative data
factorization are unsupervised. Among the supervised
ones, the supervised non-negative graph embedding pro-
posed in (Yang et al., 2008a), although with the superiority
over Fisher-NMF, suffers from the high computational cost
caused by calculating the inverse of the so-called M -matrix
(Yang et al., 2008a), which greatly limits its practical appli-
cations. Beyond supervised learning, many recent research
(Zhou et al., 2003; Zhu et al., 2003; Belkin et al., 2004;
Belkin et al., 2006; Cai et al., 2007) shows that the learning
process may greatly benefit from the unlabeled data, which
are often relatively easy to obtain in practice. A detailed
literature survey on semi-supervised learning is referred to
(Zhu, 2005). A natural question to ask is whether we can
design an algorithm with three characteristics: 1) the de-
rived solution is non-negative and sparse, and hence robust
to partial image occlusions; 2) the formulation may well
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utilize the unlabeled data for achieving greater discriminat-
ing power; and 3) the procedure to obtain such a solution is
efficient, ideally again based on the elegant multiplicative
updating rule.

This work is dedicated to designing such a data factoriza-
tion algorithm with the above-mentioned three character-
istics, referred to as non-negative semi-supervised learn-
ing (N2S2L). First, we present a general formulation for
reaping the benefits from both non-negative data factor-
ization (sparsity and robustness to partial occlusion) and
semi-supervised learning (greater discriminating power via
extra unlabeled data). Then, an efficient multiplicative
updating procedure is proposed along with its theoretic
justification of the algorithmic convergency. Finally, the
tensorization of this general formulation for non-negative
semi-supervised learning is also briefed for handling ten-
sor data of arbitrary order.

The remainder of this paper is organized as follows. In
Section 2, we introduce the details of N2S2L algorithm. In
Section 3, the N2S2L algorithm is further generalized for
handling tensor data of arbitrary order. The comparison
experiments are demonstrated in Section 4.

2 NON-NEGATIVE SEMI-SUPERVISED
MATRIX FACTORIZATION

In this section, we introduce the math formulation and its
iterative multiplicative updating rule for the non-negative
semi-supervised matrix factorization problem, where each
datum is represented by a vector. We assume that the
training data are given as X = [x1, x2, . . . , xN ], where
xi ∈ Rm, and N is the total number of training samples.
Portion of the data are labeled as ci ∈ {1, ..., Nc}, where
Nc is the class number. Denote the sample number of the
cth class as nc. Note that we utilize in this work the fol-
lowing rule to facilitate presentation: for any matrix A, its
corresponding lowercase version ai means the ith column
vector of A, and Aij denotes the element of A at the ith
row and jth column.

2.1 PROBLEM FORMULATION

To achieve the ultimate target of N2S2L, the objective func-
tion need involve different components: 1) the component
to guide the parts-based data decomposition; 2) the compo-
nent to guarantee the separability of the labeled data; and
3) the component on the extra regularization from both la-
beled and unlabeled data.

2.1.1 Objective for Non-negative Data Reconstruction

Non-negative matrix factorization (NMF) algorithm uses
two non-negative matrices, i.e., one lower-rank basis ma-
trix and one coefficient matrix, to reconstruct the original

data matrix. Its objective function is,

min
U,V

‖X − UV T ‖2F , s.t. U, V ≥ 0, (1)

where U = [u1, ..., uk] ∈ Rm×k is the basis matrix, V =
[v1, ..., vk] ∈ RN×k is the coefficient matrix, and ‖ · ‖F is
the Frobenius norm of a matrix. Usually, k < min(m,N),
and thus we could consider V as the low-dimensional rep-
resentations for the training data X with the objective of
best reconstruction under non-negative constrains. How-
ever, the coefficient matrix derived based on the best re-
construction is unnecessarily good at discriminating power,
since no label information is leveraged in NMF.

2.1.2 Objective for Separability of Labeled Data

In order to reinforce the separability of the labeled data
without the loss of construction capability, we divide the
reconstruction representations V into two parts, namely,

V = [V 1, V 2], (2)

where V 1 = [v1
1 , v1

2 , ..., v1
q ] ∈ RN×q (q < k), which re-

serves the discriminative information for the labeled data.
V 2 = [v2

1 , v2
2 , ..., v2

k−q] ∈ RN×(k−q), which contains
the additional reconstruction information together with V 1.
Note that V 1 is expected to encode the major discrimina-
tive information, while the whole V is used for data recon-
struction purpose. Hence the targets of data reconstruction
and classification coexist harmoniously, and do not mutu-
ally compromise as in conventional formulations with two
objectives. Similarly, the basis matrix U is also divided into
two parts,

U = [U1, U2], (3)

where U1 ∈ Rm×q and U2 ∈ Rm×(k−q).

There exist varieties of formulations for characterizing the
separability of the labeled data, and Yan et al. (2007)
claimed that most of them can be explained within a unified
framework, called graph embedding. Let G = {X, S} be
an undirected weighted graph with vertex set X and sim-
ilarity matrix S ∈ RN×N . Each element of S measures
for a pair of vertices the similarity, which is assumed to
be non-negative in this work. The diagonal matrix D and
Laplacian matrix L of a graph are defined as,

L = D − S, Dii =
∑

j 6=i

Sij , ∀ i. (4)

Graph embedding generally involves an intrinsic graph G,
which characterizes the favorite relationship among the
data, and a penalty graph Gp = {X, Sp}, which charac-
terizes the unfavorable relationship among the data, with
Lp = Dp−Sp, where Dp is the diagonal matrix as defined
in Eqn. (4). Then two targets of graph-preserving are given
as follows,

{
maxV 1

∑
i 6=j ‖V 1

i − V 1
j ‖2Sp

ij ,

minV 1
∑

i 6=j ‖V 1
i − V 1

j ‖2Sij ,
(5)
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where V 1
i is the ith rows of V 1. As aforementioned, U2

is considered as the complementary space of U1, and thus
the first objective in Eqn. (5) can be approximately trans-
formed into,

min
V 2

∑

i 6=j

‖V 2
i − V 2

j ‖2Sp
ij . (6)

Note that Sij and Sp
ij are set to zero in the above equations

if either xi or xj is unlabeled.

2.1.3 Objective for Regularization from both Labeled
and Unlabeled Data

Compared with the labeled data which may require tedious
human work, the unlabeled data are often much easier to
obtain in real applications. The geometrical structure re-
flected by the interaction between the unlabeled data and
labeled data could benefit the classification performance
when the labeled data are not enough (Zhu, 2005). Here we
adapt the smoothness assumption, which has been widely
used in existing semi-supervised learning algorithms (Zhu,
2005), that nearby points in the original feature space tend
to be close to each other in the new space and have similar
class labels. The objective function for the regularization
from both labeled and unlabeled data is given as,

min
V 1

∑

i 6=j

‖V 1
i − V 1

j ‖2Ss
ij , (7)

where Ss
ij could be defined based on the neighboring infor-

mation as,

Ss
ij =

{
1,
0,

if xi ∈ Np(xj) or xj ∈ Np(xi),
otherwise, (8)

where Np(xi) denotes the set of p nearest neighbors of xi.
Similar to Eqn. (4), a diagonal matrix Ds and a Laplacian
matrix Ls are also defined based on Ss. Note that both
labeled and unlabeled data are used in Eqn. (7).

2.1.4 Unified Objective Function

To achieve the above three objectives, we can have a unified
objective function for N2S2L as,

min
U,V

α(
∑

i 6=j

‖V 1
i − V 1

j ‖2Sij +
∑

i 6=j

‖V 2
i − V 2

j ‖2Sp
ij) +

β
∑

i 6=j

‖V 1
i − V 1

j ‖2Ss
ij + ‖X − UV T ‖2F , s.t. U, V ≥ 0, (9)

where α and β are two positive parameters for balancing
the aforementioned three objectives.

By simple algebraic deduction, Eqn. (9) can be rewritten
as

min
U,V

αTr(V 1T
LV 1) + αTr(V 2T

LpV 2) +

βTr(V 1T
LsV 1) + ‖X − UV T ‖2F , s.t. U, V ≥ 0. (10)

Note that the above formulation is ill-posed, and the objec-
tive has the trend to drive V to be zero. This issue is also
suffered by the formulation for Fisher-NMF (Wang et al.,
2004). As aforementioned, U is the basis matrix and hence
it is natural to require that the column vectors of U are nor-
malized, namely,

‖ui‖ = 1, i = 1, 2, · · · , k. (11)

This extra constraint makes the optimization problem more
complicated, and in this work, we compensate the norms of
the bases into the coefficient matrix and get the final object
function for N2S2L as,

min
U,V

‖X − UV T ‖2F + Tr[Q1V 1T
(αL + βLs)V 1Q1T

]

+Tr[Q2V 2T
(αLp)V 2Q2T

], s.t. U, V ≥ 0, (12)

where

Q1 = diag{‖u1‖, ‖u2‖, · · · , ‖uq‖}, (13)
Q2 = diag{‖uq+1‖, ‖u2‖, · · · , ‖uk‖}. (14)

Note that as the matrices S, Sp, and Ss are symmetric,
thus the matrices L, Lp, and Ls are also symmetric. This
objective function is biquadratic, and generally there does
not exist a closed-form solution. We present in the next
subsection an iterative procedure for computing the non-
negative solution.

2.2 CONVERGENT ITERATIVE PROCEDURE

Most iterative procedures for solving high-order optimiza-
tion problems transform the original intractable problem
into a set of tractable sub-problems, and finally obtain the
convergence to a local optimum. Our proposed iterative
procedure also follows this philosophy and optimizes U
and V alternately.

2.2.1 Preliminaries

Before formally describing the iterative procedure for
N2S2L, we first introduce the concept of auxiliary function,
and the lemma which shall be used for the algorithmic de-
duction and convergence proof.

Definition 1 Function G(A,A′) is an auxiliary function
for function F (A) if the following conditions are satisfied:

G(A,A′) ≥ F (A), G(A,A) = F (A). (15)

From the above definition, we have the following lemma
with proof omitted.

Lemma 1 If G is an auxiliary function, then F is non-
increasing under the updating rule

At+1 = arg min
A

G(A,At), (16)

where t means the tth iteration.
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2.2.2 Optimize U for Given V

For a given V , the objective function in Eqn. (12) with
respect to U can be rewritten as

F (U) = ‖X − UV T ‖2F
+ Tr(Q1V 1T

(αL + βLs)V 1Q1T
)

+ Tr(Q2V 2T
(αLp)V 2Q2T

)
= ‖X − UV T ‖2F + Tr(UYuUT ), (17)

where Yu is given as

Yu =

[
V 1T (αL + βLs)V 1 0

0 V 2T (αLp)V 2

]
· I (18)

= Yu+ − Yu−, (19)

with the matrices Yu+ and Yu− defined as,

Yu+ =

[
V 1T (αD + βDs)V 1 0

0 V 2T (αDp)V 2

]
· I, (20)

Yu− =

[
V 1T (αS + βSs)V 1 0

0 V 2T (αSp)V 2

]
· I. (21)

Here the operator · means that each element of the output
matrix is the multiplication of the corresponding elements
of two input matrices.

To integrate the non-negative constraints into the objective
function, we set Υu

ij as the Lagrange multiplier for con-
straint Uij ≥ 0, and the matrix Υu = [Υu

ij ]. Then the
Lagrange L(U) with respect to U is defined as,

L(U) = ‖X − UV T ‖2F + Tr(UYuUT ) + Tr(ΥuUT )
= Tr(XXT )− 2Tr(XV UT ) + Tr(UV T V UT )

+Tr(UYuUT ) + Tr(ΥuUT ), (22)

By setting the derivation of L(U) with respect to U as zero,

∂L(U)
∂U

= −2XV + 2UV T V + 2UYu + Υu = 0, (23)

along with the KKT condition (Kuhn & Tucker, 1951) of
Υu

ijUij = 0, we can have

−(XV )ijUij + (UV T V )ijUij + (UYu)ijUij

= −(XV )ijUij + (UV T V )ijUij

+(UYu+)ijUij − (UYu−)ijUij

= 0. (24)

Then for the final solution, the following relation should be
satisfied,

Uij ← Uij
(XV + UYu−)ij

(UV T V + UYu+)ij
. (25)

We shall prove afterward that the above updating rule shall
result in a convergent iterative procedure to obtain a local
optimum solution. Obviously this updating rule is multi-
plicative and the non-negativity of the solution is guaran-
teed.

2.2.3 Convergence of the Updating Rule for U

Here, we denote Fab as the part of F (U) relevant to Uab,
and then we have,

F ′ab = (−2XV + 2UV T V + 2UYu)ab, (26)
F ′′ab = (2V T V + 2Yu)bb. (27)

Then the auxiliary function of Fab is designed as

G(Uab, U
t
ab) = Fab(U t

ab) + F ′ab(U
t
ab)(Uab − U t

ab)

+
(U tV T V )ab + (U tYu+)ab

U t
ab

(Uab − U t
ab)

2. (28)

Lemma 2 Eqn. (28) is an auxiliary function for Fab.

Proof: Since G(Uab, Uab) = Fab(Uab) is obvious, we
need only show that G(Uab, U

t
ab) ≥ Fab(Uab). To do this,

we compare the Taylor series expansion of Fab(Uab),

Fab(Uab) = Fab(U t
ab) + F ′ab(U

t
ab)(Uab − U t

ab)

+
1
2
F ′′ab(Uab − U t

ab)
2, (29)

with Eqn. (28), and then G(Uab, U
t
ab) ≥ Fab(Uab) is

equivalent to

(U tV T V )ab + (U tYu+)ab

U t
ab

≥ (V T V )bb + (Yu)bb. (30)

It is easy to verify that

(U tV T V )ab =
k∑

m=1

U t
am(V T V )mb ≥ U t

ab(V
T V )bb, (31)

and

(U tYu+)ab =
k∑

m=1

U t
am(Yu+)mb ≥ U t

ab(Yu+)bb

≥ U t
ab(Yu+ − Yu−)bb = U t

ab(Yu)bb. (32)

Thus, Eqn. (30) holds and G(Uab, U
t
ab) ≥ Fab(Uab). ¤

Lemma 3 Eqn. (25) could be obtained by minimizing the
auxiliary function G(Uab, U

t
ab), where U t

ab is the iterative
solution at the tth step.

Proof: To obtain the minimum, we only need set the
derivative ∂G(Uab,Ut

ab)
∂Uab

= 0, and have

∂G(Uab, U
t
ab)

∂Uab

= F ′ab(U
t
ab) +

2(U tV T V + U tYu+)ab

U t
ab

(Uab − U t
ab)

= 0. (33)

Then we can obtain the iterative updating rule for U as,

U t+1
ij ← U t

ij

(XV + U tYu−)ij

(U tV T V + U tYu+)ij
, (34)

and the lemma is proved. ¤
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2.2.4 Optimize V for Given U

After updating the matrix U , we normalize the column vec-
tors of U and consequently convey the norm to the coeffi-
cient matrix V , namely,

um ← um/‖um‖, ∀m, (35)
vm ← vm × ‖um‖, ∀m. (36)

Then based on the normalized U in Eqn. (35), the objective
function in Eqn. (12) with respect to V is simplified to be,

F (V ) = ‖X − UV T ‖2F + Tr(V 1T
(αL + βLs)V 1)

+Tr(V 2T
(αLp)V 2)

= ‖X − UV T ‖2F + Tr(V 1T
Y 1

v V 1)

+Tr(V 2T
Y 2

v V 2), (37)

where Y 1
v and Y 2

v are given as,

Y 1
v = αL + βLs = Y 1

v+ − Y 1
v−, (38)

Y 2
v = αLp = Y 2

v+ − Y 2
v−, (39)

with the matrices defined as,

Y 1
v+ = αD + βDs, Y 2

v+ = αDp, (40)
Y 1

v− = αS + βSs, Y 2
v− = αSp. (41)

To integrate the non-negative constraints to the objective
function, we set Υv

ij as the Lagrange multiplier for con-
straint Vij ≥ 0, and the matrix Υv = [Υv

ij ]. Then the
Lagrange L(V ) with respect to V is defined as,

L = ‖X − UV T ‖2F + Tr(V 1T
Y 1

v V 1)

+Tr(V 2T
Y 2

v V 2) + Tr(ΥvV T )
= Tr(XXT )− 2Tr(XV UT )

+Tr(UV T V UT ) + Tr(V 1T
Y 1

v V 1)

+Tr(V 2T
Y 2

v V 2) + Tr(ΥvV T ). (42)

By setting the derivation of L(V ) with respect to V as zero,

∂L(V )
∂V

= −2XT U + 2V UT U + 2[Y 1
v V 1, Y 2

v V 2] + Υv = 0,

along with the KKT condition Υv
ijVij = 0, we have

−(XT U)ijVij + (V UT U)ijVij

+[Y 1
v V 1, Y 2

v V 2]ijVij

= −(XT U)ijVij + (V UT U)ijVij

+[Y 1
v+V 1, Y 2

v+V 2]ijVij − [Y 1
v−V 1, Y 2

v−V 2]ijVij

= 0. (43)

Then the following relation should be satisfied,

Vij ← Vij
(XT U + [Y 1

v−V 1, Y 2
v−V 2])ij

(V UT U + [Y 1
v+V 1, Y 2

v+V 2])ij
, (44)

which offers an updating rule for a convergent iterative pro-
cedure to obtain a local optimum solution for V .

2.2.5 Convergence of the Updating Rule for V

Here, we denote Fab as the part of F (V ) relevant to Vab,
and then we have,

F ′ab = (−2XT U + 2V UT U + 2[Y 1
v V 1, Y 2

v V 2])ab, (45)

F ′′ab =
{

2(UT U)bb + 2(Y 1
v )aa,

2(UT U)bb + 2(Y 2
v )aa,

if b ≤ q,
otherwise. (46)

Then the auxiliary function of Fab is designed as,

G(Vab, V
t
ab) = Fab(V t

ab) + F ′ab(V
t
ab)(Vab − V t

ab)

+
(V tUT U)ab + [Y 1

v+V 1t
, Y 2

v+V 2t]ab

V t
ab

(Vab − V t
ab)

2. (47)

Lemma 4 Eqn. (47) is an auxiliary function for Fab.

Proof: Since G(Vab, Vab) = Fab(Vab) is obvious, we need
only show that G(Vab, V

t
ab) ≥ Fab(Vab). To do this, we

compare the Taylor series expansion of Fab(Vab)

Fab(Vab) = Fab(V t
ab) + F ′ab(V

t
ab)(Vab − V t

ab)

+
1
2
F ′′ab(Vab − V t

ab)
2, (48)

with Eqn. (47), and then G(Vab, V
t
ab) ≥ Fab(Vab) is equiv-

alent to

(V tUT U)ab + [Y 1
v+V 1t

, Y 2
v+V 2t]ab

V t
ab

≥
{

(UT U)bb + (Y 1
v )aa,

(UT U)bb + (Y 2
v )aa,

if b ≤ q,
otherwise. (49)

It is easy to verify

(V tUT U)ab =
k∑

m=1

V t
am(UT U)mb ≥ V t

ab(U
T U)bb, (50)

and

[Y 1
v+V 1t

, Y 2
v+V 2t

]ab

=

{ ∑N
m=1 (Y 1

v+)amV t
mb,∑N

m=1 (Y 2
v+)amV t

mb,

if b ≤ q,
otherwise.

≥
{

(Y 1
v+)aaV t

ab,
(Y 2

v+)aaV t
ab,

if b ≤ q,
otherwise.

≥
{

(Y 1
v+ − Y 1

v−)aaV t
ab,

(Y 2
v+ − Y 2

v−)aaV t
ab,

if b ≤ q,
otherwise.

=
{

(Y 1
v )aaV t

ab,
(Y 2

v )aaV t
ab,

if b ≤ q,
otherwise. (51)

Thus, Eqn. (49) holds and G(Vab, V
t
ab) ≥ Fab(Vab). ¤

Lemma 5 Eqn. (44) could be obtained by minimizing the
auxiliary function G(Vab, V

t
ab).

We omit the proof of Lemma 5 due to space limitation.
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3 NON-NEGATIVE SEMI-SUPERVISED
TENSOR FACTORIZATION

Tensor is a generalized concept of vector and matrix for
data representation. Many research has shown that tensor-
based data representation has the superiority over vector-
based data representation for varieties of feature extrac-
tion algorithms, especially when the number of training
data is small (Yan et al., 2007). In this section, we study
the extension of the above vector-based non-negative semi-
supervised learning algorithm to handle the tensor data of
arbitrary order.

3.1 PROBLEM FORMULATION

Before formally introducing the tensor extension of N2S2L,
we first redefine some notations. Let the training data A =
[X1, ...,XN ] be an n-th order tensor, in which each datum
Xi ∈ Rd1×d2×···×dn−1 is represented as an (n-1)-th order
tensor, e.g., an image could be considered as a 2nd order
tensor, namely matrix, and a video could be considered as a
3rd order tensor. Other notations are the same as in vector-
based N2S2L.

For tensor data, we assume that the tensor A is fac-
torized into the sum of k rank-1 tensors as A =∑k

m=1(u
b
m⊗)n−1

b=1 vm, and thus the objective function for
tensorized non-negative semi-supervised learning is de-
fined as,

min
Ub,V :1≤b≤n−1

‖A −
k∑

m=1

(ub
m⊗)n−1

b=1 vm‖2F

+Tr(Q1V 1T
(αL + βLs)V 1Q1T

)

+Tr(Q2V 2T
(αLp)V 2Q2T

)
s.t. U b, V ≥ 0, 1 ≤ b ≤ n− 1, (52)

where ⊗ is the outer product operator. The matrix U b =
[ub

1, ..., u
b
k] ∈ Rdb×k, 1 ≤ b ≤ n − 1, and V =

[v1, ..., vk] = [V 1, V 2]. The matrices Q1 and Q2 are given
by Q1 =

∏n−1
b=1 Q1

b and Q2 =
∏n−1

b=1 Q2
b , where

Q1
b = diag{‖ub

1‖, ..., ‖ub
q‖},

Q2
b = diag{‖ub

q+1‖, ..., ‖ub
k‖}. (53)

3.2 CONVERGENT ITERATIVE PROCEDURE

Similar to vector-based N2S2L, there does not exist a
closed-form solution for Eqn. (52), and instead we propose
to optimize the V and U b iteratively. The optimization of
V is very similar to the vector-based N2S2L, and hence we
omit the details here. Also for optimizing U b, we only give
the result here with the deduction details and convergence
proof omitted.

The updating rule for U b for given V and Up, p 6= b is,

U b
ij ← U b

ij

(AbZu + U bYu−)ij

(U bZT
u Zu + U bYu+)ij

, (54)

where Ab is the matrix from the model-b unfolding of the
tensor A, Zu is a matrix with its mth column defined as
[(up

m⊗)n−1
p=b+1(u

p
m⊗)b−1

p=1vm], and

Yu+ =

[
(
∏

p 6=b Q1
p)V 1T

(αD + βDs)V 1(
∏

p 6=b Q1
p)T 0

0 (
∏

p 6=b Q2
p)V 2T

(αDp)V 2(
∏

p 6=b Q2
p)T

]
· I,

Yu− =

[
(
∏

p 6=b Q1
p)V 1T

(αS + βSs)V 1(
∏

p 6=b Q1
p)T 0

0 (
∏

p 6=b Q2
p)V 2T

(αSp)V 2(
∏

p 6=b Q2
p)T

]
· I.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our pro-
posed non-negative semi-supervised learning (N2S2L) al-
gorithm in three aspects: basis sparsity, discriminating
power, and robustness to image occlusions. Due to the
space limitation, we focus on the vector-based N2S2L only
in all the experiments.

4.1 EXPERIMENT SETUP

Several popular subspace learning and semi-supervised
learning algorithms are evaluated for comparison purpose:
three unsupervised ones including principal component
analysis (PCA) (Joliffe, 1986), non-negative matrix factor-
ization (NMF) (Lee & Seung, 1999), and localized non-
negative matrix factorization (LNMF) (Li et al., 2001),
two supervised ones including linear discriminant analy-
sis (LDA) (Belhumeur et al., 2002) and marginal fisher
analysis (MFA) (Yan et al., 2007), one semi-supervised al-
gorithm with feature dimension reduction, namely semi-
supervised marginal fisher analysis (sMFA) (Yang et al.,
2008b), three semi-supervised algorithms without feature
dimension reduction including harmonic Gaussian field
method (HGF) (Zhu et al., 2003), harmonic Gaussian field
method coupled with the class mass normalization (HGF-
CMN) (Zhu et al., 2003), and the consistency method
(CONS) (Zhou et al., 2003).

For the N2S2L algorithm, the intrinsic graph and penalty
graph are set as the same as those for MFA and sMFA,
where the number of nearest neighbors of each sample is
fixed as nc-1 and the number of shortest pairs from dif-
ferent classes is set as 20 for each class in this work. For
unsupervised and supervised algorithms, unlabeled data are
only used for testing; while for semi-supervised algorithms,
unlabeled data are used for both training and testing.

Two benchmark face database, i.e. ORL and FERET, are
used. All images are aligned by fixing the locations of the
two eyes. The ORL database contains 40 persons, each
with 10 images. For the FERET database, we use 70 peo-
ple with six images for each person. For ORL database,
the images are normalized to 64-by-64 pixels; for FERET
databases, the images are normalized to 56-by-46 pixels.
For both databases, two images each person are randomly
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Figure 1: Basis matrix visualization of the algorithms PCA
(1st row), NMF (2nd row), and N2S2L (3rd row) based on
the training data of the ORL database.

selected as labeled data, while other images are considered
as unlabeled data for testing. The performance is averaged
over five random splits of labeled and unlabeled images.

4.2 SPARSITY ANALYSIS

In this subsection, we examine the sparsity property of
the N2S2L algorithm. The basis matrices of N2S2L com-
pared with those from PCA and NMF on ORL and FERET
databases are depicted in Fig. 1 and Fig. 2, from which we
can observe that the bases of N2S2L and NMF are much
sparser than those of PCA. On the one hand, by leveraging
labeled and unlabeled data, N2S2L may have superior dis-
criminative capability over non-negative algorithms such as
NMF and LNMF; on the other hand, the sparsity property
of N2S2L makes it potentially more robust to image occlu-
sions than PCA and other related algorithms do. We will
validate these points in the next subsections.

4.3 CLASSIFICATION CAPABILITY

In this subsection, we evaluate the discriminating power
of the N2S2L algorithm with five popular subspace learn-
ing algorithms: NMF, LNMF, PCA, LDA, and MFA, as
well as four semi-supervised learning algorithms: sMFA,
HGF, HGF-CMN, and CONS. For LDA and MFA, we
first reduce the data to the dimension of Ntr-Nc us-
ing PCA, where Ntr is the number of labeled data and
Nc is the number of classes, for avoiding the singular
value issue as conventionally. For sMFA, the data are re-
duced to the dimension of N -Nc, where N is the num-
ber of all training images, including both labeled data and
unlabeled data. For the non-negative algorithms NMF,
LNMF and N2S2L, the parameter k is set as Ntr ×
m/(Ntr + m) in all the experiment setting, and q is sim-
ply set to be Nc for N2S2L. The parameter β in semi-
supervised algorithms sMFA and N2S2L are selected from
[10−6, 10−5, ..., 103]; while the parameter α in CONS are
selected from [0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99]. The pa-
rameter α in N2S2L is simply set to be 10. For HGF, HGF-
CMN, and CONS, we also use PCA preprocessing by re-
taining 90%, 95%, and 99% of the energy, in which the best
results are used. We report the best results by exploring all

Figure 2: Basis matrix visualization of the algorithms PCA
(1st row), NMF (2nd row), and N2S2L (3rd row) based on
the training data of the FERET database.

Table 1: Face recognition accuracies (%) of different algo-
rithms. Notice that the values in parentheses are the stan-
dard deviations of five rounds.

Algorithm ORL FERET
NMF 68.88 (±2.04) 65.79 (±3.20)

LNMF 70.69 (±2.26) 73.36 (±3.50)
PCA 70.88 (±1.49) 69.71 (±3.33)
LDA 75.38 (±3.83) 77.88 (±2.16)
MFA 76.50 (±3.41) 77.79 (±3.25)
sMFA 80.25 (±2.04) 80.64 (±3.25)
N2S2L 79.19 (±2.08) 80.71 (±3.45)
HGF 72.75 (±2.95) 54.50 (±2.66)

HGF-CMN 72.88 (±1.89) 56.21 (±2.39)
CONS 72.44 (±2.91) 57.00 (±2.70)

possible feature dimensions for algorithms with dimension-
ality reduction as conventionally (Yan et al., 2007).

The comparison results of different algorithms on ORL and
FERET databases are listed in Table 1, from which we
could draw the following conclusions. First, the perfor-
mances of non-negative algorithms NMF and LNMF are
much worse than supervised algorithms LDA and MFA,
and semi-supervised algorithms sMFA and N2S2L, which
shows that without considering the labeled data, non-
negative algorithms could not guarantee good discriminat-
ing power. Second, sMFA and N2S2L perform on aver-
age much better than LDA and MFA, which shows the im-
portance of leveraging unlabeled data. Third, for semi-
supervised algorithms without feature dimension reduc-
tion, HGF, HGF-CMN, and CONS, are consistently much
worse than sMFA and N2S2L on these two face databases.
One possible explanation for this may be that HGF, HGF-
CMN, and CONS could only work well on densely sam-
pled data sets, while for face recognition problem, there are
too few images per person to reveal a meaningful manifold.
Fourth, the performances of sMFA and N2S2L are compa-
rable on average. It is reasonable since both of them fully
utilize label and unlabeled data and the non-negative prop-
erty are not necessary to have greater classification power.
However, as shown in the next subsection, due to the spar-
sity property, N2S2L is much more robust than sMFA to
image occlusions.
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Figure 4: Face recognition accuracy vs. occlusion patch size. Left: results on the ORL face database. Right: results on the
FERET face database. For better viewing, please see the color pdf file.

Figure 3: Sample images from ORL (up) and FERET (bot-
tom) databases with occlusion patch sizes as 0-by-0, 16-by-
16, 20-by-20, 24-by-24, and 28-by-28 pixels respectively.

4.4 ROBUSTNESS TO IMAGE OCCLUSIONS

As aforementioned, the bases from N2S2L are sparse, lo-
calized, and discriminative, which indicates that N2S2L is
potentially more robust to image occlusions compared with
other subspace learning and semi-supervised learning algo-
rithms. To verify this point, we randomly add image occlu-
sions of different sizes to the testing images (unlabeled im-
ages for semi-unsupervised algorithms). Notice that HGF,
HGF-CMN, and CONS are transductive algorithms with-
out feature dimension reduction, and hence we do not com-
pare them here. Several example faces with occlusions of
different sizes are depicted in Fig. 3. For each new datum,
its coefficient vector is computed in the same way for NMF
related algorithms as in (Li et al., 2001).

Fig. 4 shows the face recognition results of different algo-
rithms. From these results, we can have the following ob-
servations: 1) sMFA and N2S2L still outperform other al-
gorithms in most cases; and 2) for non-negative algorithms,
NMF and N2S2L are more robust to image occlusions than
other algorithms, more specifically, the gap between NMF
and other algorithms becomes smaller, while the superior-
ity of N2S2L over all other algorithms is more obvious as
the occlusion patch size is bigger.
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